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We study the meromorphic continuation and functional equations for a useful special class of half-degenerate
Eisenstein series for maximal proper parabolics

P = P r−q,q = {

(
(r − q)-by-(r − q) ∗

0 q-by-q

)
}

on GLr over a number field k, involving cuspidal data on the lower-right GLq factor of the (standard) Levi
component and non-cuspidal data on the upper-left GLr−q factor. In particular, with a normalizing factor
of a (single) Godement-Jacquet zeta integral attached to the cuspidal data, there are no poles.

As a simple example, let f be a cuspform on GLq for 1 < q < r, and define

ϕs,f (p) =

∣∣∣∣
(det a)q

(det x)r−q

∣∣∣∣
s

· f(x) (for p =

(
a b
0 x

)
∈ P r−q,q)

and extend ϕ to all of GLr(
�

) by right invariance with respect to the standard maximal compact subgroups
Kν at all places ν of k. Form the Eisenstein series

Es,f (g) =
∑

γ∈Pk\GLr(k)

ϕs,f (g) (where P = P r−q,q)

To normalize this Eisenstein series, let Φ be a Schwartz function on
�

q×q , and suppose that Φ is right and
left Kν-invariant for all places ν. Let ξf (s) be the Godement-Jacquet global zeta integral

ξf (s) =

∫

GLq( � )

f(t−1) | det t|s Φ(t) dt

We will show that ξf (rs) · Es,f is entire in s.

The argument is a straightforward combination of ideas of [Godement-Jacquet 1972] (using Poisson
summation, extending the Tate-Iwasawa argument for GL1) with the Ingham-Rankin-Selberg integral Mellin
representation of Eisenstein series (see [Godement 1966] for GL2).

These Eisenstein series are partly degenerate in the sense that (except for extreme cases) while including
some cuspidal data they do also use non-cuspidal data (determinants) on one of the simple factors of the
Levi component. Thus, these Eisenstein series play no direct role in the L2 spectral theory on the arithmetic
quotients, but, rather, are residues of the non-degenerate Eisenstein series which do enter the spectral theory
(as in [Langlands 1976] and [Moeglin Waldspurger 1989], [Moeglin Waldspurger 1995]).

The present special approach gives better results on possible poles of these special semi-degenerate Eisenstein
series than an iterated residues viewpoint. This is useful in integral representations of L-functions.

Both the classical treatment of GL2 and the present integral representation can be viewed as theta
correspondences, for groups GLn viewed as globally split forms of unitary groups.
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1. Review of a well-known example

First we review some extremely degenerate Eisenstein series (really a pair of Eisenstein series), on GLr over
a number field k, with continuation properties established by Poisson summation in one step. This material
is standard. The (vacuously) cuspidal data here is a Hecke character χ. The Eisenstein series of this section
may have poles.

View
�

r and kr as row vectors. Let e1, . . . , er the standard basis for kr. We use the (r − 1, 1) parabolic

P = {p ∈ GLr : (k · er) · p = k · er} = {

(
a ∗
0 d

)
: a ∈ GLr−1, d ∈ GL1} = stabilizer of the line ker

We make vectors � �
�

ϕ constructed from a Hecke character � �
�

χ and a Schwartz function Φ on
�

r, by

ϕ(g) = χ(det g)

∫
� χ(t)r Φ(t · er · g) dt

The rth power of χ in the integrand and the leading factor of χ(det g) combine to give the invariance
ϕ(zg) = ϕ(g) for all z in the center Z � of GLr(

�
).

By changing variables in the integral, and by the product formula, we observe the left equivariance

ϕ(pg) = χ(det pg)

∫
� χ(t)r Φ(t · er · pg) dt

= χ(det a)χ(d)1−r · ϕ(g) (for p =

(
a b
0 d

)
∈ P � )

with respect to P � . � �
�

Note that the normalization is not ϕ(1) = 1, but, rather,

ϕ(1) =

∫
� χ(t)r Φ(t · er) dt (Tate-Iwasawa zeta integral at χr)

Denote this zeta integral by ξ = ξ(χr, Φ(0, ∗)), indicating that it only depends upon the values of Φ along
the last coordinate axis. Thus, we should construe the Eisenstein series, associated to ϕ in the usual fashion,
as having a factor of ξ(χr, Φ(0, ∗)) included, namely

ξ(χr, Φ(0, ∗)) · E(g) =
∑

γ∈Pk\Gk

ϕ(γg) (convergent for Re(χ) >> 0)

� �
�

These vectors lie in a parametrized family of induced representations, specifically, degenerate principal series, but

this fact is not immediately necessary.

� �
�

As usual, a Hecke character is a continuous group homomorphism of GL1(k)\GL1( � ) to � ×. The idele class group

quotient � /k× = GL1( � )/GL1(k) can be factored as ( � 1/k×) × 	 +, where � 1 is ideles with idele norm 1, and 	 +

is the group of positive real numbers, imbedded in � by t −→ (t1/N , . . . , t1/N , 1, 1, . . .), with N = [k : 
 ], and t1/N

appears at the archimedean places. A Hecke character χ has a corresponding decomposiion χ(t) = χ1(t) · |t|
s, where

χ1 is a Hecke character trivial on the copy of 	 +, and s ∈ � . As usual, write Re(χ) = Re(s).

� �
�

This left equivariance is exactly the left equivariance required of a vector in degenerate principal series representations

of GLr( � ) induced from that character p −→ χ(det a)χ(d)1−r on P � . For now, we have no need of any properties of

this representation, but it is convenient that for generic χ (in the sense of typical, rather than in the technical sense

of having a Whittaker model) these degenerate principal series are irreducible. Specifically, these representations

are irreducible for the complex parameter s off a discrete set of points (with no limit point in � ). Thus, these

integral expressions inevitably produce all vectors in the representation. This irreducibility is non-trivial, and in the

immediate sequel we will not use either it or the implied surjectivity.
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Poisson summation proves the meromorphic continuation of this Eisenstein series, just as the Tate-Iwasawa
version of Riemann’s argument for the Euler-Riemann zeta. Let

� + = {t ∈
�

: |t| ≥ 1}
� − = {t ∈

�
: |t| ≤ 1}

and gι = (g>)−1 (transpose inverse)

ξ · E(g) =
∑

γ∈Pk\Gk

ϕ(γg) = χ(det g)
∑

γ∈Pk\Gk

∫
� χ(t)r Φ(t · x · γg) dt

= χ(det g)
∑

γ∈Pk\Gk

∫

k×\
� χ(t)r

∑

λ∈k×

Φ(t · λer · γg) dt

= χ(det g)

∫

k×\
� χ(t)r

∑

x∈kr−0

Φ(t · x · g) dt

Let � �
�

Θ(g) =
∑

x∈kr

Φ(t · x · g)

Then

ξ · E(g) = χ(det g)

∫

k×\
�
+

χ(t)r [Θ(g) − Φ(0)] dt + χ(det g)

∫

k×\
�
−

χ(t)r [Θ(g) − Φ(0)] dt = (entire) + (?)

since the usual sort of estimate shows that the integral over k×\
� + converges absolutely for all χ. Following

Riemann et alia, via Poisson summation we rewrite the second part of the integral as an analogous integral
over k×\

� +. Poisson summation asserts that

∑

x∈kr−0

Φ(t · x · g) + Φ(0) = |t|−r| det g|−1
∑

x∈kr−0

Φ̂(t−1 · x · gι) + |t|−r| det g|−1Φ̂(0)

using standard change-of-variables properties of the Fourier transform. � �
�

Let

Θ′(gι) =
∑

x∈kr

Φ̂(t · x · gι)·

Then, removing the Φ(0) and Φ̂(0) terms, and replacing t by t−1 in the integral over k×\
� − turns this

integral into

| det g|−1χ(det g)

∫

k×\
�
+

(
|t|χ(t)−1

)r
[Θ′(gι) − Φ̂(0)] dt

−χ(det g)Φ(0)

∫

k×\
�
−

χ(t)r dt + | det g|−1χ(det g)Φ̂(0)

∫

k×\
�
−

χ(t)r |t|−r dt

The integral over k×\
� + is entire. Thus, the non-elementary part of the integral is converted into two entire

integrals over k×\
� + together with two elementary integrals that give the only possible poles:

ξ · E(g) = (entire) − χ(det g)Φ(0)

∫

k×\
�
−

χ(t)r dt + | det g|−1χ(det g)Φ̂(0)

∫

k×\
�
−

χ(t)r |t|−r dt

� �
�

As in Iwasawa-Tate theory, this function θ has a role analogous to the Jacobi theta function in the classical argument.

� �
�

Any non-trivial additive character ψ on � /k, and any non-degenerate pairing 〈, 〉 on � r (k-valued on kr × kr) can

be used to define a Fourier transform. The specific choice does not matter, but of course the notion of transpose is

defined via the pairing.
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As in Tate-Iwasawa theory, with χ decomposed as

χ(t) = χ1(t) · |t|
s (with χ1 trivial on the copy of � + in

�
)

the relatively elementary integrals can be evaluated

∫

k×\
�
−

|t|rs χ1(t)
r dt =

∫

k×\
�
1

χ1(t)
r dt ·

∫ 1

0

trs dt =
1

rs

∫

k×\
�
1

χ1(t)
r dt =





vol (k×\
� 1

rs (for χr
1 = 1)

0 (for χr
1 6= 1)

Similarly,
∫

k×\
�
−

|t|r(s−1) χ1(t)
r dt =





vol (k×\
� 1

r(s−1) (for χr
1 = 1)

0 (for χr
1 6= 1)

That is, the only possible poles of ξ ·E(g) are at s = 0, 1, and these occur only when χr
1 = 1, and the residues

are Φ(0) at s = 0 and Φ̂(0) at s = 1 (times the volume constant):

[1.1] ξ(χr, Φ(0, ∗)) · E(g) = χ(det g)
∫

k×\
�
+ χ(t)r [Θ(g) − Φ(0)] dt

+ |∗|χ−1(det gι)
∫

k×\
�
+ |∗|χ−1(t)r [Θ′(gι) − Φ̂(0)] dt

+





−χ(det g) vol (k×\
� 1)

rs + |∗|χ−1(det gι) vol (k×\
� 1)

r(s−1) for χr = 1

0 for χr 6= 1

Thus, the possible poles of E(g) itself, without the zeta factor ξ(χr, Φ(0, ∗)), may be at s = 0, 1 and at the
zeros of ξ. For reasonable choices of Φ, these zeros occur only in the strip 0 < Re(s) < 1

r .

[1.2] Remark: The estimate here on possible poles is stronger than the otherwise-natural estimates that
arise when these Eisenstein series are analyzed as residues of non-degenerate Eisenstein series.

[1.3] Remark: Although it is a good indicator of analytic properties, the above expression for E(g)
requires further interpretation to give a functional equation connecting it to another Eisenstein series. This
is explicated in the next section.

2. Simplest non-self-associate functional equation

Except for the case r = 2, the functional equation of the degenerate Eisenstein series (above) attached to
the (r − 1, 1) parabolic does not relate it to itself. We will see that there is a functional equation relating it
to an Eisenstein series for the (1, r − 1) parabolic � �

�

Q = {

(
1-by-1 ∗

0 (r − 1)-by-(r − 1)

)
}

Indeed, the discussion of meromorphic continuation presents gι inside Φ̂. In the special case r = 2, up to a
scalar, gι is conjugate to g.

� �
�

The fact that the diagonal block sizes in P and Q are merely permuted is no coincidence. In a broader context, we

would say that these two parabolics are associate.

4



Paul Garrett: Poles of half-degenerate Eisenstein series (July 3, 2006)

Let EP = EP (χ, Φ) be the Eisenstein series of the previous section. We want to understand the Fourier-
transformed part of the integral expression for EP as being made from a left-equivariant function ϕ′ which
should be roughly like ϕ. An obvious candidate,

ϕ?(g) = χ(gι)

∫
� χ(t)r Φ̂(t · er · g

ι) dt (?)

is left equivariant by the image P ι of P under the involution ι, but P ι is not a standard parabolic subgroup.
Further, except for r = 2, the subgroup P ι is not even conjugate to P , but is conjugate to the (standard)
parabolic Q via

w◦P
ιw◦ = Q (where w◦ =




1
. .

.

1


, anti-diagonal)

Thus, unsurprisingly, noting that e1 = er · w◦, we should take

ϕ′(g) = χ(gσ)

∫
� χ(t)r Φ̂(t · e1 · g

ι) dt = left equivariant by Q � (note occurrence of e1, not er)

As before, the normalization involves a zeta integral

ξ(χr, Φ̂(∗, 0)) = ϕ′(1) =

∫
� χ(t)r Φ̂(t · e1) dt

Thus, we should take the viewpoint that this zeta integral occurs as an implied factor when we form the
Eisenstein series EQ(χr, Φ̂) attached to ϕ′, namely

ξ(χr, Φ̂(∗, 0)) · EQ(g) =
∑

γ∈Qk\GLr(k)

ϕ′(γ g)

The visible symmetry in the integral expression for EP from above gives the functional equation

ξ(χr, Φ(∗, 0)) · EP (χ, Φ) = ξ((|∗|χ−1)−1, Φ̂(0, ∗)) · EQ(|∗|χ−1, Φ̂)

3. Half-cuspidal data

Take 1 < q < r, and consider the standard maximal proper parabolic

P = P r−q,q = {

(
(r − q)-by-(r − q) ∗

0 q-by-q

)
}

We will demonstrate the meromorphic continuation of an Eisenstein series attached to degenerate data on
the copy of GLr−q, and to cuspidal data on the copy of GLr. The general form of the discussion is parallel
to the previous.

Let f be a cuspform on GLq(
�

), in the strong sense that f is in L2(GLq(k)\GLq(
�

)1), f meets the Gelfand-
Fomin condition � �

�
∫

Nk\N �
f(ng) dn = 0 (for almost all g)

� �
�

In words, this condition is integrating to 0 over horocycles.
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and f generates an irreducible representation of GLq(kν) locally at all places ν of k. For a Schwartz function
Φ on

�
q×r and Hecke character χ, let

ϕ(g) = ϕχ,f,Φ(g) = χ(det g)q

∫

GLq( � )

f(h−1) χ(det h)r Φ(h · [0q×(r−q) 1q] · g) dh

This function ϕ has the same central character as f . It is left invariant by the adele points of the unipotent
radical

N = {

(
1r−q ∗
0 1r

)
} (unipotent radical of P = P r−q,q)

The function ϕ is left invariant under the k-rational points of the standard Levi component of P ,

M = {

(
a 0
0 d

)
: a ∈ GLr−q, d ∈ GLr}

To understand the normalization, observe that

ξ(χr, f, Φ(0, ∗)) = ϕ(1) =

∫

GLq( � )

f(h−1) χ(det h)r Φ(h · [0q×(r−q) 1q]) dh

is a Godement-Jacquet zeta integral for the standard L-function attached to the cuspform f (or perhaps a
contragredient). Thus, the corresponding Eisenstein series includes this zeta integral as a factor, so write �

� �

ξ(χr, f, Φ(0, ∗)) · EP
χ,f,Φ(g) =

∑

γ∈Pk\GLr(k)

ϕ(γ g) (convergent for Re(χ) >> 0)

Now prove the meromorphic continuation via Poisson summation.

ξ(χr, f, Φ(0, ∗)) · EP
χ,f,Φ(g)

= χ(det g)q
∑

γ∈Pk\GLr(k)

∫

GLq(k)\GLq( � )

f(h) χ(det h)−r
∑

α∈GLq(k)

Φ(h−1 · [0 α] · g) dh

= χ(det g)q

∫

GLq(k)\GLq( � )

f(h) χ(det h)−r
∑

y∈kq×r , full rank

Φ(h−1 · y · g) dh

�
� �

To understand ϕ, observe that for p =

„

a b

0 x

«

in P � ,

ϕ(p) = χ(det p)q
Z

GLq( � )
f(h−1)χ(deth)r Φ(h · [0q×(r−q) x]) dh

= χ(det p)q χ(detx)−r
Z

GLq( � )
f(xh)χ(deth−1)r Φ(h−1 · [0q×(r−q) 1q ]) dh

by replacing h by h−1 then replacing h by xh. For simplicity, suppose that f is a spherical vector everywhere locally,

Z

GLq( � )
f(xh)χ(deth−1)r Φ(h−1 · [0q×(r−q) 1q ]) dh = f(x) ·

Z

GLq( � )
f(h)χ(deth−1)r Φ(h−1 · [0q×(r−q) 1q ]) dh

and the last integral is a Godement-Jacquet zeta integral ξ(χr, f,Φ(0, ∗)).
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The Gelfand-Fomin condition on f will compensate for the otherwise-irksome full-rank constraint.
Anticipating that we can drop the rank condition suggests that we define

ΘΦ(h, g) =
∑

y∈kq×r

Φ(h−1 · y · g)

Now we show (as in Godement-Jacquet) that the non-full-rank terms integrate to 0. �
� �

[3.1] Proposition: For f a cuspform, less-than-full-rank terms integrate to 0, that is,

∫

GLq(k)\GLq( � )

f(h) χ(det h)−r
∑

y∈kq×r , rank <q

Φ(h−1 · y · g) dh = 0

Proof: Since this is asserted for arbitrary Schwartz functions Φ, we can take g = 1. By linear algebra, given
yo ∈ kq×r of rank `, there is α ∈ GLq(k) such that

α · y0 =

(
rank-` `-by-r block

0(q−`)×r

)

Thus, without loss of generality fix y0 of the latter shape. Let Y be the orbit of y0 under left multiplication
by the rational points of the parabolic

P `,q−` =

(
`-by-` ∗

0 (q − `)-by-(q − `)

)
⊂ GLq

This is some set of matrices of the same shape as y0. Then the subsum over GLq(k) · y0 is

∫

GLq(k)\GLq( � )

f(h) χ(det h)−r
∑

y∈GLq(k)·y0

Φ(h−1 · y) dh =

∫

P `,q−`

k
\GLq( � )

f(h) χ(det h)−r
∑

y∈Y

Φ(h−1 · y) dh

Let N and M be the unipotent radical and standard Levi component of P `,q−`, namely, usual,

N =

(
1` ∗
0 1q−`

)
M =

(
`-by-` 0

0 (q − `)-by-(q − `)

)

Then the integral can be rewritten as an iterated integral

�
� �

There are issues of convergence. First, for Re(χ) sufficiently large, the integral

χ(det g)q
X

γ∈Pk\GLr(k)

Z

GLq(k)\GLq( � )
f(h)χ(deth)−r Θ(h, g) dh

is absolutely convergent. Also, we have the integrals analogous to integrals over k×\ � +. That is, let

GL+
q = {h ∈ GLq( � ) : | deth| ≥ 1}. Then, for arbitrary χ, using the fact that cuspforms f are of rapid decay

in Siegel sets,

χ(det g)q
X

γ∈Pk\GLr(k)

Z

GLq(k)\GL+
q

f(h)χ(deth)−r
X

y∈kq×r , full rank

Φ(h−1 · y · g) dh

is absolutely convergent.
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∫

NkMk\GLq( � )

f(h) χ(det h)−r
∑

y∈Y

Φ(h−1 · y) dh

=

∫

N � Mk\GLq( � )

∑

y∈Y

∫

Nk\N �
f(nh) χ(det nh)−r Φ((nh)−1 · y) dn dh

=

∫

N � Mk\GLq( � )

∑

y∈Y

χ(det h)−r Φ(h−1 · y)

(∫

Nk\N �
f(nh) dn

)
dh

since all fragments but f(nh) in the integrand are left invariant by N � . But the inner integral of f(nh) is
0, by the Gelfand-Fomin condition, so the whole is 0. ///

Let ι denote the transpose-inverse involution(s). Poisson summation gives

ΘΦ(h, g) =
∑

y∈kq×r

Φ(h−1 · y · g)

= | det(h−1)ι|r | det gι|q
∑

y∈kq×r

Φ̂((hι)−1 · y · gι) = | det(h−1)ι|r | det gι|q ΘbΦ(hι, gι)

As with ΘΦ, the not-full-rank summands in ΘbΦ integrate to 0 against cuspforms. Thus, letting

GL+
q = {h ∈ GLq(

�
) : | det h| ≥ 1} GL−

q = {h ∈ GLq(
�

) : | det h| ≤ 1}

ξ(χr , f, Φ(0, ∗)) · EP
χ,f,Φ(g) = χ(det g)q

∫

GLq(k)\GLq( � )

f(h) χ(det h)−r ΘΦ(h, g) dh

= χ(det g)q

∫

GLq(k)\GL+
q

f(h) χ(det h)−r ΘΦ(h, g) dh + χ(det g)q

∫

GLq(k)\GL−

q

f(h) χ(det h)−r ΘΦ(h, g) dh

= χ(det g)q

∫

GLq(k)\GL+
q

f(h) χ(det h)−r ΘΦ(h, g) dh

+ χ(det g)q

∫

GLq(k)\GL−

q

| det(h−1)ι|r | det gι|q f(h) χ(det h)−r ΘbΦ(hι, gι) dh

By replacing h by hι in the second integral we convert it to an integral over GLq(k)\GL+
q , and the whole is

ξ(χr, f, Φ(0, ∗)) · EP
χ,f,Φ(g) = χ(det g)q

∫

GLq(k)\GL+
q

f(h) χ(det h)−r ΘΦ(h, g) dh

+ |∗|χ−1(det gι)q

∫

GLq(k)\GL+
q

f(hι) |∗|χ−1(det hι)−r ΘbΦ(h, gι) dh

Since f ◦ ι is a cuspform, the second integral is entire in χ. Thus, we have proven

ξ(χr , f, Φ(0, ∗)) · EP
χ,f,Φ is entire

[3.2] Remark: Except for the extreme case q = r − 1, these Eisenstein series are degenerate, so occur
only as residues of (purely) cuspidal-data Eisenstein series. Assessing poles of residues seems less effective
in the present special circumstances than the above argument.
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4. Associate Eisenstein series

The functional equation of the Eisenstein series EP
χ,f,Φ relates it not to itself but to an Eisenstein series for

the parabolic Q associate to P , namely � �
� �

Q = P q,r−q = {

(
q-by-q ∗

0 (r − q)-by-(r − q)

)
}

The functions

ϕ′(g) = χ(det gι)q

∫

GLq( � )

f(hι) χ(det h)−r Φ̂(h−1 · [1q 0q×(r−q)] · g
ι) dh

arising in the meromorphic continuation for EP
χ,f,Φ are vectors in induced representations for Q. The values

ϕ′(1) are Godement-Jacquet zeta integrals

ξ(χr, f ◦ ι, Φ̂(∗ 0)) =

∫

GLq( � )

f(hι) χ(det h)−r Φ̂(h−1 · [1q 0q×(r−q)]) dh

Then form an Eisenstein series by

ξ(χr, f ◦ ι, Φ̂(∗ 0)) · EQ

χ,f◦ι,bΦ
=

∑

γ∈Qk\GLr(k)

ϕ′(γg)

The expression above that proves the meromorphic continuation also has a visible symmetry, giving the
functional equation

ξ(χr, f, Φ(0 ∗)) · EP
χ,f,Φ = ξ((|∗|χ−1)r , f ◦ ι, Φ̂(∗ 0)) · EQ

|∗|χ−1,f◦ι,bΦ
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This applies even in the symmetrical case r − q = q, since the roles of the cuspidal data and degenerate data are

reversed in the functional equation.
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