Intertwinings among principal series of $S L_{2}(\mathbb{C})$

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ ${ }^{\text {garrett/ }}$

We compute natural integrals giving intertwining operators among principal series of $G=S L(2, \mathbb{C})$.

1. Principal series representations
2. The main computation

- Smooth vectors

1. Principal series representations

As usual, let

$$
N=\left\{n_{z}=\left(\begin{array}{cc}
1 & z \\
0 & 1
\end{array}\right): z \in \mathbb{C}\right\} \quad M=\left\{m_{a}=\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right): a \in \mathbb{C}^{\times}\right\}
$$

and

$$
P=N M=M N
$$

For $s \in \mathbb{C}$ and integer κ, the $(s, \kappa)^{t h}$ principal series representation $I_{s, \kappa}$ is the space of smooth functions f on G with prescribed left equivariance

$$
I_{s, \kappa}=\left\{f: f(p g)=\chi_{s, \kappa}(p) f(g) \text { for all } p \in P, g \in G\right\} \quad\left(\text { where } \chi_{s, \kappa}\left(\begin{array}{cc}
a & * \\
0 & a^{-1}
\end{array}\right)=|a|^{4 s}\left(\frac{a}{|a|}\right)^{\kappa}\right)
$$

with the normalization of the character to have the intertwining operator $T_{s, \kappa}$ below map from $I_{s, \kappa}$ to $I_{1-s,-\kappa}$ rather than have s transform in some other fashion. The group G acts on $I_{s, \kappa}$ by the right regular representation, that is, by right translation of functions:

$$
(g \cdot f)(x)=f(x g) \quad(\text { for } g, x \in G)
$$

The standard intertwining operator $T=T_{s, \kappa}: I_{s, \kappa} \rightarrow I_{1-s,-\kappa}$ is defined, for $\operatorname{Re}(s)$ sufficiently large, by the integral

$$
\left(T_{s, \kappa} f\right)(g)=\int_{N} f\left(w_{o} n \cdot g\right) d n
$$

where the long Weyl element w_{o} is

$$
w_{o}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The integration is on the left, so does not disturb the right action of G. To verify that (assuming convergence) the image really does lie inside $I_{1-s,-\kappa}$, observe that $T_{s, \kappa} f$ is left N-invariant by construction, and that for $m \in M$

$$
\left(T_{s, \kappa} f\right)(m g)=\int_{N} f\left(w_{o} n \cdot m g\right) d n=\int_{N} f\left(w_{o} m m^{-1} n m \cdot g\right) d n=\chi_{1}(m) \cdot \int_{N} f\left(w_{o} m n \cdot g\right) d n
$$

by replacing n by $m n m^{-1}$, taking into account the change of measure $d\left(m n m^{-1}\right)=\chi_{1}(m) \cdot d n$ coming from

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & z \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & a^{2} z \\
0 & 1
\end{array}\right)
$$

Then this is

$$
\begin{gathered}
\chi_{1}(m) \cdot \int_{N} f\left(w_{o} m w_{o}^{-1} \cdot w_{o} n \cdot g\right) d n=\chi_{1}(m) \cdot \int_{N} f\left(m^{-1} \cdot w_{o} n \cdot g\right) d n \\
=\chi_{1}(m) \chi_{s, \kappa}\left(m^{-1}\right) \cdot \int_{N} f\left(w_{o} n \cdot g\right) d n=\chi_{1-s,-\kappa}(m) \cdot\left(T_{s, \kappa} f\right)(g)
\end{gathered}
$$

This verifies that $T_{s, \kappa}: I_{s, \kappa} \rightarrow I_{1-s,-\kappa}$.
The standard maximal compact is $K=S U(2) \subset G$, and G has Iwasawa decomposition $G=P K$. The overlap is

$$
P \cap K=\left\{\left(\begin{array}{cc}
\mu & 0 \\
0 & \mu^{-1}
\end{array}\right):|\mu|=1, \mu \in \mathbb{C}^{\times}\right\}
$$

The restriction of $\chi_{s, \kappa}$ to $P \cap K$ does not depend on $s \in \mathbb{C}$, but only on κ. Write χ_{κ} for this restriction.
The complexified Lie algebra $\mathfrak{s u}(2) \otimes_{\mathbb{R}} \mathbb{C} \approx \mathfrak{s l}_{2}(\mathbb{C})$ has standard \mathbb{C}-basis

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad x=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The Cartan element h decomposes finite-dimensional complex representations σ of $S U(2)$ into eigenspaces, and there is a unique (up to scalars) non-zero h-eigenvector v_{o} annihilated by x, a highest-weight vector of σ. The h-eigenvalue of v_{o} is a non-negative integer ℓ, the highest weight of σ, and determines the isomorphism class of σ. Application of y to an h-eigenvector with eigenvalue λ shifts the eigenvalue to $\lambda-2$, or else annihilates the vector. The collection of all h-eigenvalues in the irreducible σ_{ℓ} with highest weight ℓ has eigenvalues exactly

$$
-\ell,-\ell+2,-\ell+4, \ldots, \ell-4, \ell-2, \ell \quad \text { (with (non-zero) multiplicities all } 1 \text {) }
$$

A convenient model for the irreducible σ_{ℓ} with highest weight ℓ is homogeneous polynomials of total degree ℓ on \mathbb{C}^{2} treated as row vectors, with the action

$$
(k \cdot f)(u, v)=\sigma_{\ell}(k) f(u, v)=f((u, v) \cdot k) \quad\left(\text { with } k \in K \text { and } f \text { on }(u, v) \in \mathbb{C}^{2}\right)
$$

The highest-weight vector is $(u, v) \rightarrow u^{\ell}$. The biregular representation of $K \times K$ on functions on K is

$$
\left(k \times k^{\prime}\right) f(x)=f\left(k^{\prime-1} x k\right)
$$

This decomposes the space of (for example) right K-finite functions as $\bigoplus_{\sigma} \sigma \otimes \check{\sigma}$, where $\check{\sigma}$ is the dual of σ, and σ runs through the irreducibles of K.

A function f in $I_{s, \kappa}$ is determined by its restriction to K, and must lie in

$$
\left.\operatorname{Ind}_{P \cap K}^{K} \chi_{s, \kappa}\right|_{P \cap K}=\operatorname{Ind}_{P \cap K}^{K} \chi_{\kappa}
$$

Conversely, for $s \in \mathbb{C}$, a smooth function f_{o} in $\operatorname{Ind}_{P \cap K}^{K} \chi_{\kappa}$ has a unique extension to $f \in I_{s, \kappa}$, by

$$
f(p k)=\chi_{s}(p) \cdot f_{o}(k)
$$

That is, for $f \in I_{s, \kappa}$ the restriction $\left.f\right|_{K}$ is a κ-eigenvector for $h \in \mathfrak{s u}(2) \otimes_{\mathbb{R}} \mathbb{C}$ under the left action

$$
(h \cdot f)(k)=\left.\frac{\partial}{\partial t}\right|_{t=0} f\left(e^{t h} k\right)
$$

This gives the negative of the eigenvalue under the left regular action.

The irreducible $\check{\sigma}_{\ell}$ has non-zero $-\kappa$ eigenspace $\check{\sigma}_{\ell}[-\kappa]$ for $\ell \in 2 \mathbb{Z}$ for $\ell \geq|\kappa|$ and of the same parity. The eigenspace is one-dimensional. Thus, under the right regular representation of K on $\operatorname{Ind}_{P \cap K}^{K} \chi_{\kappa}$, each irreducible appearing appears with multiplicity one:

$$
\left.\operatorname{Ind}_{P \cap K}^{K} \chi_{\kappa}=\bigoplus_{|\kappa| \leq \ell \in \mathbb{Z}, \ell=\kappa \bmod 2} \sigma_{\ell} \otimes \check{\sigma}_{\ell}[-\kappa] \approx \bigoplus_{|\kappa| \leq \ell \in \mathbb{Z}, \ell=\kappa \bmod 2} \sigma_{\ell} \quad \quad \text { (right regular of } K=S U(2)\right)
$$

Let

$$
R_{s, \kappa}: I_{s, \kappa} \longrightarrow \operatorname{Ind}_{P \cap K}^{K} \chi_{\kappa} \quad\left(\text { by } R_{s, \kappa} f=\left.f\right|_{K}\right)
$$

and

$$
E_{s, \kappa}: \operatorname{Ind}_{P \cap K}^{K} \chi_{\kappa} \longrightarrow I_{s, \kappa} \quad\left(\text { by }\left(E_{s, \kappa} f_{o}\right)(p k)=\chi_{s, \kappa}(p) \cdot f_{o}(k)\right)
$$

2. The main computation

We compute the effect of the intertwining operator $T_{s, \kappa}$ on a function f in $I_{s, \kappa}$ with a fixed K-type $\sigma=\sigma_{\ell}$.
The map $T_{s, \kappa}$ is a G-homomorphism, so does not disturb right K-types. However, as observed above, the composite

$$
\tau_{s, \kappa}=R_{1-s,-\kappa} \circ T_{s, \kappa} \circ E_{s, \kappa}
$$

has the effect

$$
\tau_{s, \kappa}: \sigma \otimes \check{\sigma}[\kappa] \longrightarrow \sigma \otimes \check{\sigma}[-\kappa]
$$

For $\kappa=0$, the two copies of $\sigma \otimes \check{\sigma}[\pm 0]$ are identical, not merely isomorphic, so by Schur's lemma $\tau_{s, 0}$ is a scalar multiplication on $\sigma \otimes \check{\sigma}[0]$. For $\kappa \neq 0$, the copies of σ in the two induced representations require effort for comparison. We specify vectors $f_{o} \in \sigma \otimes \check{\sigma}[-\kappa]$ as matrix coefficient functions, as follows.

Use the model of σ_{ℓ} by homogeneous holomorphic polynomials of total degree ℓ in two complex variables with hermitian inner product

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle=\int_{\mathbb{C}^{2}} \varphi_{1}(u, v) \cdot \bar{\varphi}_{2}(u, v) e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v
$$

with the additive measure from $\mathbb{C} \approx \mathbb{R}^{2}$. Take $f_{o} \in \sigma \otimes \check{\sigma}$ to be a matrix coefficient function

$$
f_{o}(k)=\langle k \cdot \varphi, \psi\rangle \quad(\varphi, \psi \in \sigma)
$$

using the hermitian inner product to identify σ with its dual. In that model, let

$$
\varphi_{\ell, \kappa}(u, v)=u^{\frac{\ell+\kappa}{2}} \cdot v^{\frac{\ell-\kappa}{2}}
$$

For $f_{o}(k)=\langle k \cdot \varphi, \psi\rangle$ to be a left $-\kappa$ eigenvector for h, ψ must be in $\check{\sigma}[-\kappa]$, so take

$$
\psi(u, v)=\varphi_{\ell,-\kappa}(u, v)=u^{\frac{\ell-\kappa}{2}} \cdot v^{\frac{\ell+\kappa}{2}}
$$

To make $\left(\tau_{s, \kappa} f_{o}\right)(1) \neq 0$, take

$$
\varphi(u, v)=\varphi_{\ell, \kappa}(u, v)=u^{\frac{\ell+\kappa}{2}} \cdot v^{\frac{\ell-\kappa}{2}}
$$

and

$$
f_{o}(k)=\langle k \cdot \varphi, \psi\rangle=\left\langle k \cdot \varphi_{\ell, \kappa}, \varphi_{\ell,-\kappa}\right\rangle
$$

For all K-types σ_{ℓ} appearing, for $v \in \sigma_{\ell}, \tau_{s, \kappa} \operatorname{maps} v \otimes \varphi_{\ell,-\kappa}$ to a scalar multiple of $v \otimes \varphi_{\ell, \kappa}$, with scalar depending only on σ, s, κ, and the scalar can be computed as

$$
\left(\tau_{s, \kappa} f_{o}\right)(1) /\left\langle\varphi_{\ell, \kappa}, \varphi_{\ell, \kappa}\right\rangle
$$

First,

$$
\left\langle\varphi_{\ell, \kappa}, \varphi_{\ell, \kappa}\right\rangle=\int_{\mathbb{C}^{2}}\left|u^{\frac{\ell+\kappa}{2}} v^{\frac{\ell-\kappa}{2}}\right|^{2} e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v=\int_{\mathbb{C}^{2}}|u|^{\ell+\kappa}|v|^{\ell-\kappa} e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v
$$

The latter will cancel, below, so we do not need further explication of this integral. To evaluate

$$
\left(T_{s, \kappa} \circ E_{s, \kappa} f_{o}\right)(1)=\int_{N} f_{o}\left(w_{o} n\right) d n=\int_{\mathbb{C}} f_{o}\left(w_{o} n_{z}\right) d z \quad\left(\text { with } n_{z}=\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right)
$$

we need the Iwasawa decomposition $w_{o} n_{z}=p k$:

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & z
\end{array}\right)=w_{o} n_{z}=\left(\begin{array}{cc}
\frac{1}{\sqrt{1+|z|^{2}}} & \frac{-\bar{z}}{\sqrt{1+|z|^{2}}} \\
0 & \sqrt{1+|z|^{2}}
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{\bar{z}}{\sqrt{1+|z|^{2}}} & \frac{-1}{\sqrt{1+|z|^{2}}} \\
\frac{1}{\sqrt{1+|z|^{2}}} & \frac{z}{\sqrt{1+|z|^{2}}}
\end{array}\right)
$$

Thus,

$$
\left(E_{s, \kappa} f_{o}\right)\left(w_{o} n_{z}\right)=\left(1+|z|^{2}\right)^{-2 s} \cdot f_{o}\left(k_{z}\right) \quad\left(\text { with } k_{z}=\left(\begin{array}{cc}
\frac{\bar{z}}{\sqrt{1+|z|^{2}}} & \frac{-1}{\sqrt{1+|z|^{2}}} \\
\frac{1}{\sqrt{1+|z|^{2}}} & \frac{z}{\sqrt{1+|z|^{2}}}
\end{array}\right)\right)
$$

Then

$$
\left(k_{z} \cdot \varphi_{\ell, \kappa}\right)(u, v)=\left(\frac{u \bar{z}}{\sqrt{1+|z|^{2}}}+\frac{v}{\sqrt{1+|z|^{2}}}\right)^{\frac{\ell+\kappa}{2}} \cdot\left(\frac{-u}{\sqrt{1+|z|^{2}}}+\frac{v z}{\sqrt{1+|z|^{2}}}\right)^{\frac{\ell-\kappa}{2}}
$$

and

$$
\begin{aligned}
& f_{o}(z)=\left\langle k_{z} \cdot \varphi_{\ell, \kappa}, \varphi_{\ell,-\kappa}\right\rangle=\int_{\mathbb{C}^{2}}\left(k_{z} \cdot \varphi_{\ell, \kappa}\right)(u, v) \cdot \overline{\varphi_{\ell,-\kappa}(u, v)} e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v \\
&= \int_{\mathbb{C}^{2}}\left(\frac{u \bar{z}}{\sqrt{1+|z|^{2}}}+\frac{v}{\sqrt{1+|z|^{2}}}\right)^{\frac{\ell+\kappa}{2}} \cdot\left(\frac{-u}{\sqrt{1+|z|^{2}}}+\frac{v z}{\sqrt{1+|z|^{2}}}\right)^{\frac{\ell-\kappa}{2}} \cdot \overline{u^{\frac{\ell-\kappa}{2}} v^{\frac{\ell+\kappa}{2}}} e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v \\
& \quad=\left(1+|z|^{2}\right)^{-\ell / 2} \int_{\mathbb{C}^{2}}(u \bar{z}+v)^{\frac{\ell+\kappa}{2}} \cdot(-u+v z)^{\frac{\ell-\kappa}{2}} \cdot \overline{u^{\frac{\ell-\kappa}{2}} v^{\frac{\ell+\kappa}{2}}} e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v \\
&=\left(1+|z|^{2}\right)^{-\ell / 2} \sum_{j=0}^{\min \left(\frac{\ell+\kappa}{2}, \frac{\ell-\kappa}{2}\right)}\binom{\frac{\ell+\kappa}{2}}{j}\binom{\frac{\ell-\kappa}{2}}{j}(-1)^{j}|z|^{2 j} \cdot \int_{\mathbb{C}^{2}}|u|^{\ell-\kappa}|v|^{\ell+\kappa} e^{-\pi\left(|u|^{2}+|v|^{2}\right)} d u d v
\end{aligned}
$$

The latter integral is $\left\langle\varphi_{\ell, \kappa}, \varphi_{\ell, \kappa}\right\rangle$, with roles of u, v reversed. Thus, letting

$$
\mu=\min \left(\frac{\ell+\kappa}{2}, \frac{\ell-\kappa}{2}\right)=\frac{\ell-|\kappa|}{2}
$$

the scalar by which the K, σ-isotype is multiplied under $T_{s, \kappa}: I_{s, \kappa} \longrightarrow I_{1-s,-\kappa}$ is

$$
\begin{gathered}
\left(\tau_{s, \kappa} f_{o}\right)(1) /\left\langle\varphi_{\ell, \kappa}, \varphi_{\ell, \kappa}\right\rangle=\int_{\mathbb{C}}\left(1+|z|^{2}\right)^{-2 s-\frac{\ell}{2}} \sum_{j=0}^{\mu}\binom{\frac{\ell+\kappa}{2}}{j}\binom{\frac{\ell-\kappa}{2}}{j}(-1)^{j}|z|^{2 j} d z \\
=2 \pi \int_{0}^{\infty}\left(1+r^{2}\right)^{-2 s-\frac{\ell}{2}} \sum_{j=0}^{\mu}\binom{\frac{\ell+\kappa}{2}}{j}\binom{\frac{\ell-\kappa}{2}}{j}(-1)^{j} r^{2 j} r d r=\pi \int_{0}^{\infty}(1+t)^{-2 s-\frac{\ell}{2}} \sum_{j=0}^{\mu}\binom{\frac{\ell+\kappa}{2}}{j}\binom{\frac{\ell-\kappa}{2}}{j}(-t)^{j} d t
\end{gathered}
$$

From this point, we follow a slightly simplified version of the device of [Duflo 1975] in the same computation, pp. 57-58. Use the identity

$$
\sum_{j=0}^{c}\binom{a}{j}\binom{b}{j}(-t)^{j}=\left.\frac{1}{c!}\left(\frac{\partial}{\partial u}\right)^{c}\right|_{u=0}(1+u)^{a}(u-t)^{b} \quad(\text { for } c \leq \min (a, b))
$$

With $a=\frac{\ell+\kappa}{2}, b=\frac{\ell-\kappa}{2}$, and $c=\mu$, the scalar is

$$
\left.\frac{\pi}{\mu!} \int_{0}^{\infty}(1+t)^{-2 s-\frac{\ell}{2}}\left(\frac{\partial}{\partial u}\right)^{\mu}\right|_{u=0}(1+u)^{\frac{\ell+\kappa}{2}}(u-t)^{\frac{\ell-\kappa}{2}} d t
$$

We would like to have the differentiation be used in an integration by parts. To this end, separate variables in both $1+u$ and $u-t$, that is, for some function $p(t)$ and functions $q(\tau), r(\tau)$ of a new variable τ, to have $1+u=p(t) \cdot q(\tau)$ and $u-t=p(t) \cdot r(\tau)$. Subtraction gives

$$
1+t=(1+u)-(u-t)=p \cdot(q-r)
$$

which suggests $p(t)=1+t$ and $q(\tau)-r(\tau)=1$. Take $q(\tau)=\tau$ and $r(\tau)=\tau-1$, so $u=(1+t) \tau-1$, and

$$
1+u=(1+t) \tau \quad u-t=(1+t)(\tau-1) \quad\left(\frac{\partial}{\partial u}\right)^{\mu}=(1+t)^{-\mu}\left(\frac{\partial}{\partial \tau}\right)^{\mu}
$$

The evaluation occurs at $\tau=\frac{1}{t+1}$. In these terms, the scalar is

$$
\begin{gathered}
\left.\frac{\pi}{\mu!} \int_{0}^{\infty}(1+t)^{-2 s-\frac{\ell}{2}} \cdot(1+t)^{-\mu}\left(\frac{\partial}{\partial \tau}\right)^{\mu}\right|_{\tau=\frac{1}{t+1}}((1+t) \tau)^{\frac{\ell+\kappa}{2}}((1+t)(\tau-1))^{\frac{\ell-\kappa}{2}} d t \\
=\left.\frac{\pi}{\mu!} \int_{0}^{\infty}(1+t)^{-\mu+\frac{\ell}{2}-2 s}\left(\frac{\partial}{\partial \tau}\right)^{\mu}\right|_{\tau=\frac{1}{t+1}} \tau^{\frac{\ell+\kappa}{2}}(\tau-1)^{\frac{\ell-\kappa}{2}} d t
\end{gathered}
$$

Let $v=\frac{1}{t+1}$, that is, $t=\frac{1}{v}-1$, so $d t=\frac{-d v}{v^{2}}$, and $1+t=\frac{1}{v}$, and the scalar is

$$
\left.\frac{\pi}{\mu!} \int_{0}^{1}\left(\frac{1}{v}\right)^{-\mu+\frac{\ell}{2}-2 s}\left(\frac{\partial}{\partial \tau}\right)^{\mu}\right|_{\tau=v} \tau^{\frac{\ell+\kappa}{2}}(\tau-1)^{\frac{\ell-\kappa}{2}} \frac{d v}{v^{2}}=\frac{\pi}{\mu!} \int_{0}^{1} v^{2 s-\frac{\ell}{2}+\mu-2}\left(\frac{\partial}{\partial v}\right)^{\mu}\left(v^{\frac{\ell+\kappa}{2}}(v-1)^{\frac{\ell-\kappa}{2}}\right) d v
$$

writing differentiation followed by evaluation in the more usual fashion. Integrate by parts μ times, with boundary terms vanishing, obtaining

$$
\begin{gathered}
\frac{\pi}{\mu!}(-1)^{\mu} \int_{0}^{1}\left(\frac{\partial}{\partial v}\right)^{\mu} v^{2 s-\frac{\ell}{2}+\mu-2} \cdot v^{\frac{\ell+\kappa}{2}}(v-1)^{\frac{\ell-\kappa}{2}} d v \\
=\frac{\pi}{\mu!}(-1)^{\mu} \int_{0}^{1}\left(\left(2 s-\frac{\ell}{2}+\mu-2\right)\left(2 s-\frac{\ell}{2}+\mu-3\right) \ldots\left(2 s-\frac{\ell}{2}-1\right)\right) \cdot v^{2 s-\frac{\ell}{2}-2} \cdot v^{\frac{\ell+\kappa}{2}}(v-1)^{\frac{\ell-\kappa}{2}} d v \\
=\frac{\pi}{\mu!}(-1)^{\mu} \frac{\Gamma\left(2 s-\frac{\ell}{2}+\mu-1\right)}{\Gamma\left(2 s-\frac{\ell}{2}-1\right)} \int_{0}^{1} v^{2 s-\frac{\ell}{2}-2} \cdot v^{\frac{\ell+\kappa}{2}}(v-1)^{\frac{\ell-\kappa}{2}} d v \\
=\frac{\pi(-1)^{\frac{\ell-|\kappa|}{2}}}{\Gamma\left(\frac{\ell-|\kappa|}{2}+1\right)} \frac{\Gamma\left(2 s-\frac{|\kappa|}{2}-1\right)}{\Gamma\left(2 s-\frac{\ell}{2}-1\right)} \int_{0}^{1} v^{2 s-\frac{\kappa}{2}-2}(v-1)^{\frac{\ell+\kappa}{2}} d v
\end{gathered}
$$

Standard computational devices give

$$
\int_{0}^{1} v^{a}(1-v)^{b} d v=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+2)}
$$

so the scalar is

$$
\begin{gathered}
\frac{\pi(-1)^{\frac{\ell-|\kappa|}{2}}}{\Gamma\left(\frac{\ell-|\kappa|}{2}+1\right)} \frac{\Gamma\left(2 s-\frac{|\kappa|}{2}-1\right)}{\Gamma\left(2 s-\frac{\ell}{2}-1\right)} \cdot(-1)^{\frac{\ell+\kappa}{2}} \frac{\Gamma\left(2 s-\frac{\kappa}{2}-2+1\right) \Gamma\left(\frac{\ell+\kappa}{2}+1\right)}{\Gamma\left(2 s-\frac{\kappa}{2}-2+\frac{\ell+\kappa}{2}+2\right)} \\
\quad=\pi(-1)^{\frac{|\kappa|-\kappa}{2}} \frac{\Gamma\left(2 s-\frac{|\kappa|}{2}-1\right) \Gamma\left(2 s-\frac{\kappa}{2}-1\right) \Gamma\left(\frac{\ell+\kappa}{2}+1\right)}{\Gamma\left(\frac{\ell-|\kappa|}{2}+1\right) \Gamma\left(2 s-\frac{\ell}{2}-1\right) \Gamma\left(2 s+\frac{\ell}{2}\right)}
\end{gathered}
$$

For $\kappa=0$ and $\ell \in 2 \mathbb{Z}$, this simplifies to

$$
\pi \frac{\Gamma(2 s-1) \Gamma(2 s-1)}{\Gamma\left(2 s-\frac{\ell}{2}-1\right) \Gamma\left(2 s+\frac{\ell}{2}\right)} \quad(\text { with } \kappa=0 \text { and } 0 \leq \ell \in 2 \mathbb{Z})
$$

3. Smooth vectors

From the previous computation, and from

$$
\frac{\Gamma(z+a)}{\Gamma(z+b)} \sim z^{a-b} \quad \quad(\text { fixed } a, b)
$$

and

$$
\Gamma(1-z) \cdot \Gamma(z)=\frac{\pi}{\sin \pi z}
$$

we see that, for fixed κ and $s \in C$, the scalar by which $T_{s, \kappa}$ maps $\sigma_{\ell} \otimes \check{\sigma}_{\ell}[-\kappa]$ to $\sigma_{\ell} \otimes \check{\sigma}_{\ell}[\kappa]$ is of polynomial growth in ℓ.

Thus, these intertwinings extend to the smooth vectors of the representation, since the L^{2} norms of $\sigma_{\ell}^{t h}$ Fourier components of smooth functions on $S U(2)$ decrease rapidly with ℓ, and have sup-norms bounded by a constant multiple of $\sqrt{\operatorname{dim} \sigma_{\ell}}$ times their L^{2}-norms.

For $S L(2, \mathbb{R})$, see
[Ehrenpreis-Mautner 1955] L. Ehrenpreis and F. Mautner, Some properties of the Fourier transform on semi-simple Lie groups, I, Annals of Math. 61 (1955), 406-439; II, Trans. AMS 84 (1957) 1-55; III, ibid 90 (1959), 431-484.
[Kunze-Stein 1960] R. Kunze and E. Stein, Uniformly bounded representations and harmonic analysis of the 2-by-2 real unimodular group, Amer. J. Math. 82 (1960), 1-62.

I thank V. Drinfeld for the following bibliographic notes: $S L_{2}(\mathbb{R})$ is treated in 7.17 , and the outcome is stated for $S L_{2}(\mathbb{C})$ in 7.23 , in
[Wallach 1977/79] N. Wallach, Representations of reductive Lie groups, in Automorphic forms, representations, and L-functions, Proc. Symp. AMS XXXIII, part 1 (1979), 71-86.

The case of $S L_{2}(\mathbb{C})$ is Prop 3.7 pp $57-58$ in Chap III of
[Duflo 1975] M. Duflo, Représentations irréductibles des groupes semisimples complexes, in Analyse harmonique sur les groupes de Lie, Springer LNS 497, 1975, 26-88.

An earlier treatment of this aspect of $S L_{2}(\mathbb{C})$ is
[Želobenko 1963] D. P. Želobenko, Harmonic analysis of functions on semisimple Lie groups. I. (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 1343-1394.

