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We compute natural integrals giving intertwining operators among principal series of G = SL(2,C).

1. Principal series representations
2. The main computation
e Smooth vectors

1. Principal series representations

As usual, let
a 0

N:{nzz<(1) i):ze@} M:{ma:<0 1/a):aeCX}

P = NM = MN

and

For s € C and integer &, the (s, x)™" principal series representation 15\ is the space of smooth functions f
on G with prescribed left equivariance

— {f S(09) = xo®) Slg) forall pE P, g G) (where o (5,52 ) = ()

with the normalization of the character to have the intertwining operator 7, below map from I, , to
I, —, rather than have s transform in some other fashion. The group G acts on I, ., by the right regular
representation, that is, by right translation of functions:

(¢- @) = [flzg) (for g,z € G)

The standard intertwining operator T = Ty ,; : I . — I1_s _x is defined, for Re(s) sufficiently large, by the
integral

(Ts,xf)(g / f(won - g)

w — (0 -1
c=\1 o

The integration is on the left, so does not disturb the right action of G. To verify that (assuming convergence)
the image really does lie inside I1_; _, observe that T . f is left N-invariant by construction, and that for
me M

where the long Weyl element w,, is

(Ts,xf)(mg) = /fwon mg) dn—/ flwemm™ nm - g) dn = x1(m /fwomng

by replacing n by mnm !, taking into account the change of measure d(mnm=') = x1(m) - dn coming from

G266 -6

Then this is
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x1(m) / flwemw, ' -wyn-g)dn = x1(m) / fm™ - w,n - g) dn
N N

) xen(m™) - /N Flwon-g) dn = X1—s—n(m) - (Tonf)(9)

This verifies that T . : Is,c = J1—g,—x-

The standard maximal compact is K = SU(2) C G, and G has Iwasawa decomposition G = PK. The
overlap is

PNK = {(“ 0

. — X
s ) =1 e

The restriction of x; , to P N K does not depend on s € C, but only on k. Write x,, for this restriction.

The complexified Lie algebra su(2) ®g C ~ sl3(C) has standard C-basis

h<1 0> w(o 1) y(oo)

0 -1 0 0 1 0

The Cartan element h decomposes finite-dimensional complex representations o of SU(2) into eigenspaces,
and there is a unique (up to scalars) non-zero h-eigenvector v, annihilated by x, a highest-weight vector of o.
The h-eigenvalue of v, is a non-negative integer ¢, the highest weight of o, and determines the isomorphism
class of 0. Application of y to an h-eigenvector with eigenvalue A shifts the eigenvalue to A — 2, or else

annihilates the vector. The collection of all h-eigenvalues in the irreducible o, with highest weight ¢ has
eigenvalues exactly

b, —0+2, —0+4, ..., L—4,0-2,¢ (with (non-zero) multiplicities all 1)

A convenient model for the irreducible o, with highest weight £ is homogeneous polynomials of total degree
¢ on C? treated as row vectors, with the action

(k- f)(u,v) = op(k)f(u,v) = f((u,v) k) (with k € K and f on (u,v) € C?)
The highest-weight vector is (u,v) — u’. The biregular representation of K x K on functions on K is
(kx K)f(z) = f(K~ak)

This decomposes the space of (for example) right K-finite functions as @_ o ® &, where & is the dual of o,
and o runs through the irreducibles of K.

A function f in I, is determined by its restriction to K, and must lie in
K K
Indprg Xs,x [ Indprg Xx

Conversely, for s € C, a smooth function f, in Indgm K Xr has a unique extension to f € I; ., by

f(pk) = Xs(p) ’ fo(k)

That is, for f € I, ., the restriction f|x is a k-eigenvector for h € su(2) g C under the left action

(h-f)(k) = f(e™k)

Otli=o

This gives the negative of the eigenvalue under the left regular action.

2



Paul Garrett: Intertwinings among principal series of SLo(C) (July 17, 2014)

The irreducible ¢ has non-zero —x eigenspace d,[—x] for ¢ € 2Z for ¢ > |k| and of the same parity. The
eigenspace is one-dimensional. Thus, under the right regular representation of K on Indgm K Xr, €ach
irreducible appearing appears with multiplicity one:

IndgﬁK Xk = @ 0¢ ® 0y[—K] = @ o (right regular of K = SU(2))
|k|<CEZ, L=k mod 2 |k|<CEZ, L=k mod 2
Let
Rs,n . Is,n — IndgnK Xk (by Rs,rcf = f|K)
and
Es, IndgﬂK Xe — Is (by (ES,K,fO)(pk) = Xs,n(p) ) fo(k))

2. The main computation

We compute the effect of the intertwining operator T , on a function f in I , with a fixed K-type o = oy.

The map T, is a G-homomorphism, so does not disturb right K-types. However, as observed above, the
composite
Ts,k — les,fn o Ts,/{ o Es,/{

has the effect
Ts @ O®F[K] — 0@ F[—K]

For k = 0, the two copies of o ® d[£0] are identical, not merely isomorphic, so by Schur’s lemma 75 is a
scalar multiplication on o ® §[0]. For x # 0, the copies of ¢ in the two induced representations require effort
for comparison. We specify vectors f, € o ® §[—k| as matriz coefficient functions, as follows.

Use the model of gy by homogeneous holomorphic polynomials of total degree £ in two complex variables
with hermitian inner product

(1, 02) = / 01(u,0) - By, v) e "I HID gy gy
Cz

with the additive measure from C ~ R2. Take f, € 0 ® & to be a matrix coefficient function

fo(k) = (k-9,4) (p,p o)

using the hermitian inner product to identify o with its dual. In that model, let

Ltk £—K

Go(u,v) = w2 cv2

For f,(k) = (k- ,¥) to be a left —k eigenvector for h, ) must be in §[—k], so take

L—r Ltk
¢(U7U) = (Pé,fn(u,’l)) = u 2 v 2

To make (75, fo)(1) # 0, take
L+ K L—kK

ou,v) = ppp(u,v) = u 2 v 2

and
fo(k) = (k-p,0) = (k- pox,Pe,—r)

For all K-types o, appearing, for v € oy, 75, maps v ® @y, to a scalar multiple of v ® g ., with scalar
depending only on o, s, k, and the scalar can be computed as

(rond)(1) [/ (Prucs pte)
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First,

(por, Por) = / |ufJ§K,UFTK|2 6—7r(\u|2+\v|2) du dv — / |u|€+n |U|éfn efw(\u|2+\v|2) du dv
C2 C2

The latter will cancel, below, so we do not need further explication of this integral. To evaluate

B0 Bun 1) = [ atwsmyan = [ pwnyas i = (3 5)

we need the Iwasawa decomposition w,n, = pk:

1 -z z —1
<O 1) = WoNn, = V1t V1+[z[2 VIFE V142
1 =z e ' 1 z
0 V1t [z VItRE TP

Thus, B )
(Bunfo)(wons) = (14 [217)72 - fulk.) inh g, = VTV
VIHz2 14
Then
(ks - po) (0, 0) = ( Uz " v )”T"( —Uu n vz )e%"
’ VIHR /142 VIHP o 1+
and

fo(2) = (k- @on, 0o, —r) = /(k’z c00) (U, 0) - Pp e (1, 0) e TN H) Gy dy

C2
Uz v e U vz L == 2,012
2 - 2 —r  ltr
= + ) . ( + ) cu Ty eI gy dy
@/2 (om v ot v
= (1+ |Z\2)J/2/ (WZ +0) - (cutv2) 7w T e e ) Gy dy
(CQ

min(%,% i} =k . . 2 2

(EREOREEDY 2 2 ) (—1) 2% / ([ CF [o]CHF e TP HO®) gy gy
j:O ] j C2

The latter integral is (@y ., @e.r), With roles of u, v reversed. Thus, letting

l+ kK E—m)_E—M
27 27 2

@ = min(

the scalar by which the K, o-isotype is multiplied under T ,; : I, — I1—5,— is

s o) = [+ 1243 (F) (5 oy e

S\ j
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From this point, we follow a slightly simplified version of the device of [Duflo 1975] in the same computation,
pp- 57-58. Use the identity

2 ()0 -Gy

Jj=0

(1+u)®(u—t)° (for ¢ < min(a, b))

u=0

With ¢ = &5, b = &5

5 and ¢ = u, the scalar is

(1+48)"2% (%)M

We would like to have the differentiation be used in an integration by parts. To this end, separate variables
in both 14 u and w — ¢, that is, for some function p(t) and functions ¢(7), r(7) of a new variable 7, to have
1+u=p(t) q(r) and uw — ¢t = p(t) - r(7). Subtraction gives

2

o0

(14u) = (u—t)=" dt

u=0

!

1+t = (1+u)—(u—t) =p-(¢—7)

which suggests p(t) =1+t and ¢(7) —r(r) = 1. Take ¢(7) =7 and r(r) =7 —1,s0ou= (1 +¢)7 — 1, and

l+u = (1+8)7 u—t = (14 -1) (%)Mz(l—l—t)—u(%)”

The evaluation occurs at 7 = H% In these terms, the scalar is

T [ 95 L —uf O\ e L=
oL (1+1) (E) T:t%((l +t)¢) ((1 +)(r 1)) dt
= 1, (1+t)‘“+%‘25(—) T (r—1) 7 dt
u! Jo or r=t4+1
Let v = that is, t =+ — 1, so dt = 2 ,and 1 4+t = =, and the scalar is

t+1’
1

i) G ( )
ul Jo \v or
writing differentiation followed by evaluation in the more usual fashion. Integrate by parts p times, with

boundary terms vanishing, obtaining

1
T m R L Y
(-1) /0 <3v) v vz (v 1)  dv

!

5 ! p .
T (r— 1) d;} = 1' T A (g> (vw5 (v—1)7" ) dv
T=v v w! Jo ov

™

_ m(—1)u/O (@s—f+n-2)@s—b4p=3). (25— -1)) > 52

£+

= (v — I)FTK dv

:m(—l)“ 1"(23—%—1) 2 -v2(v—1) * dv

-1 r2s—E—1n .
T e
(== +1) I'@s—5-1) Jo

7 I(2s—5+p—1) /1vgs_e_2 s
0

L—|r|
2

Standard computational devices give

o _ D(a+1)T(b+1)
/0 v*(1—v)ldv = Tatb12)
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so the scalar is
2—|k]|
2

7 (-1) r(2s— 1)

P +1) D@s =5 = 1)

e D(2s— 5 -2+ 1)I(5" +1)
F(2s— 45 —2+ 45 +2)

- (1)

2
P L) T2s — £ —1) (25 + £)

N e ek DGl e R st

For k = 0 and ¢ € 27, this simplifies to
I'(2s—1)T(2s — 1)
F(2s—£—-1)T(2s+ %)

(with k =0 and 0 < ¢ € 27)

3. Smooth vectors

From the previous computation, and from
F(Z + a’) ~ Zafb

m (ﬁXed a, b)
and -
T(1—2)-T(z) =
( 2)-T(z) sinmz

we see that, for fixed x and s € C, the scalar by which T ,, maps o, ® &¢[—k] to o¢ ® ¢[k] is of polynomial
growth in £.

Thus, these intertwinings extend to the smooth vectors of the representation, since the L? norms of aﬁh
Fourier components of smooth functions on SU(2) decrease rapidly with ¢, and have sup-norms bounded by
a constant multiple of /dim o, times their L2-norms.
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