## Poles of half-degenerate Eisenstein series

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/

- Review of a well-known example
- Simplest non-self-associate functional equation
- Half-cuspidal data
- Associate Eisenstein series

We study the meromorphic continuation and functional equations for a useful special class of half-degenerate Eisenstein series for maximal proper parabolics

$$
P=P^{r-q, q}=\left\{\left(\begin{array}{cc}
(r-q) \text {-by- }(r-q) & * \\
0 & q \text {-by- } q
\end{array}\right)\right\}
$$

on $G L_{r}$ over a number field $k$, involving cuspidal data on the lower-right $G L_{q}$ factor of the (standard) Levi component and non-cuspidal data on the upper-left $G L_{r-q}$ factor. In particular, with a normalizing factor of a (single) Godement-Jacquet zeta integral attached to the cuspidal data, there are no poles.

As a simple example, let $f$ be a cuspform on $G L_{q}$ for $1<q<r$, and define

$$
\varphi_{s, f}(p)=\left|\frac{(\operatorname{det} a)^{q}}{(\operatorname{det} x)^{r-q}}\right|^{s} \cdot f(x) \quad\left(\text { for } p=\left(\begin{array}{cc}
a & b \\
0 & x
\end{array}\right) \in P^{r-q, q}\right)
$$

and extend $\varphi$ to all of $G L_{r}(\mathbb{A})$ by right invariance with respect to the standard maximal compact subgroups $K_{\nu}$ at all places $\nu$ of $k$. Form the Eisenstein series

$$
E_{s, f}(g)=\sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \varphi_{s, f}(g) \quad\left(\text { where } P=P^{r-q, q}\right)
$$

To normalize this Eisenstein series, let $\Phi$ be a Schwartz function on $\mathbb{A}^{q \times q}$, and suppose that $\Phi$ is right and left $K_{\nu}$-invariant for all places $\nu$. Let $\xi_{f}(s)$ be the Godement-Jacquet global zeta integral

$$
\xi_{f}(s)=\int_{G L_{q}(\mathbb{A})} f\left(t^{-1}\right)|\operatorname{det} t|^{s} \Phi(t) d t
$$

We will show that $\xi_{f}(r s) \cdot E_{s, f}$ is entire in $s$.
The argument is a straightforward combination of ideas of [Godement-Jacquet 1972] (using Poisson summation, extending the Tate-Iwasawa argument for $G L_{1}$ ) with the Ingham-Rankin-Selberg integral Mellin representation of Eisenstein series (see [Godement 1966] for $G L_{2}$ ).

These Eisenstein series are partly degenerate in the sense that (except for extreme cases) while including some cuspidal data they do also use non-cuspidal data (determinants) on one of the simple factors of the Levi component. Thus, these Eisenstein series play no direct role in the $L^{2}$ spectral theory on the arithmetic quotients, but, rather, are residues of the non-degenerate Eisenstein series which do enter the spectral theory (as in [Langlands 1976] and [Moeglin Waldspurger 1989], [Moeglin Waldspurger 1995]).

The present special approach gives better results on possible poles of these special semi-degenerate Eisenstein series than an iterated residues viewpoint. This is useful in integral representations of L-functions.

Both the classical treatment of $G L_{2}$ and the present integral representation can be viewed as theta correspondences, for groups $G L_{n}$ viewed as globally split forms of unitary groups.

## 1. Review of a well-known example

First we review some extremely degenerate Eisenstein series (really a pair of Eisenstein series), on $G L_{r}$ over a number field $k$, with continuation properties established by Poisson summation in one step. This material is standard. The (vacuously) cuspidal data here is a Hecke character $\chi$. The Eisenstein series of this section may have poles.

View $\mathbb{A}^{r}$ and $k^{r}$ as row vectors. Let $e_{1}, \ldots, e_{r}$ the standard basis for $k^{r}$. We use the ( $r-1,1$ ) parabolic

$$
P=\left\{p \in G L_{r}:\left(k \cdot e_{r}\right) \cdot p=k \cdot e_{r}\right\}=\left\{\left(\begin{array}{ll}
a & * \\
0 & d
\end{array}\right): a \in G L_{r-1}, d \in G L_{1}\right\}=\text { stabilizer of the line } k e_{r}
$$

We make vectors ${ }^{[1]} \varphi$ constructed from a Hecke character ${ }^{[2]} \chi$ and a Schwartz function $\Phi$ on $\mathbb{A}^{r}$, by

$$
\varphi(g)=\chi(\operatorname{det} g) \int_{\mathbb{J}} \chi(t)^{r} \Phi\left(t \cdot e_{r} \cdot g\right) d t
$$

The $r^{\text {th }}$ power of $\chi$ in the integrand and the leading factor of $\chi(\operatorname{det} g)$ combine to give the invariance $\varphi(z g)=\varphi(g)$ for all $z$ in the center $Z_{\mathrm{A}}$ of $G L_{r}(\mathbb{A})$.

By changing variables in the integral, and by the product formula, we observe the left equivariance

$$
\begin{gathered}
\varphi(p g)=\chi(\operatorname{det} p g) \int_{\mathbb{J}} \chi(t)^{r} \Phi\left(t \cdot e_{r} \cdot p g\right) d t \\
=\chi(\operatorname{det} a) \chi(d)^{1-r} \cdot \varphi(g) \quad\left(\text { for } p=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in P_{\mathbb{A}}\right)
\end{gathered}
$$

with respect to $P_{\mathrm{A}}$. ${ }^{[3]}$
Note that the normalization is not $\varphi(1)=1$, but, rather,

$$
\varphi(1)=\int_{\mathbb{J}} \chi(t)^{r} \Phi\left(t \cdot e_{r}\right) d t \quad \text { (Tate-Iwasawa zeta integral at } \chi^{r} \text { ) }
$$

Denote this zeta integral by $\xi=\xi\left(\chi^{r}, \Phi(0, *)\right)$, indicating that it only depends upon the values of $\Phi$ along the last coordinate axis. Thus, we should construe the Eisenstein series, associated to $\varphi$ in the usual fashion, as having a factor of $\xi\left(\chi^{r}, \Phi(0, *)\right)$ included, namely

$$
\xi\left(\chi^{r}, \Phi(0, *)\right) \cdot E(g)=\sum_{\gamma \in P_{k} \backslash G_{k}} \varphi(\gamma g) \quad \quad(\text { convergent for } \operatorname{Re}(\chi) \gg 0)
$$

[1] These vectors lie in a parametrized family of induced representations, specifically, degenerate principal series, but this fact is not immediately necessary.
${ }^{[2]}$ As usual, a Hecke character is a continuous group homomorphism of $G L_{1}(k) \backslash G L_{1}(\mathbb{A})$ to $\mathbb{C}^{\times}$. The idele class group quotient $\mathbb{J} / k^{\times}=G L_{1}(\mathbb{A}) / G L_{1}(k)$ can be factored as $\left(\mathbb{J}^{1} / k^{\times}\right) \times \mathbb{R}^{+}$, where $\mathbb{J}^{1}$ is ideles with idele norm 1 , and $\mathbb{R}^{+}$ is the group of positive real numbers, imbedded in $\mathbb{J}$ by $t \longrightarrow\left(t^{1 / N}, \ldots, t^{1 / N}, 1,1, \ldots\right)$, with $N=[k: \mathbb{Q}]$, and $t^{1 / N}$ appears at the archimedean places. A Hecke character $\chi$ has a corresponding decomposiion $\chi(t)=\chi_{1}(t) \cdot|t|^{s}$, where $\chi_{1}$ is a Hecke character trivial on the copy of $\mathbb{R}^{+}$, and $s \in \mathbb{C}$. As usual, write $\operatorname{Re}(\chi)=\operatorname{Re}(s)$.
${ }^{[3]}$ This left equivariance is exactly the left equivariance required of a vector in degenerate principal series representations of $G L_{r}(\mathbb{A})$ induced from that character $p \longrightarrow \chi(\operatorname{det} a) \chi(d)^{1-r}$ on $P_{\mathbf{A}}$. For now, we have no need of any properties of this representation, but it is convenient that for generic $\chi$ (in the sense of typical, rather than in the technical sense of having a Whittaker model) these degenerate principal series are irreducible. Specifically, these representations are irreducible for the complex parameter $s$ off $a$ discrete set of points (with no limit point in $\mathbb{C}$ ). Thus, these integral expressions inevitably produce all vectors in the representation. This irreducibility is non-trivial, and in the immediate sequel we will not use either it or the implied surjectivity.

Poisson summation proves the meromorphic continuation of this Eisenstein series, just as the Tate-Iwasawa version of Riemann's argument for the Euler-Riemann zeta. Let

$$
\mathbb{J}^{+}=\{t \in \mathbb{J}:|t| \geq 1\} \quad \mathbb{J}^{-}=\{t \in \mathbb{J}:|t| \leq 1\}
$$

and $g^{\iota}=\left(g^{\top}\right)^{-1} \quad$ (transpose inverse)

$$
\begin{gathered}
\xi \cdot E(g)=\sum_{\gamma \in P_{k} \backslash G_{k}} \varphi(\gamma g)=\chi(\operatorname{det} g) \sum_{\gamma \in P_{k} \backslash G_{k}} \int_{\mathbb{J}} \chi(t)^{r} \Phi(t \cdot x \cdot \gamma g) d t \\
=\chi(\operatorname{det} g) \sum_{\gamma \in P_{k} \backslash G_{k}} \int_{k^{\times} \backslash \mathbb{J}} \chi(t)^{r} \sum_{\lambda \in k^{\times}} \Phi\left(t \cdot \lambda e_{r} \cdot \gamma g\right) d t \\
=\chi(\operatorname{det} g) \int_{k^{\times} \backslash \mathbb{J}} \chi(t)^{r} \sum_{x \in k^{r}-0} \Phi(t \cdot x \cdot g) d t
\end{gathered}
$$

Let ${ }^{[4]}$

$$
\Theta(g)=\sum_{x \in k^{r}} \Phi(t \cdot x \cdot g)
$$

Then

$$
\xi \cdot E(g)=\chi(\operatorname{det} g) \int_{k^{\times} \backslash \mathbb{J}^{+}} \chi(t)^{r}[\Theta(g)-\Phi(0)] d t+\chi(\operatorname{det} g) \int_{k^{\times} \backslash \mathbb{J}^{-}} \chi(t)^{r}[\Theta(g)-\Phi(0)] d t=(\text { entire })+(?)
$$

since the usual sort of estimate shows that the integral over $k^{\times} \backslash \mathbb{J}^{+}$converges absolutely for all $\chi$. Following Riemann et alia, via Poisson summation we rewrite the second part of the integral as an analogous integral over $k^{\times} \backslash \mathbb{J}^{+}$. Poisson summation asserts that

$$
\sum_{x \in k^{r}-0} \Phi(t \cdot x \cdot g)+\Phi(0)=|t|^{-r}|\operatorname{det} g|^{-1} \sum_{x \in k^{r}-0} \widehat{\Phi}\left(t^{-1} \cdot x \cdot g^{\iota}\right)+|t|^{-r}|\operatorname{det} g|^{-1} \widehat{\Phi}(0)
$$

using standard change-of-variables properties of the Fourier transform. ${ }^{[5]}$ Let

$$
\Theta^{\prime}\left(g^{\iota}\right)=\sum_{x \in k^{r}} \widehat{\Phi}\left(t \cdot x \cdot g^{\iota}\right) .
$$

Then, removing the $\Phi(0)$ and $\widehat{\Phi}(0)$ terms, and replacing $t$ by $t^{-1}$ in the integral over $k^{\times} \backslash \mathbb{J}^{-}$turns this integral into

$$
\begin{gathered}
|\operatorname{det} g|^{-1} \chi(\operatorname{det} g) \int_{k^{\times} \backslash \mathbb{J}^{+}}\left(|t| \chi(t)^{-1}\right)^{r}\left[\Theta^{\prime}\left(g^{l}\right)-\widehat{\Phi}(0)\right] d t \\
-\chi(\operatorname{det} g) \Phi(0) \int_{k^{\times} \backslash \mathbb{J}-} \chi(t)^{r} d t+|\operatorname{det} g|^{-1} \chi(\operatorname{det} g) \widehat{\Phi}(0) \int_{k^{\times} \backslash \mathbb{J}^{-}} \chi(t)^{r}|t|^{-r} d t
\end{gathered}
$$

The integral over $k^{\times} \backslash \mathbb{J}^{+}$is entire. Thus, the non-elementary part of the integral is converted into two entire integrals over $k^{\times} \backslash \mathbb{J}^{+}$together with two elementary integrals that give the only possible poles:

$$
\xi \cdot E(g)=(\text { entire })-\chi(\operatorname{det} g) \Phi(0) \int_{k^{\times} \backslash \mathbb{J}-} \chi(t)^{r} d t+|\operatorname{det} g|^{-1} \chi(\operatorname{det} g) \widehat{\Phi}(0) \int_{k^{\times} \backslash \mathbb{J}-} \chi(t)^{r}|t|^{-r} d t
$$

[4] As in Iwasawa-Tate theory, this function $\theta$ has a role analogous to the Jacobi theta function in the classical argument.
[5] Any non-trivial additive character $\psi$ on $\mathbb{A} / k$, and any non-degenerate pairing $\langle$,$\rangle on \mathbb{A}^{r}\left(k\right.$-valued on $\left.k^{r} \times k^{r}\right)$ can be used to define a Fourier transform. The specific choice does not matter, but of course the notion of transpose is defined via the pairing.

As in Tate-Iwasawa theory, with $\chi$ decomposed as

$$
\chi(t)=\chi_{1}(t) \cdot|t|^{s} \quad\left(\text { with } \chi_{1} \text { trivial on the copy of } \mathbb{R}^{+} \text {in } \mathbb{J}\right)
$$

the relatively elementary integrals can be evaluated

$$
\int_{k^{\times} \backslash \mathbb{J}-}|t|^{r s} \chi_{1}(t)^{r} d t=\int_{k^{\times} \backslash \mathbb{J}^{1}} \chi_{1}(t)^{r} d t \cdot \int_{0}^{1} t^{r s} d t=\frac{1}{r s} \int_{k^{\times} \backslash \mathbb{J}^{1}} \chi_{1}(t)^{r} d t=\left\{\begin{array}{cc}
\frac{\operatorname{vol}\left(k^{\times} \backslash \mathbb{I}^{1}\right.}{r s} & \left(\text { for } \chi_{1}^{r}=1\right) \\
0 & \left(\text { for } \chi_{1}^{r} \neq 1\right)
\end{array}\right.
$$

Similarly,

$$
\int_{k^{\times} \backslash \mathbb{J}-}|t|^{r(s-1)} \chi_{1}(t)^{r} d t=\left\{\begin{array}{cc}
\frac{\operatorname{vol}\left(k^{\times} \backslash \mathbb{J}^{1}\right.}{r(s-1)} & \left(\text { for } \chi_{1}^{r}=1\right) \\
0 & \left(\text { for } \chi_{1}^{r} \neq 1\right)
\end{array}\right.
$$

That is, the only possible poles of $\xi \cdot E(g)$ are at $s=0,1$, and these occur only when $\chi_{1}^{r}=1$, and the residues are $\Phi(0)$ at $s=0$ and $\widehat{\Phi}(0)$ at $s=1$ (times the volume constant):

$$
\begin{align*}
\xi\left(\chi^{r}, \Phi(0, *)\right) \cdot E(g)= & \chi(\operatorname{det} g) \int_{k^{\times} \backslash \mathbb{J}+} \chi(t)^{r}[\Theta(g)-\Phi(0)] d t  \tag{1.1}\\
& +|*| \chi^{-1}\left(\operatorname{det} g^{\iota}\right) \int_{k^{\times} \backslash \mathbb{J}+}|*| \chi^{-1}(t)^{r}\left[\Theta^{\prime}\left(g^{\iota}\right)-\widehat{\Phi}(0)\right] d t \\
& +\left\{\begin{array}{cc}
-\frac{\chi(\operatorname{det} g) \operatorname{vol}\left(k^{\times} \backslash \mathbb{J}^{1}\right)}{r s}+\frac{\mid * \chi^{-1}\left(\operatorname{det} g^{\iota}\right) \operatorname{vol}\left(k^{\times} \backslash \mathbb{J}^{1}\right)}{r(s-1)} & \text { for } \chi^{r}=1 \\
0 & \text { for } \chi^{r} \neq 1
\end{array}\right.
\end{align*}
$$

Thus, the possible poles of $E(g)$ itself, without the zeta factor $\xi\left(\chi^{r}, \Phi(0, *)\right)$, may be at $s=0,1$ and at the zeros of $\xi$. For reasonable choices of $\Phi$, these zeros occur only in the strip $0<\operatorname{Re}(s)<\frac{1}{r}$.
[1.2] Remark: The estimate here on possible poles is stronger than the otherwise-natural estimates that arise when these Eisenstein series are analyzed as residues of non-degenerate Eisenstein series.
[1.3] Remark: Although it is a good indicator of analytic properties, the above expression for $E(g)$ requires further interpretation to give a functional equation connecting it to another Eisenstein series. This is explicated in the next section.

## 2. Simplest non-self-associate functional equation

Except for the case $r=2$, the functional equation of the degenerate Eisenstein series (above) attached to the $(r-1,1)$ parabolic does not relate it to itself. We will see that there is a functional equation relating it to an Eisenstein series for the $(1, r-1)$ parabolic ${ }^{[6]}$

$$
Q=\left\{\left(\begin{array}{cc}
1 \text {-by- } 1 & * \\
0 & (r-1) \text {-by- }(r-1)
\end{array}\right)\right\}
$$

Indeed, the discussion of meromorphic continuation presents $g^{\iota}$ inside $\widehat{\Phi}$. In the special case $r=2$, up to a scalar, $g^{\ell}$ is conjugate to $g$.
[6] The fact that the diagonal block sizes in $P$ and $Q$ are merely permuted is no coincidence. In a broader context, we would say that these two parabolics are associate.

Let $E^{P}=E^{P}(\chi, \Phi)$ be the Eisenstein series of the previous section. We want to understand the Fouriertransformed part of the integral expression for $E^{P}$ as being made from a left-equivariant function $\varphi^{\prime}$ which should be roughly like $\varphi$. An obvious candidate,

$$
\begin{equation*}
\varphi^{?}(g)=\chi\left(g^{\iota}\right) \int_{\mathbb{J}} \chi(t)^{r} \widehat{\Phi}\left(t \cdot e_{r} \cdot g^{\iota}\right) d t \tag{?}
\end{equation*}
$$

is left equivariant by the image $P^{\iota}$ of $P$ under the involution $\iota$, but $P^{\iota}$ is not a standard parabolic subgroup. Further, except for $r=2$, the subgroup $P^{\iota}$ is not even conjugate to $P$, but is conjugate to the (standard) parabolic $Q$ via

$$
w_{\circ} P^{\iota} w_{\circ}=Q \quad\left(\text { where } w_{\circ}=\left({ }_{1} .{ }^{1}\right), \text { anti-diagonal }\right)
$$

Thus, unsurprisingly, noting that $e_{1}=e_{r} \cdot w_{\mathrm{o}}$, we should take

$$
\varphi^{\prime}(g)=\chi\left(g^{\sigma}\right) \int_{\mathbb{J}} \chi(t)^{r} \widehat{\Phi}\left(t \cdot e_{1} \cdot g^{l}\right) d t=\text { left equivariant by } Q_{\mathbb{A}} \quad \quad \text { (note occurrence of } e_{1} \text {, not } e_{r} \text { ) }
$$

As before, the normalization involves a zeta integral

$$
\xi\left(\chi^{r}, \widehat{\Phi}(*, 0)\right)=\varphi^{\prime}(1)=\int_{\mathbb{J}} \chi(t)^{r} \widehat{\Phi}\left(t \cdot e_{1}\right) d t
$$

Thus, we should take the viewpoint that this zeta integral occurs as an implied factor when we form the Eisenstein series $E^{Q}\left(\chi^{r}, \widehat{\Phi}\right)$ attached to $\varphi^{\prime}$, namely

$$
\xi\left(\chi^{r}, \widehat{\Phi}(*, 0)\right) \cdot E^{Q}(g)=\sum_{\gamma \in Q_{k} \backslash G L_{r}(k)} \varphi^{\prime}(\gamma g)
$$

The visible symmetry in the integral expression for $E^{P}$ from above gives the functional equation

$$
\xi\left(\chi^{r}, \Phi(*, 0)\right) \cdot E^{P}(\chi, \Phi)=\xi\left(\left(|*| \chi^{-1}\right)^{-1}, \widehat{\Phi}(0, *)\right) \cdot E^{Q}\left(|*| \chi^{-1}, \widehat{\Phi}\right)
$$

## 3. Half-cuspidal data

Take $1<q<r$, and consider the standard maximal proper parabolic

$$
P=P^{r-q, q}=\left\{\left(\begin{array}{cc}
(r-q) \text {-by- }(r-q) & * \\
0 & q \text {-by- } q
\end{array}\right)\right\}
$$

We will demonstrate the meromorphic continuation of an Eisenstein series attached to degenerate data on the copy of $G L_{r-q}$, and to cuspidal data on the copy of $G L_{r}$. The general form of the discussion is parallel to the previous.

Let $f$ be a cuspform on $G L_{q}(\mathbb{A})$, in the strong sense that $f$ is in $L^{2}\left(G L_{q}(k) \backslash G L_{q}(\mathbb{A})^{1}\right), f$ meets the GelfandFomin condition ${ }^{[7]}$

$$
\int_{N_{k} \backslash N_{\mathrm{A}}} f(n g) d n=0 \quad \text { (for almost all } g \text { ) }
$$

[^0]and $f$ generates an irreducible representation of $G L_{q}\left(k_{\nu}\right)$ locally at all places $\nu$ of $k$. For a Schwartz function $\Phi$ on $\mathbb{A}^{q \times r}$ and Hecke character $\chi$, let
$$
\varphi(g)=\varphi_{\chi, f, \Phi}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} 1_{q}\right] \cdot g\right) d h
$$

This function $\varphi$ has the same central character as $f$. It is left invariant by the adele points of the unipotent radical

$$
N=\left\{\left(\begin{array}{cc}
1_{r-q} & * \\
0 & 1_{r}
\end{array}\right)\right\} \quad \text { (unipotent radical of } P=P^{r-q, q} \text { ) }
$$

The function $\varphi$ is left invariant under the $k$-rational points of the standard Levi component of $P$,

$$
M=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right): a \in G L_{r-q}, d \in G L_{r}\right\}
$$

To understand the normalization, observe that

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right)=\varphi(1)=\int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} 1_{q}\right]\right) d h
$$

is a Godement-Jacquet zeta integral for the standard L-function attached to the cuspform $f$ (or perhaps a contragredient). Thus, the corresponding Eisenstein series includes this zeta integral as a factor, so write ${ }^{[8]}$

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \varphi(\gamma g) \quad \quad(\text { convergent for } \operatorname{Re}(\chi) \gg 0)
$$

Now prove the meromorphic continuation via Poisson summation.

$$
\begin{gathered}
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g) \\
=\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{\alpha \in G L_{q}(k)} \Phi\left(h^{-1} \cdot[0 \alpha] \cdot g\right) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { full rank }} \Phi\left(h^{-1} \cdot y \cdot g\right) d h
\end{gathered}
$$

[8] $\overline{\text { To understand } \varphi \text {, observe that for } p}=\left(\begin{array}{ll}a & b \\ 0 & x\end{array}\right)$ in $P_{\mathbf{A}}$,

$$
\begin{gathered}
\varphi(p)=\chi(\operatorname{det} p)^{q} \int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} x\right]\right) d h \\
=\chi(\operatorname{det} p)^{q} \chi(\operatorname{det} x)^{-r} \int_{G L_{q}(\mathbb{A})} f(x h) \chi\left(\operatorname{det} h^{-1}\right)^{r} \Phi\left(h^{-1} \cdot\left[0_{q \times(r-q)} 1_{q}\right]\right) d h
\end{gathered}
$$

by replacing $h$ by $h^{-1}$ then replacing $h$ by $x h$. For simplicity, suppose that $f$ is a spherical vector everywhere locally,

$$
\int_{G L_{q}(\mathbb{A})} f(x h) \chi\left(\operatorname{det} h^{-1}\right)^{r} \Phi\left(h^{-1} \cdot\left[0_{q \times(r-q)} 1_{q}\right]\right) d h=f(x) \cdot \int_{G L_{q}(\mathbb{A})} f(h) \chi\left(\operatorname{det} h^{-1}\right)^{r} \Phi\left(h^{-1} \cdot\left[0_{q \times(r-q)} 1_{q}\right]\right) d h
$$

and the last integral is a Godement-Jacquet zeta integral $\xi\left(\chi^{r}, f, \Phi(0, *)\right)$.

Paul Garrett: Poles of half-degenerate Eisenstein series (July 3, 2006)
The Gelfand-Fomin condition on $f$ will compensate for the otherwise-irksome full-rank constraint. Anticipating that we can drop the rank condition suggests that we define

$$
\Theta_{\Phi}(h, g)=\sum_{y \in k^{q \times r}} \Phi\left(h^{-1} \cdot y \cdot g\right)
$$

Now we show (as in Godement-Jacquet) that the non-full-rank terms integrate to 0. ${ }^{[9]}$
[3.1] Proposition: For $f$ a cuspform, less-than-full-rank terms integrate to 0 , that is,

$$
\int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \operatorname{rank}<q} \Phi\left(h^{-1} \cdot y \cdot g\right) d h=0
$$

Proof: Since this is asserted for arbitrary Schwartz functions $\Phi$, we can take $g=1$. By linear algebra, given $y_{o} \in k^{q \times r}$ of $\operatorname{rank} \ell$, there is $\alpha \in G L_{q}(k)$ such that

$$
\alpha \cdot y_{0}=\binom{\text { rank- } \ell \ell \text {-by- } r \text { block }}{0_{(q-\ell) \times r}}
$$

Thus, without loss of generality fix $y_{0}$ of the latter shape. Let $Y$ be the orbit of $y_{0}$ under left multiplication by the rational points of the parabolic

$$
P^{\ell, q-\ell}=\left(\begin{array}{cc}
\ell \text {-by- } \ell & * \\
0 & (q-\ell) \text {-by- }(q-\ell)
\end{array}\right) \subset G L_{q}
$$

This is some set of matrices of the same shape as $y_{0}$. Then the subsum over $G L_{q}(k) \cdot y_{0}$ is

$$
\int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in G L_{q}(k) \cdot y_{0}} \Phi\left(h^{-1} \cdot y\right) d h=\int_{P_{k}^{\ell, q-\ell} \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in Y} \Phi\left(h^{-1} \cdot y\right) d h
$$

Let $N$ and $M$ be the unipotent radical and standard Levi component of $P^{\ell, q-\ell}$, namely, usual,

$$
N=\left(\begin{array}{cc}
1_{\ell} & * \\
0 & 1_{q-\ell}
\end{array}\right) \quad M=\left(\begin{array}{cc}
\ell \text {-by- } \ell & 0 \\
0 & (q-\ell) \text {-by- }(q-\ell)
\end{array}\right)
$$

Then the integral can be rewritten as an iterated integral
[9] There are issues of convergence. First, for $\operatorname{Re}(\chi)$ sufficiently large, the integral

$$
\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \Theta(h, g) d h
$$

is absolutely convergent. Also, we have the integrals analogous to integrals over $k^{\times} \backslash \mathbb{J}^{+}$. That is, let $G L_{q}^{+}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \geq 1\right\}$. Then, for arbitrary $\chi$, using the fact that cuspforms $f$ are of rapid decay in Siegel sets,

$$
\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { full rank }} \Phi\left(h^{-1} \cdot y \cdot g\right) d h
$$

is absolutely convergent.

$$
\begin{aligned}
& \int_{N_{k} M_{k} \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in Y} \Phi\left(h^{-1} \cdot y\right) d h \\
= & \int_{N_{\mathbb{A}} M_{k} \backslash G L_{q}(\mathbb{A})} \sum_{y \in Y} \int_{N_{k} \backslash N_{\mathbf{A}}} f(n h) \chi(\operatorname{det} n h)^{-r} \Phi\left((n h)^{-1} \cdot y\right) d n d h \\
= & \int_{N_{\mathbb{A}} M_{k} \backslash G L_{q}(\mathbb{A})} \sum_{y \in Y} \chi(\operatorname{det} h)^{-r} \Phi\left(h^{-1} \cdot y\right)\left(\int_{N_{k} \backslash N_{\mathbf{A}}} f(n h) d n\right) d h
\end{aligned}
$$

since all fragments but $f(n h)$ in the integrand are left invariant by $N_{\mathrm{A}}$. But the inner integral of $f(n h)$ is 0 , by the Gelfand-Fomin condition, so the whole is 0 .

Let $\iota$ denote the transpose-inverse involution(s). Poisson summation gives

$$
\begin{gathered}
\Theta_{\Phi}(h, g)=\sum_{y \in k^{q \times r}} \Phi\left(h^{-1} \cdot y \cdot g\right) \\
=\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} \sum_{y \in k^{q \times r}} \widehat{\Phi}\left(\left(h^{\iota}\right)^{-1} \cdot y \cdot g^{\iota}\right)=\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} \Theta_{\widehat{\Phi}}\left(h^{\iota}, g^{\iota}\right)
\end{gathered}
$$

As with $\Theta_{\Phi}$, the not-full-rank summands in $\Theta_{\widehat{\Phi}}$ integrate to 0 against cuspforms. Thus, letting

$$
\begin{gathered}
G L_{q}^{+}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \geq 1\right\} \quad G L_{q}^{-}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \leq 1\right\} \\
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h+\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{-}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
+\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{-}}\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\widehat{\Phi}}\left(h^{\iota}, g^{\iota}\right) d h
\end{gathered}
$$

By replacing $h$ by $h^{\iota}$ in the second integral we convert it to an integral over $G L_{q}(k) \backslash G L_{q}^{+}$, and the whole is

$$
\begin{aligned}
& \xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
& \quad+|*| \chi^{-1}\left(\operatorname{det} g^{\iota}\right)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f\left(h^{\iota}\right)|*| \chi^{-1}\left(\operatorname{det} h^{\iota}\right)^{-r} \Theta_{\widehat{\Phi}}\left(h, g^{\iota}\right) d h
\end{aligned}
$$

Since $f \circ \iota$ is a cuspform, the second integral is entire in $\chi$. Thus, we have proven

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P} \quad \text { is entire }
$$

[3.2] Remark: Except for the extreme case $q=r-1$, these Eisenstein series are degenerate, so occur only as residues of (purely) cuspidal-data Eisenstein series. Assessing poles of residues seems less effective in the present special circumstances than the above argument.

## 4. Associate Eisenstein series

The functional equation of the Eisenstein series $E_{\chi, f, \Phi}^{P}$ relates it not to itself but to an Eisenstein series for the parabolic $Q$ associate to $P$, namely ${ }^{[10]}$

$$
Q=P^{q, r-q}=\left\{\left(\begin{array}{cc}
q \text {-by- } q & * \\
0 & (r-q) \text {-by- }(r-q)
\end{array}\right)\right\}
$$

The functions

$$
\varphi^{\prime}(g)=\chi\left(\operatorname{det} g^{\iota}\right)^{q} \int_{G L_{q}(\mathbb{A})} f\left(h^{\iota}\right) \chi(\operatorname{det} h)^{-r} \widehat{\Phi}\left(h^{-1} \cdot\left[1_{q} 0_{q \times(r-q)}\right] \cdot g^{\iota}\right) d h
$$

arising in the meromorphic continuation for $E_{\chi, f, \Phi}^{P}$ are vectors in induced representations for $Q$. The values $\varphi^{\prime}(1)$ are Godement-Jacquet zeta integrals

$$
\xi\left(\chi^{r}, f \circ \iota, \widehat{\Phi}(* 0)\right)=\int_{G L_{q}(\mathbb{A})} f\left(h^{\iota}\right) \chi(\operatorname{det} h)^{-r} \widehat{\Phi}\left(h^{-1} \cdot\left[1_{q} 0_{q \times(r-q)}\right]\right) d h
$$

Then form an Eisenstein series by

$$
\xi\left(\chi^{r}, f \circ \iota, \widehat{\Phi}(* 0)\right) \cdot E_{\chi, f \circ \iota, \widehat{\Phi}}^{Q}=\sum_{\gamma \in Q_{k} \backslash G L_{r}(k)} \varphi^{\prime}(\gamma g)
$$

The expression above that proves the meromorphic continuation also has a visible symmetry, giving the functional equation

$$
\xi\left(\chi^{r}, f, \Phi(0 *)\right) \cdot E_{\chi, f, \Phi}^{P}=\xi\left(\left(|*| \chi^{-1}\right)^{r}, f \circ \iota, \widehat{\Phi}(* 0)\right) \cdot E_{|*| \chi^{-1}, f \circ \iota, \widehat{\Phi}}^{Q}
$$

[Godement 1966] R. Godement, Decomposition of $L^{2}(\Gamma \backslash G)$ for $\Gamma=S L(2, Z)$, in Proc. Symp. Pure Math. 9 (1966), AMS, 211-24.
[Godement Jacquet 1972] R. Godement, H. Jacquet, Zeta functions of Simple Algebras, Lecture Notes in Math. 260, Springer-Verlag, 1972.
[Jacquet 1983] H. Jacquet, On the residual spectrum of $G L(n)$, in Lie Group Representations, II, Lecture Notes in Math. 1041, Springer-Verlag, 1983.
[Langlands 1976] R. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, 544, Springer-Verlag, Berlin and New York, 1976.
[Moeglin Waldspurger 1989] C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de $G L(n)$, Ann. Sci. Éc. Norm. Sup. 22 (1989), 605-674.
[Moeglin Waldspurger 1995] C. Moeglin, J.-L. Waldspurger, Spectral Decompositions and Eisenstein series, Cambridge University Press, 1995.
[10] This applies even in the symmetrical case $r-q=q$, since the roles of the cuspidal data and degenerate data are reversed in the functional equation.


[^0]:    [7] In words, this condition is integrating to 0 over horocycles.

