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We obtain the most-continuous part of the spectral decomposition of L2(PGLn(Z)\PGLn(R)/On), expressed
as (n − 1)-fold integrals of minimal-parabolic Eisenstein series. The harmonic analysis reduces to Fourier
transform on Euclidean spaces. All the n! functional equations of the Eisenstein series are needed to obtain
the expression of pseudo-Eisenstein series as integrals of Eisenstein series.

We show that the map from minimal-parabolic pseudo-Eisenstein series to their decomposition coefficients
against minimal-parabolic Eisenstein series is an isometry to its image. The argument characterizing the
image is sketched, but is incomplete without characterizing the other, less-continuous parts of the spectral
decomposition. Thus, we do not quite prove Plancherel for this part of the spectrum.

As supporting material, we prove the meromorphic continuation of the minimal-parabolic Eisenstein series
via Bochner’s Lemma, the latter being reviewed in an appendix, compute the constant term, and prove the
functional equations. Some relevant reduction theory is also recalled in an appendix.

As usual, in principle everything here has been known for forty or fifty years. [1] See the bibliography for
indications.

1. Minimal-parabolic Eisenstein series

Granting the meromorphic continuation of minimal-parabolic Eisenstein series, the functional equations are
determined by the constant term.

[1.1] Spherical Eisenstein series Let G = PGLn(R) and Γ = PGLn(Z). We have the standard minimal
parabolic B, standard Levi component A, unipotent radical N , Weyl group W , the latter represented by
permutation matrices. Let A+ be the image in G of positive diagonal matrices. Consider characters on B of
the form

χ = χs :

 a1 ∗
. . .

an

 −→ |a1|s1 . . . |an|sn (for s = (s1, . . . , sn) ∈ Cn)

For the character to descend to PGLn, necessarily s1 + . . .+ sn = 0. The modular function of B is χ2ρ, with
the half-sum ρ of positive roots:

ρ = (ρ1, . . . , ρn) =
(n− 1

2
,
n− 3

2
, . . . ,

−n+ 3

2
,
−n+ 1

2

)
∈ Cn

[1] Thus, in principle, this discussion is merely an example computation slightly extending the clichéd example of

GL2. In practice, typical treatments of GL2 do not clearly suggest what happens in any other example. At the same

time, it is non-trivial to see what very general intrinsic treatments say about GLn and other particular examples.
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The standard spherical vector is

ϕsph
s (pk) = χs(p) (for p ∈ B and k ∈ K)

and the spherical Eisenstein series is

Es(g) =
∑

γ∈B∩Γ\Γ

ϕsph
s (γ · g)

[1.2] Rewriting the Eisenstein series For computations concerning the constant term just below, it is
very convenient to rewrite the Eisenstein series.

The Bruhat decomposition G =
⋃
w∈W BwB is valid for the rational points of the groups, but not for integer

points, motivating revising the presentation of the Eisenstein series: let Gv = GLn(Qv) for all completions
Qv of Q, and similarly Bv. Let Kv = GLn(Zv) for finite places v, and Kv = On for Qv ≈ R. The sth

character χs,v on Bv is

χs,v :

 a1 ∗
. . .

an

 −→ |a1|s1v . . . |an|snv (for s = (s1, . . . , sn) ∈ Cn)

For the character to descend to PGLn, necessarily s1 + . . .+ sn = 0. The standard v-adic spherical vector is

ϕsph
s,v (pk) = χs,v(p) (for p ∈ Bv and k ∈ Kv)

and the global spherical vector is ϕsph
s (g) =

⊗
v ϕ

sph
v,s (gv), for g = {gv} ∈ PGLn(A). Over an arbitrary

number field k, not merely over Q, the spherical Eisenstein series can be rewritten as

Es(g) =
∑

γ∈Bk\Gk

ϕsph
s (γ · g) (for g ∈ PGLn(R) or PGLn(A))

This expression is valid for g in the archimedean factor G∞ = PGLn(R), and also extends the definition of
Es to a left Gk-invariant, right

∏
vKv-invariant function of g ∈ PGLn(A).

[1.3] Shape of constant term We will see below that the constant term

cBEs(g) =

∫
N∩Γ\N

Es(ng) dn

determines the functional equations of Es. We do not immediately need all the details of the constant term,
only the general shape of it, as follows. Use the adelic reformulation of the Eisenstein series. From the
Bruhat decomposition over a number field k, Gk =

⋃
w∈W BkwBk =

⋃
w∈W BkwNk, for a ∈ A+

cBEs(a) =

∫
Nk\NA

Es(na) dn =
∑
w∈W

∫
Nk\NA

∑
γ∈Bk\BkwNk

ϕsph
s (γna) dn

=
∑
w∈W

∫
Nk\NA

∑
γ∈(w−1Nkw∩Nk)\Nk

ϕsph
s (wγna) dn

For fixed w, let N ′ = w−1Nw ∩N . The Lie algebra of N ′ is a sum of positive root spaces. Let N ′′ be the
complement of N ′ in N , in the sense that its Lie algebra is the sum of the positive root spaces not in N ′.
Note that n→ ϕsph

s (wng) is left N ′′A-invariant. Then the wth summand above partly unwinds, and is∫
N ′′k \N

′′
A

∫
N ′A

ϕsph
s (wn′′n′a) dn′ dn′′ =

( ∫
N ′′k \N

′′
A
dn′′

)
·
∫
N ′A

ϕsph
s (wn′a) dn′ dn′′ =

∫
N ′A

ϕsph
s (wn′a) dn′
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Replacing n′ by an′a−1 gives and using the left A+-equivariance of ϕsph
s yields

δw(a) · χs(waw−1) ·
∫
N ′A

ϕsph
s (wn′) dn′

where δw is the modular function of N ′. With a = exp(x) for x in the Lie algebra a of A+, write
δw(a) = e〈λ,x〉 = aλ for suitable λ in the dual a∗. Write α > 0 for positive roots α and α < 0 for
negative roots. Elements w ∈W act on roots by the adjoint action on a∗. To express λ, observe that

λ =
∑

α>0 : wα>0

α

Letting ρ be the half-sum ρ = 1
2

∑
α>0 α of positive roots, λ may be expressed more succinctly as∑

α>0 : wα>0

α = 1
2

∑
α>0

α − 1
2

∑
α>0

wα = ρ− wρ

Thus, the wth summand of cBEs(a) is aρ+w(s−ρ) · cw(s) where

cw(s) =

∫
N ′A

ϕsph
s (wn′) dn′

Thus,

cBEs(a) =
∑
w∈W

cw(s) · aρ+w(s−ρ) =
∑
w∈W

cw(s) · χρ+w(s−ρ)(a) (for a ∈ A+)

with W acting linearly on s ∈ Cn. One sees directly from above that c1(s) = 1. Note that the affine action
s→ ρ+ w(s− ρ) is indeed associative:

ρ+ (ww′)(s− ρ) = ρ+ w
(
(ρ+ w′(s− ρ))− ρ

)
For brevity and clarity, write

w · s = ρ+ w(s− ρ) (s ∈ Cn and w ∈W )

[1.4] Functional equations All functional equations

Eτ ·s = A(τ, s) · Es (with τ ∈W )

are determined by the constant term cBEs(a), as follows. For τ ∈W ,

cB Eτ ·s

∣∣∣
A+

=
∑
w∈W

cw(τ · s) · χw·(τ ·s) =
∑
w∈W

cwτ−1(τ · s) · χw·s

by replacing w by wτ−1. A relation Eτ ·s = A(τ, χ)Es gives∑
w∈W

cwτ−1(τ · s) · χw·s = A(τ, χ) ·
∑
w∈W

cw(s) · χw·s

For typical s ∈ Cn, the w · s give distinct characters, so

cwτ−1(τ · s) = A(τ, χ) · cw(s) (for all w ∈W )
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Thus,

A(τ, s) =
cwτ−1(τ · s)

cw(s)
(for all w ∈W )

Using c1(s) = 1, take w = τ and w = 1, successively, to find

A(τ, s) =
1

cτ (s)
= cτ−1(τ · s)

which gives the form of the τ th functional equation expressed in terms of the τ th summand of the constant
term:

Eτ ·s =
Es
cτ (s)

= cτ−1(τ · s) Es (where τ · s = ρ+ τ(s− ρ))

Also, the cocycle relations among the summands of the constant term are obtained: cwτ−1(τ ·s) = cw(s)/cτ (s),
or, equivalently,

cw(τ · s) =
cwτ (s)

cτ (s)
(where τ · s = ρ+ τ(s− ρ))

[1.5] On the unitary hyperplane, |cw(s)| = 1 With a the Lie algebra of A+ and a∗ its dual, the unitary
hyperplane is

ρ+ ia∗ = {s ∈ Cn : s1 + . . .+ sn = 0, and Re(sj) = ρj} (with ρ = (ρ1, . . . , ρn))

For s ∈ ρ + ia∗, we claim |cw(s)| = 1 for all w ∈ W . This property does not quite follow from the cocycle
relations. Rather, these relations reduce to the case of cτ (s) with a reflection τ ∈ W , as follows. The
permutation group on {1, 2, . . . , n} is generated by adjacent transpositions τj mapping j ↔ j+ 1 and leaving
all other elements fixed. The corresponding elements τj of W act by conjugation on diagonal matrices by
interchanging jth and (j + 1)th entries, and leaving the others fixed. Noting that ρ+ ia∗ is stable under W ,
for w ∈W and reflection τ , we have

|cwτ (s)| = |cw(τ · s)| · |cτ (s)| = 1 · 1 (for s ∈ ρ+ ia∗)

by induction on the length ` of an expression w = σ1 . . . σ` as a product of reflections σj from among the
generators τj of W .

To show that |cτ (s)| = 1 for a reflection τ , we first show that, with s = (s1, . . . , sn) ∈ ρ + ia∗ and jth

reflection τj , we have cτj (s) = c(sj−sj+1), where c(s) with s ∈ C appears in the constant term ys+c(s)y1−s

of the usual GL2 Eisenstein series. Indeed, cτj (s) is the coefficient of the summand of the constant term
cBEs coming from the Bruhat cell BτjB: computing adelically, with A the adeles of a number field k,

τ thj summand of cBEs =

∫
Nk\NA

∑
γ∈Bk\BkτjBk

ϕsph
s (γ · n · a) dn (with a ∈ A+)

Conjugation by τj interchanges the a→ (aj/aj+1)±1 root spaces and permutes the other root spaces. Thus,
Bk\BkτjBk has irredundant representatives

n′x =



1
. . .

1 x
1

. . .

1


(with x ∈ k at the (j, j + 1) position)
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Let N ′ = {n′x} and let N ′′ be its complement in N , namely,

N ′′ = {



1 ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗

1 0 ∗ ∗
1 ∗ ∗

. . . ∗
1


} (with 0 at (j, j + 1)th position)

Unwinding and simplifying,

τ thj summand =

∫
N ′′k \N

′′
A

∫
N ′k\N

′
A

∑
Bk\BkτjBk

ϕsph
s (γn′n′′a) dn′ dn′′ =

∫
N ′′k \N

′′
A

∫
N ′A

ϕsph
s (τjn

′n′′a) dn′ dn′′

=
(∫

N ′′k \N
′′
A
dn′′

)
·
∫
N ′A

ϕsph
s (τjn

′a) dn′ = (τjaτj)
s · (aj/aj+1)

∫
N ′A

ϕsph
s (τjn

′) dn′

The character of a ∈ A+ has exponent

(s1, . . . , sj−1, sj+1 + 1, sj − 1, sj+2, . . . , sn)

Since τj does not affect coordinates other than sj , sj+1, we suppress those other coordinates. Noting that
ρj − ρj+1 = 1, as expected we find

(. . . , sj+1 + 1, sj − 1, . . .) = (. . . , sj+1 + ρj − ρj+1, sj + ρj+1 − ρj , . . .)

= (. . . , ρj , ρj+1, . . .) + τj(. . . , sj − ρj , sj+1 − ρj+1, . . .) = ρ+ τj(s− ρ) = τj · s

The integral over N ′A is identical to that for GL2 with character(
a ∗
0 d

)
−→ |a|sj |d|sj+1 = |ad|

sl+sj+1
2 |a/d|

sj−sj+1
2

The corresponding GL2 Eisenstein series is g → |det g|
sj+sj+1

2 ·E sj−sj+1
2

where the latter has trivial central

character, and constant term

y
sj−sj+1

2 + c(
sj − sj+1

2
) y1−

sj−sj+1
2

For GL2, the cocycle relation c(s)c(1 − s) = 1 and the conjugation c(s) = c(s) do suffice to prove that
|c(s)| = 1 for Re(s) = 1

2 . Thus, for Re(sj) = ρj and Re(sj+1) = ρj+1, we have Re(
sj−sj+1

2 ) = 1
2 , so

|cτj (s)| = |c(sj − sj+1

2
)| = 1 (for s ∈ ρ+ ia∗)

This sets up the induction for the general assertion that |cw(s)| = 1 for s ∈ ρ+ ia∗ and w ∈W , as above.

2. Spectral decomposition of pseudo-Eisenstein series

The minimal-parabolic pseudo-Eisenstein series arise naturally in elaboration of the Gelfand condition of
vanishing of constant term along the minimal parabolic B, by an adjunction relation. This adjunction,
combined with spectral decomposition along A+ and the functional equations of Es, yield the spectral
decomposition of the pseudo-Eisenstein series.

5



Paul Garrett: Most-continuous automorphic spectrum for GLn (January 3, 2012)

[2.1] Adjunction and pseudo-Eisenstein series For f a reasonable function on Γ\G/K, the minimal-
parabolic constant term is

cBf(g) =

∫
N∩Γ\N

f(ng) dn

with N the unipotent radical of the minimal parabolic B. The function g → cBf(g) is left N(B∩Γ)-invariant.

The Gelfand condition on cuspforms that all constant terms vanish requires cBf = 0 in particular. It is best
to describe cBf as a distribution, and its vanishing in that sense.

That is, for ϕ ∈ C∞c (N(B∩Γ)\G)K ≈ C∞c (A+), letting 〈, 〉X be the pairing of distributions and test functions
on a space X,

〈cBf, ϕ〉N(B∩Γ)\G =

∫
N(B∩Γ)\G

cBf · ϕ =

∫
N(B∩Γ)\G

(∫
N∩Γ\N

f(ng) dn
)
· ϕ(g) dg

=

∫
N(B∩Γ)\G

(∫
N∩Γ\N

f(ng)ϕ(ng) dn
)
dg =

∫
B∩Γ\G

f(g)ϕ(g) dg

=

∫
Γ\G

∑
γ∈B∩Γ\Γ

f(γg)ϕ(γg) dg =

∫
Γ\G

f(g)
( ∑
γ∈B∩Γ\Γ

ϕ(γg)
)
dg

This exhibits the pseudo-Eisenstein series

Ψϕ(g) =
∑

γ∈B∩Γ\Γ

ϕ(γg) (for ϕ ∈ C∞c (N(B ∩ Γ)\G/K))

entering the adjunction
〈cBf, ϕ〉N(B∩Γ)\G = 〈f,Ψϕ〉Γ\G

That is, ϕ→ Ψϕ is adjoint to f → cBf . Then cBf = 0 is equivalent to 〈f,Ψϕ〉Γ\G = 0 for all ϕ.

[2.2] Fourier inversion To decompose the pseudo-Eisenstein series Ψϕ as an integral of minimal-parabolic
Eisenstein series, begin with Fourier transform on the Lie algebra a ≈ Rn−1 of A+. Let 〈, 〉 : a∗ × a→ R be
the R-bilinear pairing of a with its R-linear dual a∗. For f ∈ C∞c (a), the Fourier transform is

f̂(ξ) =

∫
a

e−i〈x,ξ〉 f(x) dx

Fourier inversion is

f(x) =
1

(2π)dim a

∫
a∗
ei〈x,ξ〉 f̂(ξ) dξ

[2.3] Mellin inversion Let exp : a → A+ be the Lie algebra exponential, and log : A+ → a the inverse.
Given ϕ ∈ C∞c (A+), let f = ϕ ◦ exp be the corresponding function in C∞c (a). The Mellin transform Mϕ of
ϕ is the Fourier transform of f :

Mϕ(iξ) = f̂(ξ)

Mellin inversion is Fourier inversion in these coordinates:

ϕ(expx) = f(x) =
1

(2π)dim a

∫
a∗
ei〈ξ,x〉 f̂(ξ) dξ =

1

(2π)dim a

∫
a∗
ei〈ξ,x〉Mϕ(iξ) dξ

Extend the pairing 〈, 〉 on a∗ × a to a C-bilinear pairing on the complexification. Use the convention

(expx)iξ = ei〈ξ,x〉 = e〈iξ,x〉
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With a = expx ∈ A+, Mellin inversion is

ϕ(a) =
1

(2π)dim a

∫
a∗
aiξMϕ(iξ) dξ =

1

(2πi)dim a

∫
ia∗

asMϕ(s) ds (with a ∈ A+ and s = iξ)

With this notation, the Mellin transform itself is

Mϕ(s) =

∫
A+

a−s ϕ(a) da (with s ∈ ia∗)

Since ϕ is a test function, its Fourier-Mellin transform is entire on a∗⊗RC. (It is in the Paley-Wiener space.)
Thus, for any σ ∈ a∗, Mellin inversion can be written

ϕ(a) =
1

(2πi)dim a

∫
σ+ia∗

asMϕ(s) ds

[2.4] Spectral decomposition of pseudo-Eisenstein series: first step Identifying N(B ∩ Γ)\G/K ≈
A+, let g → a(g) be the function that picks out the A+ component in an Iwasawa decomposition G = NA+K.
For σ ∈ a∗ suitable for convergence, the following rearrangement is legitimate:

Ψϕ(g) =
∑

γ∈B∩Γ\Γ

ϕ(a(γ ◦ g)) =
∑

γ∈B∩Γ\Γ

1

(2πi)dim a

∫
σ+ia∗

a(γg)sMϕ(s) ds

=
1

(2πi)dim a

∫
σ+ia∗

( ∑
γ∈B∩Γ\Γ

a(γg)s
)
Mϕ(s) ds =

1

(2πi)dim a

∫
σ+ia∗

Es(g)Mϕ(s) ds

Note that the parameter s ∈ a∗ ⊗R C in the Eisenstein series Es is not written in coordinates as earlier.

This does express the pseudo-Eisenstein series as a superposition of Eisenstein series, as desired. However,
the coefficients Mϕ are not expressed in terms of Ψϕ itself. This is rectified as follows.

[2.5] Adjunctions involving Eisenstein series Note that dn da dk/a2ρ is a Haar measure on G = NA+K,
so da dk/a2ρ is a right G-invariant measure on N\G, and da/a2ρ is the associated measure on N\G/K. In
the region of convergence, for f ∈ C∞c (Γ\G), using a complex-bilinear pairing rather than hermitian,

〈f,Es〉Γ\G =

∫
Γ\G

f(g)Es(g) =

∫
B∩Γ\G

f(g) a(g)s dg

=

∫
N(B∩Γ)\G

∫
N∩Γ\N

f(ng) a(ng)s dg =

∫
N(B∩Γ)\G

cBf(g) a(g)s dg =

∫
A+

cBf(a) as
da

a2ρ

=

∫
A+

cBf(a) a−(2ρ−s) da = McBf(2ρ− s)

That is, with f = Ψϕ,

〈Ψϕ, Es〉Γ\G = McBΨϕ(2ρ− s) (with C-bilinear pairing)

On the other hand, a similar unwinding of the pseudo-Eisenstein series, and recollection of the constant term
cBEs, gives
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〈Ψϕ, Es〉Γ\G =

∫
B∩Γ\G

ϕ(g)Es(g) dg =

∫
N(B∩Γ)\G

∫
N∩Γ\N

ϕ(ng)Es(ng) dg

=

∫
N(B∩Γ)\G

ϕ(g) cBEs(g) dg =

∫
A+

ϕ(a) cBEs(a)
da

a2ρ
=

∫
A+

ϕ(a)
∑
w

cw(s) aw·s
da

a2ρ

=
∑
w

cw(s)

∫
A+

ϕ(a) a−(2ρ−w·s) da =
∑
w

cw(s)Mϕ(2ρ− w · s)

Combining these,

McBΨϕ(2ρ− s) = 〈Ψϕ, Es〉Γ\G =
∑
w

cw(s)Mϕ(2ρ− w · s)

Replacing s by 2ρ− s, noting that 2ρ− w · (2ρ− s) = w · s,

McBΨϕ(s) =
∑
w

cw(2ρ− s)Mϕ(w · s)

[2.6] Complex conjugation on the unitary hyperplane ρ + ia∗ The Eisenstein series Es behaves
reasonable under complex conjugation: Es = Es. This is visible in the region of convergence, and persists
under analytic continuation, since Es = Es is an equality of meromorphic functions. This relation is inherited
by the constant term along B:∑

w

cw(s) · aw·s = cBEs = cBEs =
∑
w

cw(s) · aw·s

Since aw·s = aw·s, this gives cw(s) = cw(s). For s on the unitary hyperplane ρ+ ia∗, conveniently s = 2ρ−s.
For such s,

cw(s) = cw(2ρ− s) (for s ∈ ρ+ ia∗)

Also, as proven earlier, |cw(s)| = 1 for s ∈ ρ+ ia∗ for all w ∈W . Thus,

cw(2ρ− s) = cw(s) =
1

cw(s)
(for s ∈ ρ+ ia∗)

[2.7] Spectral expansion of pseudo-Eisenstein series: second part To convert the earlier expression

Ψϕ(g) =
1

(2πi)dim a

∫
σ+ia∗

Es(g)Mϕ(s) ds

into a W -symmetric expression, to obtain an expression in terms of cBΨϕ, we must use the functional
equations of Es. However, σ+ ia∗ is W -stable only for σ = ρ. Thus, the integral over σ+ ia∗ must be viewed
as an iterated contour integral, and moved to ρ + ia∗. For simplicity, we assume Ψϕ is orthogonal to any
residues. Then

Ψϕ =
1

|W |
∑
w

1

(2πi)dim a

∫
ρ+ia∗

Ew·sMϕ(w · s) ds =
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

Es

(∑
w

1

cw(s)
Mϕ(w · s)

)
ds

As just observed, on ρ+ ia∗ we have 1/cw(s) = cw(2ρ− s). Thus,∑
w

1

cw(s)
Mϕ(w · s) =

∑
w

cw(2ρ− s)Mϕ(w · s) = McBΨϕ(s)
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This gives the desired spectral expansion of Ψϕ: with complex-bilinear pairing 〈, 〉,

Ψϕ =
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

Es · MΨϕ(s) ds =
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

Es · 〈Ψϕ, E2ρ−s〉Γ\G ds

[2.8] Isometry for most-continuous spectrum Let f ∈ C∞c (Γ\G), ϕ ∈ C∞c (N\G), and assume Ψϕ is
orthogonal to residues of Es above ρ. Using the expression for Ψϕ in terms of Eisenstein series,

〈Ψϕ, f〉 =
〈 1

|W |
1

(2πi)dim a

∫
ρ+ia∗

〈Ψϕ, E2ρ−s〉 · Es ds, f
〉

=
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

〈Ψϕ, E2ρ−s〉 · 〈Es, f〉 ds

This shows that f → (s → 〈f,Es〉) is an inner-product-preserving map from the Hilbert-space span of the
pseudo-Eisenstein series to its image in L2(ρ+ ia).

The map Ψϕ → 〈Ψϕ, E2ρ−s〉, with s = ρ+ it and t ∈ a∗, produces functions u(t) = 〈Ψϕ, Eρ−it〉 satisfying

u(wt) = 〈Ψϕ, E2ρ−w·s〉 = 〈Ψϕ, Ew·(2ρ−s)〉 = 〈Ψϕ,
E2ρ−s

cw(2ρ− s)
〉 = cw(s) · u(t) (for all w ∈W )

since cw(2ρ− s) = cw(s) = 1/cw(s) on ρ+ ia∗.

[2.9] Toward Plancherel We claim that any u ∈ L2(ρ+ ia∗) satisfying u(wt) = cw(s) ·u(t) for all w ∈W
is in the image. First, for compactly-supported u meeting this condition, we claim

Φu =
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

u(t) · Eρ+it dt 6= 0

It suffices to show cBΦu is not 0. With s = ρ+ it, the relation implies u(t)E2ρ−s is invariant by W . Let

C = {t ∈ a∗ : 〈t, α〉 > 0 for all simple α > 0}

be the positive Weyl chamber in a∗, where 〈, 〉 is the Killing form transported to a∗ by duality. Then

Φu =
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

u(t) · Es dt =
1

(2πi)dim a

∫
ρ+iC

u(t) · Es dt

Since u(tw) = u(t) · cw(ρ+ it), the constant term of Φu is

cBΦu =
1

(2πi)dim a

∫
ρ+iC

u(t) ·
∑
w

cwa
w·s dt =

1

(2πi)dim a

∫
ρ+iC

∑
w

u(wt) ·aw·s dt =
1

(2πi)dim a

∫
ρ+ia∗

u(t) ·as dt

This Fourier transform does not vanish for non-vanishing u.

It seems necessary to invoke the complete spectral decomposition of L2(Γ\G/K), that cuspforms and cuspidal
data Eisenstein series attached to non-minimal parabolics, and their L2 residues, as well as the minimal-
parabolic pseudo-Eisenstein series, span L2(Γ\G/K). And we must know the orthogonality of integrals of
minimal-parabolic Eisenstein series to all the other spectral components.

Granting this, necessarily Φu is in the topological closure of minimal-parabolic pseudo-Eisenstein series Ψϕ

with test-function data ϕ. Thus, given u, there is ϕ such that 〈Ψϕ,Φu〉 6= 0. Then

0 6= 〈Ψϕ,Φu〉 =
1

|W |
1

(2πi)dim a

∫
ρ+ia∗

u(t) · 〈Ψϕ, E2ρ−s〉 dt

9
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Thus, the functions s → 〈Ψϕ, E2ρ−s〉 are dense in the space of L2(ρ + ia∗) functions u satisfying
u(wt) = cw(s) · u(t) for all w ∈W .

Recall that we have suppressed (multi-)residues of Es encountered in moving the contour of integration. In
fact, the only residue in that region is constant. Thus, there is an isometry

{L2(ρ+ ia∗) integrals of minimal-parabolic Es} ⊕ C ≈ L2 − closure of {minimal-parabolic Ψϕ}

However, we have not quite proven this fragment of a Plancherel theorem. We did prove that the map from
the space of pseudo-Eisenstein series to integrals of Eisenstein series is an isometry to its image.

3. Convergence of Eisenstein series

We derive Godement’s criterion for absolute convergence of Eisenstein series, as in [Borel 1966], in the context
of minimal-parabolic Eisenstein series.

[3.0.1] Claim: (In coordinates) The minimal-parabolic Eisenstein series Es on PGLn converges absolutely

for
σj−σj+1

2 > 1 for j = 1, . . . , n− 1, where s = (s1, . . . , sn) ∈ C and σ = (Re(s1), . . . ,Re(sn)).

Let 〈, 〉 be the Killing form on the Lie algebra a of G = PGLn. It is a scalar multiple of 〈x, y〉 = tr(xy). Let
2ρ be the sum of positive roots.

[3.0.2] Claim: (Intrinsic/conceptual version) The minimal-parabolic Eisenstein series Es on PGLn
converges absolutely for 〈α, σ − 2ρ〉 > 0 for all positive simple roots α.

[3.0.3] Remark: That is, the Eisenstein series Es converges absolutely for σ ∈ a∗ in the translate by 2ρ of

positive Weyl chamber = {β ∈ a∗ : 〈β, α〉 > 0, for all positive roots α}

Proof: Fix a number field k. Let h be the standard height function on a k-vectorspace with specified
basis (not necessarily ordered). Let e1, . . . , en be the standard basis of kn. Any exterior power ∧`kn has
(unordered) basis of wedges of the ej , so has an associated height function. Let

ηj(g) =
h
(
(ej ∧ . . . ∧ en) · ∧n−j+1g

)
h(ej ∧ . . . ∧ en)

(for g ∈ GLn(A))

where ∧`g is the natural action of g on ∧`kn. Note that ηj is the standard spherical vector in principal
series attached to the character χ(0,...,0,1,1,...,1) with j − 1 zeros. Thus, the spherical vector ϕsph

s from which

is made the sth minimal-parabolic Eisenstein series Es is expressible as

ϕsph
s = ηs11 ηs2−s12 ηs3−s1−s23 . . . ηsn−s1−s2−...−sn−1

n (where s = (s1, . . . , sn))

From reduction theory, given compact C ⊂ GA = PGLn(A),

h(v) ≤C h(v · g) ≤C h(v) (for all 0 6= v ∈ kn and g ∈ C)

and similarly for heights on ∧`kn. Therefore, convergence of the series defining the Eisenstein series Es(go)
is equivalent to convergence of ∫

C

∑
γ∈Bk\Gk

ϕsph
s (γg) dg

10
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Shrinking C sufficiently so that γ · C ∩ C 6= φ implies γ = 1,∫
C

∑
γ∈Bk\Gk

ϕsph
s (γg) dg =

∫
Bk\Gk·C

ϕsph
s (g) dg

Also from reduction theory,

inf
06=v

h(v) > 0 (inf over 0 6= v ∈ ∧n−j+1kn)

Therefore, Gk · C is contained in the set

Y = {g ∈ GA : 1�C ηj(g) for j = 1, . . . , n}

Thus, convergence of the Eisenstein series is implied by convergence of∫
Bk\Y

∣∣ϕsph
s (g)

∣∣ dg
The set Y is stable by right multiplication by the maximal compact subgroup Kv ⊂ Gv at all places v, so
this integral is ∫

Bk\(Y ∩PA)

∣∣ϕsph
s (p)

∣∣ dp (left Haar measure on B)

Let ρ be the half-sum of positive roots, so the left Haar measure on BA is d(na) = dn da/a2ρ, where dn is
Haar measure on the unipotent radical and da is Haar measure on diagonal matrices A. Since ϕsph

s is left
NA-invariant and Nk\NA is compact, convergence of the latter integral is equivalent to convergence of∫

Ak\(Y ∩AA)

∣∣ϕsph
s (a)

∣∣ da

a2ρ
=

∫
Ak\(Y ∩AA)

aσ−2ρ da (where σ = (Re(s1), . . . ,Re(sn)))

The quotient k×J1 of norm-one ideles J1 is compact, by Fujisaki’s Lemma. The discrepancy between PSLn(R)
and PGLn(R) is absorbed by A ∩

∏
vKv. Thus, convergence of the following archimedean integral suffices.

We parametrize A ⊂ SLn(R) by n− 1 maps from GL1(R), namely,

hj : t −→



1
. . .

1
t

t−1

1
. . .

1


(at jth and (j + 1)th positions)

From

ηi(hj(t)) =

 |t|
−1 (for i = j + 1)

1 (otherwise)

we have
Y ∩AR ∩ SLn(R) = {

∏
j

hj(tj) : tj ∈ J and |t−1
j | � 1 }

Noting that hj(t)
2ρ = |t|2 for all j, convergence of the Eisenstein series is implied by convergence of∫ �1

0

tσj−σj+1−2 dt

t
(for j = 1, . . . , n− 1)

11
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These integrals are absolutely convergent for σi − σi+1 − 2 > 0 for all i.

More intrinsically, identifying a∗ and a via 〈, 〉, the positive simple roots α1, . . . , αn−1 are

αj =



0
. . .

0
1
−1

0
. . .

0


(at jth and (j + 1)th positions)

The absolute convergence condition immediately becomes 〈σ − 2ρ, α〉 > 0 for all simple roots α. ///

4. Meromorphic continuation of Eisenstein series

This discussion is in part an adaptation of the appendix of [Langlands 1967/76] treating Eisenstein series for
the minimal parabolic in GLn over a number field, explicitly accommodating non-trivial ideal class groups.
The tone of that appendix suggests that the treatment of GLn(Z) was known, although there is no obvious
extant source.

[4.1] Overview In brief, the idea is to view the minimal-parabolic Eisenstein series as an iterated object,
an Eisenstein series for a not-quite-minimal parabolic P , formed from data including a suitably normalized
GL2 Eisenstein series Ẽ on the Levi component of P . Phragmén-Lindelöf gives whose that the analytic
continuation of Ẽ is bounded in vertical strips, yielding convergence of the P Eisenstein series to a larger
region of the form

Ωi = {s ∈ Cn : Re(sj)− Re(sj+1) > 2 for j 6= i}

That is, in Ωi there is no constraint on Re(si)− Re(si+1).

This applies to all the 2-by-2 blocks along the diagonal, giving a meromorphic continuation of Es to
⋃
i Ωi.

Then Bochner’s lemma (see appendix) analytically continues the whole Eisenstein series to the convex hull
of
⋃
i Ωi, namely, Cn.

[4.2] Iterated Eisenstein series For each fixed index 1 ≤ i < n, there is the next-to-minimal standard
parabolic P with standard Levi components and unipotent radicals given by P = NP ·MP with

NP =



1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗

1 ∗ ∗
. . . ∗

1


MP =



∗ 0 0 0 0 0 0 0
. . . 0 0 0 0 0 0

∗ 0 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0

∗ 0 0
. . . 0

∗


with the anomalous block at the (i, i), (i, i+ 1), (i+ 1, i), and (i+ 1, i+ 1) positions. The minimal-parabolic
Eisenstein series can be written as an iterated sum

Es(g) =
∑

γ∈Bk\Gk

ϕsph
s (γg) =

∑
γ∈Pk\Gk

( ∑
δ∈Bk\Pk

ϕsph
s (δγg)

)
12
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The coset space Bk\Pk has representatives

Bk\Pk ≈ Mk\MP
k ≈ {δ =



1 0 0 0 0 0 0 0
. . . 0 0 0 0 0 0

1 0 0 0 0 0
a b 0 0 0
c d 0 0 0

1 0 0
. . . 0

1


:

(
a b
c d

)
∈ P 1,1

k \GL2(k)} ≈ P 1,1
k \GL2(k)

where P 1,1 is the standard upper-triangular parabolic in GL2. Further,

ϕsph
s



a1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗

ai−1 ∗ ∗ ∗ ∗ ∗
ai ∗ ∗ ∗ ∗
0 ai+1 ∗ ∗ ∗

ai+2 ∗ ∗
. . . ∗

an


= |a1|s1 . . . |an|sn

= |a1|s1 . . . |ai−1|si−1 |ai/ai+1|
si−si+1

2 |aiai+1|
si+si+1

2 |ai+2|si+2 . . . |an|sn

Thus, the inner sum is

∑
δ∈Bk\Pk

ϕsph
s

(
δ ·



a1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗

ai−1 ∗ ∗ ∗ ∗ ∗
a b ∗ ∗ ∗
c d ∗ ∗ ∗

ai+2 ∗ ∗
. . . ∗

an


)

= |a1|s1 . . . |ai−1|si−1 · E1,1
si−si+1

2

(
a b
c d

)
·
∣∣∣ det

(
a b
c d

) ∣∣∣ si+si+1
2 · |ai+2|si+2 . . . |an|sn (for h ∈ GL2)

where E1,1 is the usual GL2 Eisenstein series with trivial central character. Therefore, let g = nmk be an
Iwasawa decomposition with n ∈ NP , m ∈MP , and k ∈

∏
vKv with m in the form just displayed, and put

Φ[i]
s (g) = |a1|s1 . . . |ai=1|si−1 · E1,1

si−si+1
2

(
a b
c d

)
·
∣∣∣det

(
a b
c d

) ∣∣∣ si+si+1
2 · |ai+2|si+2 . . . |an|sn

Then
Es(g) =

∑
γ∈Pk\Gk

Φ[i]
s (γ g) (for g ∈ PGLn)

This expresses the PGLn minimal-parabolic Eisenstein series P -Eisenstein series attached to the P 1,1

Eisenstein series on the GL2 part of its Levi component.

[4.3] Convergence estimate The normalization of the GL2 Eisenstein series to eliminate poles, to be
bounded on vertical strips for g in compacts in GL2(A), and to be invariant under s→ 1− s, is

Ẽs(g) = s(1− s) · ξ(2s) · E1,1
s (g) (for s ∈ C, with ξ(s) = π−s/2Γ(s/2)ζ(s))

13
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Thus, let

Φ̃[i]
s = (

si − si+1

2
)(1− si − si+1

2
) · ξ(si − si+1) · Φ[i]

s

An argument similar to that for convergence of the minimal-parabolic Eisenstein series Es will prove the
absolute convergence of

(
si − si+1

2
)(1− si − si+1

2
) · ξ(si − si+1) · Es(g) =

∑
γ∈Pk\Gk

Φ̃[i]
s (γ g)

for
Re(sj)−Re(sj+1)

2 > 1 for j 6= i, with no condition on si − si+1.

Indeed, for g in a fixed compact and si − si+1 in a fixed vertical strip, Φ
[i]
s (g) is dominated by the function

obtained by replacing Ẽ1,1 by a constant, namely, with σj = Re(sj),

θ(g) = |a1|σ1 . . . |ai−1|σi−1 ·
∣∣∣det

(
a b
c d

) ∣∣∣σi+σi+1
2 · |ai+2|σi+2 . . . |an|σn

We prove the absolute convergence of the degenerate Eisenstein series E(g) =
∑
γ∈Pk\Gk θ(γg).

As in the earlier convergence argument, convergence is equivalent to convergence of an integrated form,
namely ∫

C

∑
γ∈Pk\Gk

θ(γg) dg

Shrinking C sufficiently so that γ · C ∩ C 6= φ implies γ = 1,∫
C

∑
γ∈Pk\Gk

θ(γg) dg =

∫
Bk\Gk·C

θ(g) dg

As in the earlier convergence argument, letting ηj be the norm of the determinant of the lower right n − j
minor, Gk · C is contained in

Y = {g ∈ GA : 1�C ηj(g) for j = 1, . . . , n}

To compare with MP , drop the (i+ 1)th condition: Gk · C is contained in

Y ′ = {g ∈ GA : 1�C ηj(g) for j 6= i+ 1}

Thus, convergence of the Eisenstein series is implied by convergence of∫
Pk\Y ′

θ(g) dg

As Y ′ is stable by right multiplication by the maximal compact subgroup Kv ⊂ Gv at all places v, this
integral is ∫

Pk\(Y ′∩PA)

θ(p) dp (left Haar measure on P )

Let α = αi be the ith simple positive root, and ρ the half-sum of positive roots. The left Haar measure
on PA is d(nm) = dn dm/m2ρ−α, where dn is Haar measure on NP and dm is Haar measure on the Levi
component MP . Since θ is left NA-invariant and Nk\NA is compact, convergence of the latter integral is
equivalent to convergence of ∫

Mk\(Y ′∩MA)

θ(m)
dm

m2ρ−α

14
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As in the earlier convergence argument, Fujisaki’s Lemma and right action of M ∩
∏
vKv reduce the

convergence question to that of the following archimedean integral.

Parametrize M ∩ SLn(R) by maps from GL1(R) as earlier, with the ith replaced by the obvious map from
SL2(R), namely,

h′i :

(
a b
c d

)
−→



1
. . .

1
a b
c d

1
. . .

1


(at ith and (i+ 1)th positions)

Then

Y ′ ∩MR ∩ SLn(R) = {
∏
j 6=i

hj(tj) : tj ∈ J and |t−1
j | � 1 } × {h′i(T ) : T ∈ SL2(R), |detT | � 1}

Noting that hj(t)
2ρ = |t|2, convergence is implied by convergence of

∫ �1

0

tσj−σj+1−2 dt

t
(for j 6= i)

∫
SL2(Z)\SL2(R)

1 dt (right invariant measure dt)

The GL1 integrals are absolutely convergent for σj−σj+1−2 > 0 for j 6= i. Since SL2(Z)\SL2(R) has finite
volume, the SL2 integral is convergent. This is the desired convergence conclusion: there is no constraint
on σi − σi+1. Thus, the iterated expression for the Eisenstein series analytically continues as indicated.

[4.4] Functional equations for reflections In addition to a partial analytic continuation, the previous
argument gives the functional equation for the reflection τ = τα ∈W attached to the ith simple root α = αi.
A first version is

ξ(2− (si − si+1)) · Eτ ·s = ξ(si − si+1) · Es (as earlier, τ · s = ρ+ τ(s− ρ))

The reflection τ interchanges ±α and permutes the other positive roots. Thus,

τ(ρ) = 1
2τ
(
α+

∑
β>0, β 6=α

β
)

= 1
2

(
− α+

∑
β>0, β 6=α

β
)

= ρ− α

This also shows that 〈ρ, α〉 = 〈α, α〉/2 for simple α. Using si − si+1 = 〈s, αi〉, and τx = x− 2 〈x,α〉α〈α,α〉 ,

〈τ · s, α〉 = 〈ρ+ τ(s− ρ), α〉 = 〈ρ+ τs− τρ, α〉 = 〈ρ+ τs− ρ+ α, α〉 = 〈τs+ α, α〉 = 〈α, α〉 − 〈s, α〉

Thus, the αth functional equation is

Eτ ·s = =
ξ〈s, α〉
ξ〈τ · s, α〉

· Es =
ξ〈s, α〉

ξ(〈α, α〉 − 〈s, α〉)
· Es (for reflection τ = τα)

Since also Eτ ·s = Es/cτ (s), using the functional equation ξ(1− z) = ξ(z),

cτ (s) =
ξ〈τ · s, α〉
ξ〈s, α〉

=
ξ(〈α, α〉 − 〈s, α〉)

ξ〈s, α〉
=

ξ(1− 〈α, α〉+ 〈s, α〉)
ξ〈s, α〉

=
ξ(〈s, α〉 − 1)

ξ〈s, α〉
(reflection τ = τα)
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The cocycle relation cwτ (s) = cw(τ · s) · cτ (s) for the coefficients cw(s) of the constant term give the general
case inductively. For example, with reflections σ, τ attached to simple roots α, β, respectively,

cστ (s) = cσ(τ · s) · cτ (s) =
ξ〈στ · s, α〉
ξ〈τ · s, α〉

· ξ〈τ · s, β〉
ξ〈s, β〉

=
ξ(〈τ · s, α〉 − 1)

ξ〈τ · s, α〉
· ξ(〈s, β〉 − 1)

ξ〈s, β〉

Qualitatively, the number of factors in both numerator and denominator of cw(s) is the length of w.

[4.5] Application of Bochner’s Lemma The n − 1 partial analytic continuations can be organized to
allow application of Bochner’s Lemma.

Above, for α = αi the ith simple root, we showed that (suppressing some parentheses)

E[α]
s =

〈s, α〉
2
·
(

1− 〈s, α〉
2

)
· ξ〈s, α〉 · Es

admits an analytic continuation in which si − si+1 = 〈s, α〉 is not constrained, and this normalized version
of Es is invariant under s→ τα · s = ρ+ τ(s− ρ). This might suggest normalization factors for all positive
roots, to obtain a W -invariant expression:

Es ·
∏
β>0

〈s, β〉
2
·
(

1− 〈s, β〉
〈β, β〉

)
· ξ〈s, β〉 (???... will fail)

The intention is that, for each simple root α, the product E
[α]
s is invariant under the reflection τα, and the

remaining factors should be permuted among themselves, since the other positive roots are permuted among
themselves by τα. However, this is not quite so: in the normalization in which τ · s = ρ + τ(s − ρ), the
collection of pairing values {〈s, β〉 : β 6= α} is not stabilized.

Instead, τ · s − ρ = τ(s − ρ). That is, the affine action s → τ · s becomes conveniently linear on s − ρ.
Therefore, for simple α, rewrite

〈s, α〉 = 〈s− ρ+ ρ, α〉 = 〈s− ρ, α〉+ 〈ρ, α〉 = 〈s− ρ, α〉+ 1

and consider

Es ·
∏
β>0

(
1
2 +
〈s− ρ, β〉

2

)
·
(

1
2 −
〈s− ρ, β〉

2

)
· ξ
(
〈s− ρ, β〉+ 1

)
All indicated values of the completed zeta function ξ are in the convergent range when 〈s− ρ, β〉 > 0 for all
positive β.

A technical issue arises: while for simple α the pole at 〈s, α〉 = 1 of ξ(〈s, α〉−1) is cancelled by the vanishing
of Es there, there is no obvious cancellation of these poles for the other factors. To most easily justify
application of Bochner’s lemma, add additional polynomial factors to be sure to cancel these poles: let

E#
s = Es ·

∏
β>0

(
1
2 +
〈s− ρ, β〉

2

)
·
( 〈s− ρ, β〉

2

)2

·
(

1
2 −
〈s− ρ, β〉

2

)
· ξ
(
〈s− ρ, β〉+ 1

)
The exponential decay of the gamma factor in ξ is more than sufficient to preserve boundedness in vertical
strips for real part s in compacts.

[4.5.1] Claim: E#
s has an analytic continuation to a holomorphic function on Cn, and is invariant under

s→ w · s for all w ∈W .

Proof: By the GL2 discussion and the above adaptations, E#
s has an analytic continuation to the tube

domain Ω over Ωo ⊂ Rn given by

Ωo = {σ ∈ Rn : 〈σ − ρ, α〉 > 1 for all but possibly a single simple root α}
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In Ω, for Re(s) in compacts, E#
s is bounded, so certainly has sufficiently modest growth for application of

Bochner’s Lemma. Thus, E#
s has an analytic continuation to the convex hull of Ω, which is Cn. ///

[4.5.2] Corollary: The meromorphic continuation of Es is holomorphic off the zero-sets of ξ(〈s− ρ, β〉+ 1)
for positive roots β, and off 〈s− ρ, β〉 = 0,± 1

2 . ///

[4.5.3] Corollary: The meromorphic continuation of Es satisfies Ew·s = Es/cw(s) for w ∈W .

Proof: The partial analytic continuations of Es, and the analytic continuation of E#
s to a W -invariant

function, prove the functional equations of Es for reflections attached to simple roots, and also prove the
cocycle relation on constant terms, by induction on length of w ∈W . ///

5. Example: PGL3

For G = PGL3 there are two simple positive roots,

〈x, α〉 = x1 − x2 〈x, β〉 = x2 − x3 (for x ∈ a with diagonal entries xi)

The other positive root is α+ β, so ρ = 1
2 (α+ β + (αβ)) = α+ β. Let σ, τ be the reflections corresponding

to α, β, respectively. The whole Weyl group is

W = {1, σ, τ, στ, τσ, στσ}

and we note that στσ = τστ . From the GL2 computation,

cσ(s) =
ξ〈s− ρ, α〉

ξ(〈s− ρ, α〉+ 1)
cτ (s) =

ξ〈s− ρ, β〉
ξ(〈s− ρ, β〉+ 1)

By the cocycle relation cwr(s) = cw(r · s) · cr(s) for reflection r and w ∈W ,

cστ (s) = cσ(τ · s) · cτ (s) =
ξ〈τ(s− ρ), α〉

ξ(〈τ(s− ρ), α〉+ 1)
· ξ〈s− ρ, β〉
ξ(〈s− ρ, β〉+ 1)

Since 〈τx, α〉 = 〈x, τα〉 = 〈x, α+ β〉,

cστ (s) =
ξ〈s− ρ, α+ β〉

ξ(〈s− ρ, α+ β〉+ 1)
· ξ〈s− ρ, β〉
ξ(〈s− ρ, β〉+ 1)

Similarly,

cτσ(s) =
ξ〈s− ρ, α+ β〉

ξ(〈s− ρ, α+ β〉+ 1)
· ξ〈s− ρ, α〉
ξ(〈s− ρ, α〉+ 1)

Finally,

cτστ (s) = cστσ(s) = cστ (σ · s) · cσ(s) =
ξ〈σ(s− ρ), α+ β〉

ξ(〈σ(s− ρ), α+ β〉+ 1)
· ξ〈σ(s− ρ), β〉
ξ(〈σ(s− ρ), β〉+ 1)

· ξ〈s− ρ, α〉
ξ(〈s− ρ, α〉+ 1)

Using σβ = α+ β and σ(α+ β) = β, this is

cτστ (s) = cστσ(s) =
ξ〈s− ρ, β〉

ξ(〈s− ρ, β〉+ 1)
· ξ〈s− ρ, α+ β〉
ξ(〈s− ρ, α+ β〉+ 1)

· ξ〈s− ρ, α〉
ξ(〈s− ρ, α〉+ 1)
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6. Appendix: some reduction theory

This is an adaptation of a small part of [Godement 1963].

[6.1] Height functions Let k be a global field with adeles A. For completion kv ≈ R, let hv be the usual
real Hilbert-space norm on knv ≈ Rn. For kv ≈ C, let hv be the square of the usual complex Hilbert-space
norm on knv ≈ Cn. For kv non-archimedean, let hv(x) be the sup of the v-adic norms of the coordinates of
x ∈ knv . The family of absolute values on all the kv is normalized to make the product formula hold. These
hv are local height functions. The (global) height function h is

h(x) =
∏
v

hv(xv) (for x = {xv})

Sufficient conditions for finiteness of this product are given below.

The isometry groups Kv ⊂ GLn(kv) of the height functions hv are as follows. For kv ≈ R, the isotropy group
is the standard orthogonal group Kv = O(n,R). For kv ≈ C, the isotropy group is the standard unitary
group Kv = U(n). For kv non-archimedean, the isotropy group is Kv = GLn(ov), the group of matrices over
the local integers ov in kv, with determinant in the local units o×v . Let

K =
∏
v

Kv ⊂ GLn(A)

Let P be the standard parabolic subgroup of upper-triangular matrices. Recall the Iwasawa decompositions
GLn(kv) = Pv ·Kv.

Now we identify a class of vectors with finite height. First, given x ∈ kn−{0}, for all but finitely-many v all
the components of the vector x are v-integral, and generate the local integers ov. In particular, for all but
finitely-many v the vth local height hv(x) of x ∈ kn is 1, and the infinite product for h(x) is a finite product.

For each prime v the group Kv is transitive on the collection of vectors in knv with given norm. (The
arguments for this differ somewhat between archimedean and non-archimedean places.)

Consider vectors to be row vectors, and let GLn(A) act on the right by matrix multiplication. Say that a
non-zero vector x ∈ An is primitive if x ∈ kn ·GLn(A).

[6.1.1] Theorem:
• For idele t of k and primitive x, h(tx) = |t| · h(x). In particular, k× preserves heights.
• For fixed g ∈ GLn(A) and for fixed c > 0

{x ∈ kn : h(x · g) < c}
/
k× = finite

• For a compact subset C of GLn(A) there are positive constants c, c′ (depending only upon C) so that for
all primitive vectors x and for all g ∈ C

c · h(x) ≤ h(x · g) ≤ c′ · h(x)

Proof: The first assertion is immediate, and the product formula shows that k× leaves heights invariant.

For the second assertion, fix g ∈ GLn(A). Since K preserves heights, via Iwasawa we may suppose that
g is in the group PA of upper triangular matrices in GLn(A). Choose representatives x = (x1, . . . , xn) for

18



Paul Garrett: Most-continuous automorphic spectrum for GLn (January 3, 2012)

non-zero vectors in kn modulo k× such that, letting µ be the first index with xµ 6= 0, then xµ = 1. That is,
x is of the form

x = (0, . . . , 0, 1, xµ+1, . . . , xn)

To illustrate the idea of the argument in a light notation, first consider n = 2, let g =

(
a b
0 d

)
and x = (1, y).

Thus,

x · g = (1, y)

(
a b
0 d

)
= (a, b+ yd)

From the definition of the local heights, at each v

max(|a|v, |b+ yd|v) ≤ hv(xg)

so
|b+ yd|v

∏
w 6=v

|a|w ≤
∏
all w

hw(xg) = h(xg)

Since g is fixed, a is fixed, and at almost all places |a|w = 1. Thus, for h(xg) < c there is a uniform constant
c′ so that for all places v

|b+ yd|v ≤ c′

Since for almost all v the residue class field cardinality qv is strictly greater than c′, for almost all v

|b+ yd|v ≤ 1

Therefore, b + yd lies in a compact subset C of A. Since b, d are fixed, and since k is discrete (and closed)
in A, the collection of images {b + dy : y ∈ k} is discrete in A. Thus, the collection of y so that b + dy lies
in C is finite, as desired.

For general n and x ∈ kn such that h(xg) < c, let µ− 1 be the least index such that xµ 6= 0. Adjust by k×

so that xµ = 1.From h(xg) < c

|gµ−1,µ + xµgµ,µ|v
∏
w 6=v

|gµ−1,µ−1|w ≤ h(gx) < c (for each v)

For almost all v we have |gµ−1,µ−1|v = 1, so there is a uniform constant c′ such that

|gµ−1,µ + xµgµ,µ|v < c′ (for all v)

For almost all places v the residue field cardinality qv is strictly greater than c′, so for almost all v

|gµ−1,µ + xµgµ,µ|v ≤ 1

Therefore, gµ−1,µ + xµgµ,µ lies in a compact subset C of A. Since k is discrete, the collection of xµ is finite.

Continue similarly to show that there are only finitely many choices for the other entries of x. Inductively,
suppose that xi = 0 for i < µ− 1, and that xµ, . . . , xν−1 are fixed, and show that xν has only finitely many
possibilities. Looking at the νth component (xg)ν of xg,

|gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν |v
∏
w 6=v

|gµ−1,µ−1|w ≤ h(xg) ≤ c

For almost all v we have |gµ−1,µ−1|w = 1, so there is a uniform constant c′ such that

|(xg)ν |v = |gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν |v < c′ (for all places v)
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For almost all places v the residue field cardinality qv is strictly greater than c′, so

|gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν |v ≤ 1 (for almost all v)

Therefore,
gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν

lies in the intersection of a compact subset C of A with a (closed) discrete set, so lies in a finite set. Thus,
the number of possibilities for xν is finite. By induction we obtain the finiteness.

For the third and last assertion, recall the Cartan decompositions

GLn(kv) = K v ·Av ·Kv

where Av is the subgroup of GLn(kv) of diagonal matrices (v archimedean or not). Since the map

θ1 × a× θ2 −→ θ1aθ2

is not an injection, one cannot immediately infer that for a given compact set C in GLn(kv) the set

{a ∈ Av : for some c ∈ C, c ∈ KvaKv}

is compact. Since Kv is compact, C ′ = Kv · C ·Kv is compact, and now θ1aθ2 ∈ C ′ with θi ∈ Kv implies
a ∈ C ′ ∩Av, which is compact.

Thus, any compact subset of GLn(A) is contained in a set

{θ1δθ2 : θ1, θ2 ∈ K, δ ∈ CD}

where CD is a suitable compact set of diagonal matrices. Since K preserves heights and since the set of
primitive vectors is stable under K, the set of values

{h(xg)

h(x)
: x primitive, g ∈ C}

is contained in a set

{h(xδ)

h(x)
: x primitive, δ ∈ CD}

for some compact set CD of diagonal matrices. Letting the diagonal entries of δ be δi, we have

0 < inf
δ∈CD

inf
i
|δi| ≤

h(xδ)

h(x)
≤ sup
δ∈CD

sup
i
|δi| < +∞

This gives the desired bound. ///

7. Appendix: Bochner’s Lemma

Bochner’s Lemma is a one-of-a-kind device for meromorphic continuation in two or more complex variables.

Let Ωo be a non-empty, connected, open set in Rn. The tube domain Ω over Ωo is Ω = Ωo + iRn, that is,
the collection of z ∈ Cn with real part in Ωo.

Let f be a holomorphic C-valued function on Ω, of not-too-awful vertical growth, in the sense that, for x in
fixed compact C ⊂ Ωo, there is 1 ≤ N ∈ Z such that

|f(x+ iy)| �C e|y|
N

(with |(y1, . . . , yn)|2 = y2
1 + . . .+ y2

n)
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[7.0.1] Claim: f extends to a holomorphic function on the convex hull of Ω.

Proof: First, let x, ξ be two points in Ωo, such that the line segment connecting them lies entirely within
Ωo. We will specify a rectangle inside Ω with x, ξ the midpoints of opposite sides. Let γ = γx,ξ,R parametrize
the rectangle with sides individually parametrized by

side through x: x+ it(x− ξ) (with −R ≤ t ≤ R)

top: (1− t)(x+ iR(x− ξ)) + t(ξ + iR(x− ξ)) (with 0 ≤ t ≤ 1)

side through ξ: ξ − it(x− ξ) (with −R ≤ t ≤ R)

bottom: (1− t)(ξ − iR(ξ)) + t(x− iR(x− ξ)) (with 0 ≤ t ≤ 1)

The expressions for the top and bottom simplify to top: (1− t)x+ tξ + iR(x− ξ) (with 0 ≤ t ≤ 1)

bottom: (1− t)ξ + tx− iR(x− ξ) (with 0 ≤ t ≤ 1)

This rectangle lies inside Z = x+ C · (x− ξ) ≈ C, and is contractible in Ω. Let j(ζ) = x+ ζ · (x− ξ). In Z,
Cauchy’s formula in one variable is

f ◦ j(ζo) =
1

2πi

∫
γ

f ◦ j(ζ) dζ

ζ − ζo

To legitimately push the top and bottom of the rectangle to infinity, use the growth assumption on f , and
the modified integral expression

f ◦ j(ζo) = e−ζ
2N
o

1

2πi

∫
γ

eζ
2N · f ◦ j(ζ) dζ

ζ − ζo

Thus, taking the limit R→ +∞,

eζ
2N
o ·f(ζo ·(x−ξ)) =

1

2π

∫ +∞

−∞

e(x+it(x−ξ))2N f(x+ it(x− ξ)) dt
it− ζo

+
1

2π

∫ +∞

−∞

e(ξ−it(x−ξ))2N f(ξ − it(x− ξ)) dt
−1− it− ζo

The right-hand side makes sense for any x, ξ ∈ Ωo, whether or not the line segment connecting them lies in
Ωo. Further, the right-hand side is holomorphic in x, ξ ∈ Ω. Thus, the left-hand side is holomorphic, and
gives the extension to the convex hull of Ω. ///

8. Appendix: continuous spectrum for PSL2(Z)
This appendix gives a more elementary, familiar example.

There are two usual points: constant terms of Eisenstein series determine their functional equations, and
these functional equations enter the spectral decomposition of pseudo-Eisenstein series. Here G = SL2(R),
Γ = SL2(Z), and K = SO(2), P is the standard parabolic of upper-triangular matrices, and its unipotent
radical N is upper-triangular unipotent matrices. Let 〈f1, f2〉 =

∫
Γ\G f1 · f2, so the pairing is C-bilinear, not

hermitian.

We also prove the analytic continuation, and give some estimates necessary for the GLn case.
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[8.1] Constant term The constant term cP f of a function f on Γ\G is

cP f(g) =

∫
N∩Γ\N

f(ng) dn

[8.2] Pseudo-Eisenstein series For ϕ ∈ C∞c (N\G/K) ≈ C∞c (0,∞) the pseudo-Eisenstein series is

Ψϕ(g) =
∑

P∩Γ\Γ

ϕ(γg) ∈ C∞c (Γ\G/K)

[8.3] Fourier-Laplace-Mellin transforms Fourier inversion for Schwartz functions on the real line is

f(x) =

∫ ∞
−∞

(∫ ∞
−∞

f(x) e−2πiξx dx
)
e2πiξx dξ

Replacing ξ by ξ/(2π) gives another version:

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(t) e−itξ dt

)
eiξx dξ

A change of coordinates gives the multiplicative form, Mellin inversion, as follows. Take F ∈ C∞c (0,+∞),
and put

f(x) = F (ex)

Let y = ex and r = et

F (y) =
1

2π

∫ ∞
−∞

(∫ ∞
0

F (r) r−iξ
dr

r

)
yiξ dξ

Define the transform MF by

MF (iξ) =

∫ ∞
−∞

F (r) r−iξ
dr

r

or, for complex s,

MF (s) =

∫ ∞
−∞

F (r) r−s
dr

r

Then we have the inversion formula

F (y) =
1

2π

∫ ∞
−∞
MF (iξ) yiξ dξ

With s = iξ and dξ = −i ds,

F (y) =
1

2πi

∫ 0+i∞

0−i∞
MF (s) ys ds

For f ∈ C∞c (R) the Fourier transform f̂(ξ) is in the Paley-Wiener space: it is entire in ξ and of rapid decay
on horizontal lines, so the same is true of the transform MF of F ∈ C∞c (0,+∞). For such F , for any real
σ, there is an inversion formula

F (y) =
1

2πi

∫ σ+i∞

σ−i∞
MF (s) ys ds

[8.4] Functional equations of Eisenstein series Taking

ϕ(g) = ys (with g = z

(
y ∗
0 1

)
· k, z central, k ∈ O(2))

22



Paul Garrett: Most-continuous automorphic spectrum for GLn (January 3, 2012)

the usual spherical Eisenstein series Es is

Es(g) =
∑

γ∈B∩Γ\Γ

ϕ(γ · g)

Granting meromorphic continuation of Es, the functional equation of Es is determined by the constant term,
as follows. Recall that the constant term of Es is of the form

cPEs = ys + cs y
1−s (with meromorphic cs)

Both Es and E1−s are eigenfunctions with the same eigenvalue s(s − 1) for the (image of the) Casimir
operator

∆ = y2 ·
( ∂2

∂x2
+

∂2

∂y2

)
From the theory of the constant term, a moderate-growth eigenfunction for Casimir, with (standard) constant
term subtracted, is of rapid decay in (standard) Siegel sets. Consider a subtraction suggested by potential
cancellation of parts of the constant term, namely

cP

(
E1−s −

Es
cs

)
=
(
y1−s + c1−sy

s
)
−
(ys + csy

1−s

cs

)
= (c1−s −

1

cs
) ys

For Res < 0 and off the real line, the Casimir eigenvalue s(s − 1) is not real, yet Res < 0 assures that ys

is square-integrable on any standard Siegel set. That is, the difference E1−s − 1
cs
· Es is in L2(Γ\H). The

Casimir operator is self-adjoint in at least the weak sense that any eigenvalue must be real. Therefore, the
difference E1−s − 1

cs
· Es is identically zero, which gives the functional equation and relation

E1−s =
Es
cs

cs · c1−s = 1

[8.5] Decomposition of pseudo-Eisenstein series For ϕ ∈ C∞c (N\G/K) ≈ C∞c (0,+∞) the inversion
formula is

ϕ =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) ys ds

Winding up, the corresponding pseudo-Eisenstein series Ψϕ is therefore

Ψϕ =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) · Es ds (with σ = Res > 1 for convergence of Es)

Granting the meromorphic continuation of the Eisenstein series, move the vertical line of integration to the
left, to σ = 1/2:

Ψϕ =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es +
∑
so

Ress=so
(
Es · Mϕ(s)

)
We prefer to haveMcPΨϕ enter the formula, notMϕ, to express things in terms of the automorphic forms
Ψϕ, not in terms of the auxiliary functions ϕ from which they’re made. To this end, note the standard
unwinding ∫

Γ\G
Es · f =

∫
PZ\G

ys cP f
dx dy

y2
=

∫ ∞
0

y−(1−s) cP f
dy

y
= McP f(1− s)

On the other hand, unwinding the pseudo-Eisenstein series Ψϕ gives∫
Γ\G

Es Ψϕ =

∫
PZ\G

cPEs · ϕ
dx dy

y2
=

∫ ∞
0

(
ys + csy

1−s) · ϕ 1

y
· dy
y

= Mϕ(1− s) + csMϕ(s)
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Combining these two unwindings explains the constant term of pseudo-Eisenstein series without direct
computation:

McPΨϕ(1− s) =

∫
Γ\G

Es ·Ψϕ = Mϕ(1− s) + csMϕ(s)

Then the expression of Ψϕ in terms of Eisenstein series is

Ψϕ − (residual part) =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es ds =
1

2
· 1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es +Mϕ(1− s)E1−s ds

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es +Mϕ(1− s) c1−sEs ds (by functional equation of Es)

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

(
Mϕ(s) + c1−sMϕ(1− s)

)
· Es ds

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

McPΨϕ(s) · Es ds (recognizing constant term of Ψϕ)

That is, an pseudo-Eisenstein series is expressible as an integral of Eisenstein series Es on the line
Re(s) = 1/2, plus residues:

Ψϕ − (residual part) =
1

2πi

∫ 1
2 +i∞

1
2 +i0

McPΨϕ(s) · Es ds =
1

2πi

∫ 1
2 +i∞

1
2 +i0

〈Ψϕ, E1−s〉 · Es ds

[8.6] Plancherel for continuous spectrum Let

〈f1, f2〉 =

∫
Γ\G

f1 f2 dg (C-bilinear)

Let f ∈ C∞c (Γ\G), ϕ ∈ C∞c (N\G), and assume Ψϕ is orthogonal to residues of Eisenstein series, that is, to
constants. Using the expression for Ψϕ in terms of Eisenstein series,

〈Ψϕ, f〉 =
〈 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, E1−s〉 · Es ds, f
〉

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, E1−s〉 · 〈Es, f〉 ds

This proves that f → (s → 〈f,Es〉) is an inner-product-preserving map from the Hilbert-space span of the
pseudo-Eisenstein series to L2( 1

2 + iR).

The map Ψϕ → 〈Ψϕ, E1−s〉 produces functions u(t) = 〈Ψϕ, E1−s〉 satisfying the relation

u(−t) = 〈Ψϕ, Es〉 = 〈Ψϕ, csE1−s〉 = cs〈Ψϕ, E1−s〉 = cs · u(t)

We claim that any u ∈ L2( 1
2 +iR) satisfying u(−t) = cs u(t) is in the image. First, claim that, for compactly-

supported u satisfying u(−t) = cs u(t)

Φu =
1

4πi

∫ 1
2 +i∞

1
2−i∞

u(t) · E 1
2 +it dt 6= 0

It suffices to show cPΦu is not 0. With s = 1
2 +it, the relation implies u(−t)E1−s = u(t)cs ·E1−s/cs = u(t)Es.

Then

Φu =
1

4πi

∫ 1
2 +i∞

1
2−i∞

u(t) · Es dt =
1

2πi

∫ 1
2 +i∞

1
2 +0

u(t) · Es dt
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The constant term of Φu is

cPΦu =
1

2πi

∫ 1
2 +i∞

1
2 +0i

u(t)·(ys+csy1−s) dt =
1

2πi

∫ 1
2 +i∞

1
2 +0i

u(t)y
1
2 +it+u(−t)y 1

2−it dt =

√
y

2πi

∫ 1
2 +i∞

1
2−i∞

u(t) eit log y dt

This Fourier transform does not vanish for non-vanishing u.

Since the Es integrate to 0 against cuspforms, an integral Φu of them does, also. Thus, Φu is in the
topological closure of pseudo-Eisenstein series Ψϕ with test-function data ϕ. Thus, given u, there is ϕ such
that 〈Ψϕ,Φu〉 6= 0. Then

0 6= 〈Ψϕ,Φu〉 =
1

4πi

∫ 1
2 +i∞

1
2−i∞

u(t) · 〈Ψϕ, E1−s〉 dt

Thus, the functions s→ 〈Ψϕ, Es〉 are dense in the space of L2( 1
2 + iR) functions u satisfying u(−t) = cs u(t).

Thus, there is an isometry

{cuspforms}⊥ ∩ L2(Γ\G)K ≈ {u ∈ L2(Γ\G/K) : u(−t) = cs · u(t)}

9. Appendix: Meromorphic continuation for PSL2(Z)

[9.1] Analytic continuation and functional equation

For (c d) = v ∈ R2, consider the Gaussian

ϕ(v) = e−π|v|
2

= e−π(c2+d2)

where v → |v| is the usual length function on R2. For g ∈ GL2(R), define

Θ(g) =
∑
v∈Z2

ϕ(v · g) =
∑

(c,d)∈Z2

e−π|(c,d)g|2

where v ∈ R2 is a row vector. Consider the integral (a Mellin transform)∫ ∞
0

t2s (Θ(tg)− 1)
dt

t

where the t in the argument of Θ simply acts by scalar multiplication on g ∈ GL2(R). On one hand,
integrating term-by-term gives∫ ∞

0

t2s (Θ(tg)− 1)
dt

t
=

∑
v 6=(0,0)

∫ ∞
0

t2s e−π|tvg|
2 dt

t

Since
π|tvg|2 = (t ·

√
π|vg|)2

we can change variables by replacing t by t/(
√
π|vg|) to obtain

∑
v 6=(0,0)

(
√
π|vg|)−2s

∫ ∞
0

t2s e−t
2 dt

t
=

1

2
π−s

∑
v 6=(0,0)

|vg|−2s

∫ ∞
0

ts et
dt

t
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=
1

2
π−s Γ(s)

∑
v 6=(0,0)

|vg|−2s

Now we want g ∈ SL(2,R) of a simple sort chosen to map i→ x+ iy. One reasonable choice is

g =

(
1 x
0 1

)(√
y 0

0 1/
√
y

)
Using this choice of G and writing out v = (c, d) gives

vg = (c, d)g = ( c d )

(
1 x
0 1

)(√
y 0

0 1/
√
y

)
= (c

√
y, (cx+ d)/

√
y)

and thus ∑
v

|vg|−2s =
∑
v

|(c√y, (cx+ d)/
√
y)|−2s =

∑
v

(c2y + (cx+ d)2/y)−s

=
∑
v

ys

(c2y2 + (cx+ d)2)s
=
∑
v

ys

|ciy + cx+ d|2s
=
∑
v

ys

|cz + d|2s

Letting 1 ≤ δ = gcd(c, d), this is∑
v

ys

|cz + d|2s
=
∑
δ

1

δ2s

∑
coprime c,d

ys

|cz + d|2s
= 2 ζ(2s) · Es(z)

The expression

2 ζ(2s)Es(z) =
∑

(c,d)6=(0,0)

ys

|cz + d|2s
(summing (c, d) over all non-zero vectors in Z2)

is convenient, being a sum over a lattice with 0 removed.

Thus, we see that the integral representation yields the Eisenstein series with a leading power of π, a gamma
function, and a factor of ζ(2s):∫ ∞

0

t2s (Θ(tg)− 1)
dt

t
= 2π−s Γ(s) ζ(2s)Es(g)

On the other hand, to prove the meromorphic continuation, use the integral representation as in Riemann’s
corresponding argument for ζ(s), first breaking the integral into two parts, one from 0 to 1, and the other
from 1 to +∞. Keep g ∈ SL(2,R) in a compact subset of SL(2,R). Then∫ ∞

1

t2s (Θ(tg)− 1)
dt

t
= entire in s

since elementary estimates show that the integral is uniformly and absolutely convergent. Apply Poisson
summation to the kernel: first note that the Gaussian ϕ(v) = e−π|v|

2

is its own Fourier transform, and that

Fourier transform of (v → ϕ(tvg)) = (v → t−2 det(g)−1 · ϕ(t−1v >g−1))

where >g is g-transpose. Then Poisson summation asserts

Θ(tg) = t−2 det(g)−1 ·Θ(t−1 >g−1)

The modification for the kernel gives

Θ(tg)− 1 = t−2 det(g)−1 · [Θ(t−1 >g−1)− 1] + t−2 det(g)−1 − 1
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Then tranform the integral from 0 to 1: at first only for Re(s) > 1,∫ 1

0

t2s (Θ(tg)− 1)
dt

t
=

∫ 1

0

t2s
(
t−2 det(g)−1 · [Θ(t−1 >g−1)− 1] + t−2 det(g)−1 − 1

) dt
t

Replacing t by 1/t turns this into∫ ∞
1

t−2s
(
t2 det(g)−1 · [Θ(t>g−1)− 1] + t2 det(g)−1 − 1

) dt
t

Explicitly evaluating the last two elementary integrals of powers of t from 1 to ∞, using Re(s) > 1, this is

det(g)−1

∫ ∞
1

t2−2s (Θ(t>g−1)− 1)
dt

t
+

det(g)−1

2s− 2
− 1

2s

That g has determinant 1 to simplifies this to∫ ∞
1

t2−2s (Θ(t>g−1)− 1)
dt

t
+

1

2s− 2
− 1

2s

Further, for g in SL(2),
>g−1 = wgw−1

where w is the long Weyl element

w =

(
0 −1
1 0

)
Since Z2 − (0, 0) is stable under w, and since the length function v → |v|2 is invariant under w,

Θ(g) = Θ(wg) = Θ(gw−1)

so
Θ(>g−1) = Θ(g)

Thus, the original integral from 0 to 1 becomes∫ ∞
1

t2−2s (Θ(tg)− 1)
dt

t
+

1

2s− 2
− 1

2s

and the whole equality, with g of the special form above, is

1

2
π−sΓ(s) ζ(2s)Es(z) =

∫ ∞
1

t2s (Θ(tg)− 1)
dt

t
+

∫ ∞
1

t2−2s (Θ(tg)− 1)
dt

t
+

1

2s− 2
− 1

2s

or (multiplying through by 2)

π−sΓ(s) ζ(2s)Es(z) = 2

∫ ∞
1

t2s (Θ(tg)− 1)
dt

t
+ 2

∫ ∞
1

t2−2s (Θ(tg)− 1)
dt

t
− 1

1− s
− 1

s

The integral from 1 to ∞ is nicely convergent for all s ∈ C, uniformly in g in compacts. The elementary
rational expressions of s have meromorphic continuations. Thus, the right-hand side gives a meromorphic
continuation of the Eisenstein series, and is visibly invariant under s→ 1− s.

It is also visible that the only poles are at s = 1, 0, that the residue at s = 1 is the constant function 1, and
at s = 0 the residue is the constant function 0. At s = 1 the factor π−sΓ(s) is holomorphic and has value
1/π, so

Ress=1 ζ(2s)Es = π

27



Paul Garrett: Most-continuous automorphic spectrum for GLn (January 3, 2012)

At s = 0 the factor π−sΓ(s) has a simple pole with residue 1, so ζ(2s)Es itself is holomorphic at s = 0, and
is the constant function 1.

Now we recover the assertions for Es itself. The convergence of the infinite product

ζ(2s) =
∑
n

1

n2s
=

∏
p prime

1

1− p−2s

for Re(s) > 1/2 assures that ζ(2s) is not zero for Re(s) > 1/2. And ζ(2) = π2/6. These standard facts and
the previous discussion give the full result. ///

[9.2] Vertical growth in s

As should be expected, estimates on vertical growth are applications of Phragmén-Lindelöf to the entire
function

Ẽs(z) = s(1− s) · π−s Γ(s) ζ(2s) · Es(z)

for z in a fixed compact subset C of H. For Re(s) = 1 + δ with δ > 0, for z ∈ C the Eisenstein series Es(z)
is bounded. Similarly, ζ(2s) is bounded there, as is the power of π. The gamma function is bounded on

Re(s) = 1 + δ, in fact, of rapid decay, so Ẽs(z) is bounded there.

Via the functional equation, Ẽs(z) is bounded on Re(s) = −δ, uniformly for z ∈ C. By Phragmén-Lindelöf,

Ẽs(z) is uniformly bounded for z ∈ C and −δ ≤ Re(s) ≤ 1 + δ.
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