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We compute natural integrals giving intertwining operators among principal series of G = SL(2,C).

1. Principal series representations
2. The main computation
• Smooth vectors

1. Principal series representations

As usual, let

N = {nz =

(
1 z
0 1

)
: z ∈ C} M = {ma =

(
a 0
0 1/a

)
: a ∈ C×}

and
P = NM = MN

For s ∈ C and integer κ, the (s, κ)th principal series representation Is,κ is the space of smooth functions f
on G with prescribed left equivariance

Is,κ = {f : f(pg) = χs,κ(p) f(g) for all p ∈ P, g ∈ G} (where χs,κ

(
a ∗
0 a−1

)
= |a|4s

( a
|a|
)κ

)

with the normalization of the character to have the intertwining operator Ts,κ below map from Is,κ to
I1−s,−κ rather than have s transform in some other fashion. The group G acts on Is,κ by the right regular
representation, that is, by right translation of functions:

(g · f)(x) = f(xg) (for g, x ∈ G)

The standard intertwining operator T = Ts,κ : Is,κ → I1−s,−κ is defined, for Re(s) sufficiently large, by the
integral

(Ts,κf)(g) =

∫
N

f(won · g) dn

where the long Weyl element wo is

wo =

(
0 −1
1 0

)
The integration is on the left, so does not disturb the right action of G. To verify that (assuming convergence)
the image really does lie inside I1−s,−κ, observe that Ts,κf is left N -invariant by construction, and that for
m ∈M

(Ts,κf)(mg) =

∫
N

f(won ·mg) dn =

∫
N

f(womm−1nm · g) dn = χ1(m) ·
∫
N

f(womn · g) dn

by replacing n by mnm−1, taking into account the change of measure d(mnm−1) = χ1(m) · dn coming from(
a 0
0 a−1

)(
1 z
0 1

)(
a 0
0 a−1

)−1
=

(
1 a2z
0 1

)
Then this is
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χ1(m) ·
∫
N

f(womw
−1
o · wo n · g) dn = χ1(m) ·

∫
N

f(m−1 · wo n · g) dn

= χ1(m)χs,κ(m−1) ·
∫
N

f(wo n · g) dn = χ1−s,−κ(m) · (Ts,κf)(g)

This verifies that Ts,κ : Is,κ → I1−s,−κ.

The standard maximal compact is K = SU(2) ⊂ G, and G has Iwasawa decomposition G = PK. The
overlap is

P ∩K = {
(
µ 0
0 µ−1

)
: |µ| = 1, µ ∈ C×}

The restriction of χs,κ to P ∩K does not depend on s ∈ C, but only on κ. Write χκ for this restriction.

The complexified Lie algebra su(2)⊗R C ≈ sl2(C) has standard C-basis

h =

(
1 0
0 −1

)
x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
The Cartan element h decomposes finite-dimensional complex representations σ of SU(2) into eigenspaces,
and there is a unique (up to scalars) non-zero h-eigenvector vo annihilated by x, a highest-weight vector of σ.
The h-eigenvalue of vo is a non-negative integer `, the highest weight of σ, and determines the isomorphism
class of σ. Application of y to an h-eigenvector with eigenvalue λ shifts the eigenvalue to λ − 2, or else
annihilates the vector. The collection of all h-eigenvalues in the irreducible σ` with highest weight ` has
eigenvalues exactly

−`, −`+ 2, −`+ 4, . . . , `− 4, `− 2, ` (with (non-zero) multiplicities all 1)

A convenient model for the irreducible σ` with highest weight ` is homogeneous polynomials of total degree
` on C2 treated as row vectors, with the action

(k · f)(u, v) = σ`(k)f(u, v) = f((u, v) · k) (with k ∈ K and f on (u, v) ∈ C2)

The highest-weight vector is (u, v)→ u`. The biregular representation of K ×K on functions on K is

(k × k′)f(x) = f(k′−1xk)

This decomposes the space of (for example) right K-finite functions as
⊕

σ σ ⊗ σ̌, where σ̌ is the dual of σ,
and σ runs through the irreducibles of K.

A function f in Is,κ is determined by its restriction to K, and must lie in

IndKP∩K χs,κ

∣∣∣
P∩K

= IndKP∩K χκ

Conversely, for s ∈ C, a smooth function fo in IndKP∩K χκ has a unique extension to f ∈ Is,κ, by

f(pk) = χs(p) · fo(k)

That is, for f ∈ Is,κ the restriction f |K is a κ-eigenvector for h ∈ su(2)⊗R C under the left action

(h · f)(k) =
∂

∂t

∣∣∣
t=0

f(ethk)

This gives the negative of the eigenvalue under the left regular action.
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The irreducible σ̌` has non-zero −κ eigenspace σ̌`[−κ] for ` ∈ 2Z for ` ≥ |κ| and of the same parity. The
eigenspace is one-dimensional. Thus, under the right regular representation of K on IndKP∩K χκ, each
irreducible appearing appears with multiplicity one:

IndKP∩K χκ =
⊕

|κ|≤`∈Z, `=κ mod 2

σ` ⊗ σ̌`[−κ] ≈
⊕

|κ|≤`∈Z, `=κ mod 2

σ` (right regular of K = SU(2))

Let
Rs,κ : Is,κ −→ IndKP∩K χκ (by Rs,κf = f |K)

and
Es,κ : IndKP∩K χκ −→ Is,κ (by (Es,κfo)(pk) = χs,κ(p) · fo(k))

2. The main computation

We compute the effect of the intertwining operator Ts,κ on a function f in Is,κ with a fixed K-type σ = σ`.

The map Ts,κ is a G-homomorphism, so does not disturb right K-types. However, as observed above, the
composite

τs,κ = R1−s,−κ ◦ Ts,κ ◦ Es,κ
has the effect

τs,κ : σ ⊗ σ̌[κ] −→ σ ⊗ σ̌[−κ]

For κ = 0, the two copies of σ ⊗ σ̌[±0] are identical, not merely isomorphic, so by Schur’s lemma τs,0 is a
scalar multiplication on σ⊗ σ̌[0]. For κ 6= 0, the copies of σ in the two induced representations require effort
for comparison. We specify vectors fo ∈ σ ⊗ σ̌[−κ] as matrix coefficient functions, as follows.

Use the model of σ` by homogeneous holomorphic polynomials of total degree ` in two complex variables
with hermitian inner product

〈ϕ1, ϕ2〉 =

∫
C2

ϕ1(u, v) · ϕ2(u, v) e−π(|u|
2+|v|2) du dv

with the additive measure from C ≈ R2. Take fo ∈ σ ⊗ σ̌ to be a matrix coefficient function

fo(k) = 〈k · ϕ,ψ〉 (ϕ,ψ ∈ σ)

using the hermitian inner product to identify σ with its dual. In that model, let

ϕ`,κ(u, v) = u
`+κ
2 · v

`−κ
2

For fo(k) = 〈k · ϕ,ψ〉 to be a left −κ eigenvector for h, ψ must be in σ̌[−κ], so take

ψ(u, v) = ϕ`,−κ(u, v) = u
`−κ
2 · v

`+κ
2

To make (τs,κfo)(1) 6= 0, take

ϕ(u, v) = ϕ`,κ(u, v) = u
`+κ
2 · v

`−κ
2

and
fo(k) = 〈k · ϕ,ψ〉 = 〈k · ϕ`,κ, ϕ`,−κ〉

For all K-types σ` appearing, for v ∈ σ`, τs,κ maps v ⊗ ϕ`,−κ to a scalar multiple of v ⊗ ϕ`,κ, with scalar
depending only on σ, s, κ, and the scalar can be computed as

(τs,κfo)(1)
/
〈ϕ`,κ, ϕ`,κ〉
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First,

〈ϕ`,κ, ϕ`,κ〉 =

∫
C2

|u
`+κ
2 v

`−κ
2 |2 e−π(|u|

2+|v|2) du dv =

∫
C2

|u|`+κ |v|`−κ e−π(|u|
2+|v|2) du dv

The latter will cancel, below, so we do not need further explication of this integral. To evaluate

(Ts,κ ◦ Es,κ fo)(1) =

∫
N

fo(won) dn =

∫
C
fo(wonz) dz (with nz =

(
1 z
0 1

)
)

we need the Iwasawa decomposition wonz = pk:

(
0 −1
1 z

)
= wonz =

 1√
1+|z|2

−z√
1+|z|2

0
√

1 + |z|2

 ·
 z√

1+|z|2
−1√
1+|z|2

1√
1+|z|2

z√
1+|z|2


Thus,

(Es,κfo)(wonz) = (1 + |z|2)−2s · fo(kz) (with kz =

 z√
1+|z|2

−1√
1+|z|2

1√
1+|z|2

z√
1+|z|2

)

Then

(kz · ϕ`,κ)(u, v) =
( uz√

1 + |z|2
+

v√
1 + |z|2

) `+κ
2 ·

( −u√
1 + |z|2

+
vz√

1 + |z|2
) `−κ

2

and

fo(z) = 〈kz · ϕ`,κ, ϕ`,−κ〉 =

∫
C2

(kz · ϕ`,κ)(u, v) · ϕ`,−κ(u, v) e−π(|u|
2+|v|2) du dv

=

∫
C2

( uz√
1 + |z|2

+
v√

1 + |z|2
) `+κ

2 ·
( −u√

1 + |z|2
+

vz√
1 + |z|2

) `−κ
2 · u `−κ2 v

`+κ
2 e−π(|u|

2+|v|2) du dv

= (1 + |z|2)−`/2
∫
C2

(uz + v)
`+κ
2 · (−u+ vz)

`−κ
2 · u `−κ2 v

`+κ
2 e−π(|u|

2+|v|2) du dv

= (1 + |z|2)−`/2
min( `+κ2 , `−κ2 )∑

j=0

( `+κ
2

j

)( `−κ
2

j

)
(−1)j |z|2j ·

∫
C2

|u|`−κ |v|`+κ e−π(|u|
2+|v|2) du dv

The latter integral is 〈ϕ`,κ, ϕ`,κ〉, with roles of u, v reversed. Thus, letting

µ = min(
`+ κ

2
,
`− κ

2
) =

`− |κ|
2

the scalar by which the K,σ-isotype is multiplied under Ts,κ : Is,κ −→ I1−s,−κ is

(τs,κfo)(1)
/
〈ϕ`,κ, ϕ`,κ〉 =

∫
C

(1 + |z|2)−2s−
`
2

µ∑
j=0

( `+κ
2

j

)( `−κ
2

j

)
(−1)j |z|2j dz

= 2π

∫ ∞
0

(1 + r2)−2s−
`
2

µ∑
j=0

( `+κ
2

j

)( `−κ
2

j

)
(−1)jr2j r dr = π

∫ ∞
0

(1 + t)−2s−
`
2

µ∑
j=0

( `+κ
2

j

)( `−κ
2

j

)
(−t)j dt
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From this point, we follow a slightly simplified version of the device of [Duflo 1975] in the same computation,
pp. 57-58. Use the identity

c∑
j=0

(
a

j

)(
b

j

)
(−t)j =

1

c!

( ∂
∂u

)c∣∣∣
u=0

(1 + u)a (u− t)b (for c ≤ min(a, b))

With a = `+κ
2 , b = `−κ

2 , and c = µ, the scalar is

π

µ!

∫ ∞
0

(1 + t)−2s−
`
2

( ∂
∂u

)µ∣∣∣
u=0

(1 + u)
`+κ
2 (u− t)

`−κ
2 dt

We would like to have the differentiation be used in an integration by parts. To this end, separate variables
in both 1 + u and u− t, that is, for some function p(t) and functions q(τ), r(τ) of a new variable τ , to have
1 + u = p(t) · q(τ) and u− t = p(t) · r(τ). Subtraction gives

1 + t = (1 + u)− (u− t) = p · (q − r)

which suggests p(t) = 1 + t and q(τ)− r(τ) = 1. Take q(τ) = τ and r(τ) = τ − 1, so u = (1 + t)τ − 1, and

1 + u = (1 + t)τ u− t = (1 + t)(τ − 1)
( ∂
∂u

)µ
= (1 + t)−µ

( ∂
∂τ

)µ
The evaluation occurs at τ = 1

t+1 . In these terms, the scalar is

π

µ!

∫ ∞
0

(1 + t)−2s−
`
2 · (1 + t)−µ

( ∂
∂τ

)µ∣∣∣
τ= 1

t+1

(
(1 + t)τ

) `+κ
2
(

(1 + t)(τ − 1)
) `−κ

2

dt

=
π

µ!

∫ ∞
0

(1 + t)−µ+
`
2−2s

( ∂
∂τ

)µ∣∣∣
τ= 1

t+1

τ
`+κ
2 (τ − 1)

`−κ
2 dt

Let v = 1
t+1 , that is, t = 1

v − 1, so dt = −dv
v2 , and 1 + t = 1

v , and the scalar is

π

µ!

∫ 1

0

(1

v

)−µ+ `
2−2s( ∂

∂τ

)µ∣∣∣
τ=v

τ
`+κ
2 (τ − 1)

`−κ
2

dv

v2
=

π

µ!

∫ 1

0

v2s−
`
2+µ−2

( ∂
∂v

)µ(
v
`+κ
2 (v − 1)

`−κ
2

)
dv

writing differentiation followed by evaluation in the more usual fashion. Integrate by parts µ times, with
boundary terms vanishing, obtaining

π

µ!
(−1)µ

∫ 1

0

( ∂
∂v

)µ
v2s−

`
2+µ−2 · v

`+κ
2 (v − 1)

`−κ
2 dv

=
π

µ!
(−1)µ

∫ 1

0

(
(2s− `

2 + µ− 2)(2s− `
2 + µ− 3) . . . (2s− `

2 − 1)
)
· v2s− `2−2 · v `+κ2 (v − 1)

`−κ
2 dv

=
π

µ!
(−1)µ

Γ(2s− `
2 + µ− 1)

Γ(2s− `
2 − 1)

∫ 1

0

v2s−
`
2−2 · v

`+κ
2 (v − 1)

`−κ
2 dv

=
π (−1)

`−|κ|
2

Γ( `−|κ|2 + 1)

Γ(2s− |κ|2 − 1)

Γ(2s− `
2 − 1)

∫ 1

0

v2s−
κ
2−2 (v − 1)

`+κ
2 dv

Standard computational devices give∫ 1

0

va (1− v)b dv =
Γ(a+ 1) Γ(b+ 1)

Γ(a+ b+ 2)
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so the scalar is

π (−1)
`−|κ|

2

Γ( `−|κ|2 + 1)

Γ(2s− |κ|2 − 1)

Γ(2s− `
2 − 1)

· (−1)
`+κ
2

Γ(2s− κ
2 − 2 + 1) Γ( `+κ2 + 1)

Γ(2s− κ
2 − 2 + `+κ

2 + 2)

= π (−1)
|κ|−κ

2
Γ(2s− |κ|2 − 1) Γ(2s− κ

2 − 1) Γ( `+κ2 + 1)

Γ( `−|κ|2 + 1) Γ(2s− `
2 − 1) Γ(2s+ `

2 )

For κ = 0 and ` ∈ 2Z, this simplifies to

π
Γ(2s− 1) Γ(2s− 1)

Γ(2s− `
2 − 1) Γ(2s+ `

2 )
(with κ = 0 and 0 ≤ ` ∈ 2Z)

3. Smooth vectors

From the previous computation, and from

Γ(z + a)

Γ(z + b)
∼ za−b (fixed a, b)

and
Γ(1− z) · Γ(z) =

π

sinπz
we see that, for fixed κ and s ∈ C, the scalar by which Ts,κ maps σ` ⊗ σ̌`[−κ] to σ` ⊗ σ̌`[κ] is of polynomial
growth in `.

Thus, these intertwinings extend to the smooth vectors of the representation, since the L2 norms of σth`
Fourier components of smooth functions on SU(2) decrease rapidly with `, and have sup-norms bounded by
a constant multiple of

√
dimσ` times their L2-norms.
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