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Abstract. We obtain second integral moments of automorphic L–functions on adele groups GL2 over
arbitrary number fields, by a spectral decomposition using the structure and representation theory of
adele groups GL1 and GL2. This requires reformulation of the notion of Poincaré series, replacing the
collection of classical Poincaré series over GL2(Q) or GL2(Q(i)) with a single, coherent, global object
that makes sense over a number field. This is the first expression of integral moments in adele-group
terms, distinguishing global and local issues, and allowing uniform application to number fields. When
specialized to the field of rational numbers Q, we recover the classical results on moments.
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§1. Introduction

For ninety years, mean values of families of automorphic L–functions have played a central role in
analytic number theory. In the absence of the Riemann Hypothesis, or of the Grand Riemann
Hypothesis referring to general L–functions, suitable mean value results often can substitute.
Thus, asymptotics or sharp bounds for integral moments of automorphic L–functions are of intense
interest. The study of integral moments was initiated in 1918 by Hardy and Littlewood [Ha-Li],
who obtained the asymptotic formula for the second moment of the Riemann zeta-function

(1.1)
∫ T

0

|ζ ( 1
2 + it)|2 dt ∼ T log T

Eight years later, Ingham in [I] obtained the fourth moment

(1.2)
∫ T

0

|ζ ( 1
2 + it)|4 dt ∼ 1

2π2
· T (log T )4
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Since then, many authors have studied moments: for instance, see [At], [HB], [G1], [M1], [J1].
Most results are limited to integral moments of automorphic L–functions for GL1(Q) and GL2(Q).
No analogue of (1.1) or (1.2) was known over an arbitrary number field. The only previously
known results for fields other than Q, are in [M4], [S1], [BM1], [BM2] and [DG2], all over quadratic
extensions of Q.

Here we obtain second integral moments of automorphic L–functions on adele groups GL2

over arbitrary number fields, by a spectral decomposition using the structure and representation
theory of adele groups GL1 and GL2. This requires reformulation of the notion of Poincaré series,
replacing the collection of classical Poincaré series over GL2(Q) or GL2(Q(i)) with a single global
object which makes sense on an adele group over a number field. This is the first expression
of integral moments in adele-group-theoretic terms, distinguishing global and local issues, and
allowing uniform application to number fields. When specialized to the field of rational numbers
Q, we recover the classical results on moments.

More precisely, for f an automorphic form on GL2 and χ an idele class character of the number
field, let L(s, f ⊗ χ) be the twisted L–function attached to f . We obtain asymptotics for averages

(1.3)
∑
χ

∞∫
−∞

∣∣L( 1
2 + it, f ⊗ χ

)∣∣2Mχ(t) dt

for suitable smooth weights Mχ(t). We obtain the asymptotics from the appearance of this sum
in moment expansions (3.12)

(1.4)
∑
χ

∞∫
−∞

L
(

1
2 + it+ v, f ⊗ χ

)
· L
(

1
2 + it, f ⊗ χ

)
·Mχ(t) dt =

∫
ZAGL2(k)\GL2(A)

Pév · |f |2

The Poincaré series Pév has a spectral expansion, which, after an Eisenstein series is removed (see
(4.6)), has cuspidal components computed in (4.1) and continuous components computed in (4.10)
(there are no residual spectrum components). Thus, using an auxiliary function ϕ introduced in
Section 2, we have spectral expansions (see (4.8))

(1.5)
∫
ZAGL2(k)\GL2(A)

Pév · |f |2 = 〈Ev+1, |f |2〉
∫
N∞

ϕ∞ +
∑
F

ρ̄
F
G

F∞
(v, w)L(v + 1

2 , F ) · 〈F, |f |2〉

+
∑
χ

χ(d)
4πiκ

∫
<(s)= 1

2

L(v + s̄, χ) · L(v + 1− s̄, χ)
L(2s̄, χ2)

|d|−(v−s̄+1/2)

∫
Z∞\G∞

ϕ∞ ·W
E

s, χ,∞

where: F is summed over an orthonormal basis for spherical cuspforms on GL2, Ev+1 is an
Eisenstein series (see (4.6)), ρF = ρ

F
(1) is (in effect) the first Fourier coefficient of the cuspform F ,

G is expressed in terms of gamma functions in (4.2) and (4.3), d is a differental idele ([W2], page
113, Definition 4) with component 1 at archimedean places, κ is a volume constant (see (4.7)), and
WE is a normalization of Whittaker function attached to Eisenstein series (see Appendix 2).

The sum in (1.3), (1.4), and (1.5) over idele class characters χ is infinite, in general. For general
number fields, (1.3) is the correct structure of the second integral moment of GL2 automorphic
L–functions. This was first pointed out by Sarnak in [S1], where such an average was studied
over the Gaussian field Q(i); see also [DG2]. Section 3 shows that this structure reflects Fourier
inversion on the idele class group of the field.
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Meanwhile, joint work [DGG2] with Goldfeld extends these ideas to produce integral moments
for GLr over number fields, exhibiting explicit kernels Pé again giving identities of the form

moment expansion =
∫
ZAGLr(k)\GLr(A)

Pé · |f |2 = spectral expansion

for cuspforms f on GLr. The moment expansion on the left-hand side is of the form∑
F

∫
<(s)= 1

2

|L(s, f ⊗ F )|2 MF (s) ds + . . .

summed over F in an orthonormal basis for cuspforms on GLr−1, with corresponding continuous-
spectrum terms. The specific choice gives a kernel with a surprisingly simple spectral expansion,
with only three parts: a leading term, a sum induced from cuspforms on GL2, and a continuous
part again induced from GL2. In particular, no cuspforms on GL` with 2 < ` ≤ r contribute. Since
the discussion for GLr with r > 2 depends essentially on the GL2 case, the latter merits careful
attention. Thus we give complete details for GL2 here. For GL2 over Q and square-free level, the
sum of moments can be arranged to have a single summand, recovering a classical integral moment

∞∫
−∞

|L ( 1
2 + it, f)|2M(t) dt

As a non-trivial example, consider the case of a cuspform f on GL3 over Q. We produce a weight
function Γ(s, w, f∞, F∞) depending upon complex parameters s and w, and upon the archimedean
data for both f and cuspforms F on GL2, such that Γ(s, w, f∞, F∞) has explicit asymptotic
behavior similar to that discussed in Section 5 below, and such that the moment expansion above
becomes ∫

ZAGL3(Q)\GL3(A)

Pé · |f |2 =
∑

F on GL2

∫
<(s)= 1

2

|L(s, f ⊗ F )|2 · Γ(s, w, f∞, F∞) ds

+
∑
k∈Z

∫
<(s1)=

1
2

∫
<(s2)=

1
2

|L(s1, f ⊗ E(k)
1−s2)|

2 · Γ(s1, w, f∞, E
(k)
1−s2,∞) ds2 ds1

where

L(s1, f ⊗ E(k)
1−s2) =

L(s1 − s2 + 1
2 , f) · L(s1 + s2 − 1

2 , f)
ζ(2− 2s2)

Here F runs over an orthonormal basis for all level-one cuspforms on GL2, without restriction on
the right K∞–type. Similarly, the Eisenstein series E(k)

s run over all level-one Eisenstein series for
GL2(Q) with no restriction on K∞–type, indexed by k.

The discussion below makes several points clear. First, our sum of moments of twists of L–
functions has a natural integral representation on the adele group, of a form insensitive to the
underlying number field. Second, the kernel for this adele-group integral arises from a collection
of local data, wound up into an automorphic form, and the computation proceeds by unwinding.
This presentation requires a reformulation of the notion of Poincaré series, replacing a weighted
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sum of classical Poincaré series for GL2(Q) or GL2(Q(i)) with a single, coherent, global object that
makes sense over a number field. Third, the ramifications of the choices of local data are subtle.
In the present treatment we take local data at finite primes so as to avoid complications away
from archimedean places. Fourth, some subtlety resides in choices of archimedean data. Good’s
original idea in [G2] for GL2(Q) can be viewed as a choice of local data for real places, which
can be improved as in the classical formulation of [DG1]. Similarly, we interpret the treatment of
GL2(Q[i]) in [DG2] as a choice of local data for complex primes.

Recipe for spectral identities involving second moments: Spectral identities involving second
integral moments of automorphic L-functions and other periods can be produced systematically, as

follows. We suppress secondary details, even where non-trivial, writing
∑∫

as an ad hoc device to

indicate integration against a suitable automorphic spectral measure not specified in detail. Thus,
for a reductive group Θ over a number field k, with center Z, write the decomposition of functions
Ψ in L2(ZAΘk\ΘA) as

Ψ =
∑∫
F on Θ

〈Ψ, F 〉Θ · F

where the automorphic forms F generate irreducible representations of ΘA, or nearly so. In the
discrete part of this spectral decomposition, the automorphic forms F are genuinely orthonormal.
The more continuous part of the decomposition behaves in a less elementary fashion, although most
of it admits an explicit description in terms of Eisenstein series. We will not worry about unresolved
issues concerning the residual spectrum. Further, we imagine that this L2 spectral decomposition
is extended to suitable distributions and whatever non-L2 functions we need. Regularization of
implied integrals is a genuine issue, but not our immediate concern.

Let B be a subgroup of Θ containing Z, and let u be a left ZAΘk-invariant distribution on
Θ supported on the image ZABk\BA inside ZAΘk\ΘA. Distributions u involving no derivatives
transverse to ZABk\BA inside ZAΘk\ΘA admit spectral expansions

u =
∑∫
F on B

〈u, F 〉B · F

Now let Θ be of the form Θ = G×G, and let Z be the center of G (rather than of Θ). Let H
be a k-subgroup of G containing Z. Consider two chains of subgroups inside G×G, pictorially,

G×G
↗ ↖

H ×H G∆

↖ ↗
H∆

where the superscript ∆ denotes diagonal copies, and where ascending arrows are inclusions.
Consider the left ZAGk × ZAGk-invariant distribution u on G×G

u(f1 ⊗ f2) =
∫
Z∆

A H
∆
k \H

∆
A

f1 ⊗ f2 =
∫
ZAHk\HA

f1 · f2
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The spectral expansion of u along H ×H has a special diagonal property, namely

u =
∑∫
F1,F2 on H

〈u, F1 ⊗ F2〉H×H · F1 ⊗ F2 =
∑∫
F on H

F ⊗ F

The diagonal feature of this expansion is completely analogous to the fact that the Fourier series
expansion of the distribution that integrates along the diagonal circle in a product of two circles
has Fourier coefficients only along the diagonal. Then

u(f ⊗ f) =
∑∫
F on H

〈f ⊗ f, F ⊗ F 〉H×H =
∑∫
F on H

|〈f, F 〉H |2

The positivity of the summands is a virtue of this relation.
On the other hand, the spectral expansion of u along G∆ is

u =
∑∫
F on G∆

〈u, F 〉G∆ · F =
∑∫
F on G∆

FH · F

where FH = 〈u, F 〉 is the period of F along H. Thus,

u(f ⊗ f) =
∑∫
F on G∆

FH · 〈f ⊗ f, F 〉G∆ =
∑∫
F on G

FH · 〈F, |f |2〉G

The period non-vanishing condition FH 6= 0, for F to appear in the expansion, is non-trivial.
Equating these two expansions gives

∑∫
F on H

|〈f, F 〉H |2 = u(f ⊗ f) =
∑∫
F on G

FH · 〈F, |f |2〉G

Diagrammatically, this is

(moment side) (spectral side)

∑∫
F on H

|〈f, F 〉H |2 ←− f ⊗ f −→
∑∫
F on G

FH · 〈F, |f |2〉G

G×G
↑ ↗ ↖ ↑

∑∫
F on H

F ⊗ F H ×H G∆
∑∫
F on G∆

FH · F

↖ ↗
H∆

u ∼ 1

The evaluation along H ×H is especially interesting when H is an Euler-Gelfand subgroup of
G, in the sense that restrictions from Gv to Hv of (possibly a restricted class of) irreducibles on
Gv are multiplicity-free. This makes 〈f, F 〉H tend to have an Euler product, possibly including a
period. Thus, the left-hand (moment) side of the spectral identity is a sum (and integral) of second
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integral moments of L-functions. By contrast, the right-hand (spectral) side inevitably involves
integrals of three eigenfunctions, for automorphic forms F with non-vanishing periods FH .

The exponential decay of the archimedean contributions in this identity make the sums converge
too well, so u must be deformed to extract more information. Specifically, call any deformation of
the initial distribution u to a (classical, rather than generalized) function on Z∆

A G
∆
k \G∆

A a Poincaré
series. A simple family of Poincaré series is constructed by winding up local data, created by local
deformations, as follows. Let ϕ =

⊗
ν ϕν where ϕν is a left Hν-invariant function on the ν-adic

points Gν of G. Form a Poincaré series

Péϕ(g) =
∑

γ∈Hk\Gk

ϕ(γ · g)

To have ϕν be a classical function on Gν at non-archimedean places ν, we have the option to make
an extremely simple choice

ϕν(g) =

 1 (for g ∈ Hν ·Kν)

0 (otherwise)

where Kν is (maximal) compact in Gν . Archimedean places do not usually allow such trivial local
deformations.

In this recipe, taking H = GL1 and G = GL2 gives the L-functions L(s, f ⊗ χ) considered in
this paper, with f on GL2 and grossencharacters χ. Extending the GL2 × GL1 case, we obtain
convolution L-functions L(s, f ⊗ F ) on GLn × GLn−1 by taking H = GLn−1 and G = GLn. On
the spectral side are standard L-functions attached to F on GLn−1, along with triple integrals
of eigenfunctions. Due to vanishing of GLn−1 periods, the spectral side involves no cuspidal
data on GLr for r > 2. Rankin-Selberg convolutions for GLn × GLn arise by taking H = GL∆

n

and G = GLn × GLn. In the smallest case n = 2, the subgroup G∆ is also Euler-Gelfand
in G × G. Rankin-Selberg L-functions given by doubling arise as follows. Let Φ be a form
(orthogonal, symplectic, or hermitian) on a suitable vectorspace, and U(Φ) its isometry group.
Let H = U(Φ) × U(−Φ) and G = U(Φ ⊕ −Φ) and take Siegel-type Eisenstein series on G. The
period non-vanishing condition on the spectral side is again a stringent condition in this example.
Triple-product L-functions appear in at least two ways. First, one may take G = GSp3 and
H = (GL2 ×GL2 ×GL2)\, where the \ means to take the subgroup where the three determinants
are equal. Take Siegel-type Eisenstein series on G. A smaller family appears by taking G = GSp2

and H = (GL2 ×GL2)\, with an Eisenstein series on G with cuspidal data.
Of course, the general idea of exploiting decompositions of automorphic forms or representations

along subgroups is a main technical device in the theory of automorphic forms, and is several
decades old. Indeed, restriction and decomposition along simple inclusions A ⊂ B for Euler-
Gelfand subgroups A of groups B have been studied for decades. By contrast, consideration of
larger configurations of subgroups and iterated spectral decomposition along them is much less
clichéd, due in part to technical complications, and due also to a paucity of suggestive examples.
For us, the chief desired effect is a positivity property of a sum-and-integral of Euler products
on one side of the identity, attached to an Euler-Gelfand subgroup H of G. Our recipe above
accomplishes this for arbitrary inclusions H∆ ⊂ H ×H and G∆ ⊂ G × G, regardless of whether
these diagonals are Euler-Gelfand subgroups. It may be that Reznikov’s notable recent work [R] is
the only other current example of systematic use of iterated spectral decompositions along larger
configurations of subgroups. Given the scope of possibilities in considering the spectral theory of
large configurations, it is not surprising that [R] offers a somewhat different recipe, under somewhat



INTEGRAL MOMENTS OF AUTOMORPHIC L–FUNCTIONS 7

different hypotheses, achieving somewhat different ends than we have indicated here. Leaving a
more detailed comparison and systematization to the interested reader, we take the viewpoint
that, in any case, our present discussion and that of [R] offer persuasive evidence for the utility of
iterated spectral decompositions in large configurations of subgroups.

The structure of the paper is as follows. In Section 2, integral kernels we call Poincaré series
are described in terms of local data, reformulating classical examples in a form applicable to GLr
over a number field. In Section 3, the integral of the Poincaré series against |f |2 for a cuspform
f on GL2 is unwound and expanded, yielding a sum of weighted moment integrals of L–functions
L(s, f ⊗ χ) of twists of f by idele class characters χ. In Section 4, the spectral decomposition of
the Poincaré series is exhibited: the leading term is an Eisenstein series, and there are cuspidal
and continuous-spectrum parts with coefficients which are values of L–functions. In Section 5, an
asymptotic formula is derived for these integral moments. We note there that the length of the
averages involved is amenable to subsequent applications to convexity breaking in the t–aspect. The
first appendix discusses convergence of the Poincaré series in detail, proving pointwise convergence
and L2 convergence. The second appendix computes integral transforms necessary to understand
some details in the spectral expansion.

For the most immediate applications, such as subconvexity, refined choices of archimedean data
must be combined with the generalization [HR] of [HL], invoking [Ba], as well as an extension of
[S2] (or [BR]) to number fields. However, for now, we content ourselves with laying the groundwork
for applications and extensions. In subsequent papers we will address the extension of the identity
to GLr, and consider convexity breaking in the t–aspect.

§2. Poincaré series

Let k be a number field, G = GLr over k, and define standard subgroups:

P = P r−1,1 =
{(

(r − 1)-by-(r − 1) ∗
0 1-by-1

)}

U =
{(

Ir−1 ∗
0 1

)}
H =

{(
(r − 1)-by-(r − 1) 0

0 1

)}
Z = center of G

Let Kν denote the standard maximal compact in the kν–valued points Gν of G.
The Poincaré series Pé(g) is of the form

(2.1) Pé(g) =
∑

γ∈ZkHk\Gk

ϕ(γg) (g ∈ GA)

for suitable functions ϕ on GA described as follows. For v ∈ C, let

(2.2) ϕ =
⊗
ν

ϕν

where for ν finite

(2.3) ϕν(g) =


∣∣(detA)/dr−1

∣∣v
ν

for g = mk with m =
(
A 0
0 d

)
∈ ZνHν and k ∈ Kν

0 otherwise
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and for ν archimedean require right Kν–invariance and left equivariance

(2.4) ϕν(mg) =
∣∣∣∣detA
dr−1

∣∣∣∣v
ν

· ϕν(g)
(

for g ∈ Gν and m =
(
A 0
0 d

)
∈ ZνHν

)
Thus, for ν|∞, the further data determining ϕν consists of its values on Uν . The simplest useful
choice is

(2.5) ϕν

(
Ir−1 x

0 1

)
=
(
1 + |x1|2 + · · ·+ |xr−1|2

)−dν(r−1)wν/2

x =

 x1
...

xr−1

 and wν ∈ C


with dν = [kν : R]. Here the norm |x1|2 + · · · + |xr−1|2 is invariant under Kν , that is, | · | is the
usual absolute value on R or C. Note that by the product formula ϕ is left ZAHk–invariant.

Proposition 2.6. (Apocryphal) With the specific choice (2.5) of ϕ∞ = ⊗ν|∞ ϕν , the series (2.1)
defining Pé(g) converges absolutely and locally uniformly for <(v) > 1 and <(wν) > 1 for all ν|∞.

Proof: In fact, the argument applies to a much broader class of archimedean data. For a complete
argument when r = 2, and wν = w for all ν|∞, see Appendix 1. �

We can give a broader and more robust, though somewhat weaker, result, as follows. Again, for
simplicity, take r = 2. Given ϕ∞, for x in k∞ =

∏
ν|∞ kν , let

Φ∞(x) = ϕ∞

(
1 x
0 1

)
For 0 < ` ∈ Z, let Ω` be the collection of ϕ∞ such that the associated Φ∞ is absolutely integrable,
and such that the Fourier transform Φ̂∞ along k∞ satisfies the bound

Φ̂∞(x) �
∏
ν|∞

(1 + |x|ν)−`

For example, for ϕ∞ to be in Ω` it suffices that Φ∞ is `+ 1 times continuously differentiable, with
each derivative absolutely integrable. The simple explicit choice of ϕ∞ above lies in Ω` for every
` > 0, when <(wν) > 1 and <(v) > 1 for convergence.

Theorem 2.7. (Apocryphal) Take r = 2, <(v) > 3, ` > <(v) + 5, and ϕ∞ ∈ Ω`. The series
defining Pé(g) converges absolutely and locally uniformly in both g and v. Furthermore, up to an
Eisenstein series, the Poincaré series is square integrable on ZAGk\GA.

Proof: See Appendix 1. �
We do not claim that the lower bounds are the best possible, but only that they arise as artifacts

in the natural argument given in Appendix 1. The precise Eisenstein series to be subtracted from
the Poincaré series to make the latter square-integrable will be discussed in Section 4 (see formula
4.6). For our special choice (2.5) of archimedean data, both these convergence results apply with
<(wν) > 1 for ν|∞ and <(v) large.

A monomial vector ϕ as in (2.2) described by (2.3) and (2.4) will be called admissible when
ϕ∞ ∈ Ω`, with <(v) > 3 and ` > <(v) + 5.
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§3. Unwinding to an Euler product

Unlike classical contexts, where the Euler factorization of a Dirichlet series is visible only at the
end, the present construction presents us with an Euler product almost immediately. From now
on, take r = 2, so G = GL2 over a number field k, and

P =
{(
∗ ∗
0 ∗

)}
N = U =

{(
1 ∗
0 1

)}
H =

{(
∗ 0
0 1

)}
M = ZH =

{(
∗ 0
0 ∗

)}
For a place ν of k, let Kν be the standard maximal compact subgroup. That is, at finite places
Kν = GL2(oν), at real places Kν = O(2), and at complex places Kν = U(2).

Using the Poincaré series defined by (2.1), we unwind a corresponding global integral and express
it as an inverse Mellin transform of an Euler product. This produces a sum over Hecke characters
of weighted integrals of corresponding L–functions over the critical line. Recall the definition

(3.1) Pé(g) =
∑

γ∈Mk\Gk

ϕ(γg) (g ∈ GA)

where the monomial vector
ϕ =

⊗
ν

ϕν

is

(3.2) ϕν(g) =
{
χ0,ν(m) for g = mk, m ∈Mν and k ∈ Kν

0 for g 6∈Mν ·Kν

(for ν finite)

and for ν infinite, we do not entirely specify ϕν , only requiring the left equivariance

(3.3) ϕν(mnk) = χ0,ν(m) · ϕν(n) (for ν infinite, m ∈Mν , n ∈ Nν and k ∈ Kν)

Here, χ0,ν is the character of Mν given by

(3.4) χ0,ν(m) =
∣∣∣a
d

∣∣∣v
ν

(
m =

(
a 0
0 d

)
∈Mν , v ∈ C

)
Then χ0 =

⊗
ν χ0,ν is Mk–invariant, and ϕ has trivial central character and is left MA–equivariant

by χ0. Note that for ν infinite, the assumptions imply that

x −→ ϕν

(
1 x
0 1

)
is a function of |x| only.

Let f1 and f2 be cuspforms on GA. Eventually we will take f1 = f2, but for now merely require
the following compatibilities. Suppose that the representations of GA generated by f1 and f2 are
irreducible, with the same central character. At all ν, require that f1 and f2 have the same right
Kν–type, that this Kν–type is irreducible, and that f1 and f2 correspond to the same vector in
the K–type, up to scalar multiples. Schur’s lemma assures that this makes sense, insofar as there
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are no non-scalar automorphisms. Last, require that each fi is a special vector locally everywhere
in the representation it generates, in the following sense. Let

(3.5) fi(g) =
∑

ξ∈Zk\Mk

Wfi(ξg)

be the Fourier expansion of fi, and let

Wfi
=
⊗
ν≤∞

Wfi,ν

be the factorization of the Whittaker function Wfi into local data. By [JL], we may require that
for all ν <∞ the Hecke–type local integrals∫

a∈k×ν

Wfi, ν

(
a 0
0 1

)
|a|s−

1
2

ν da

differ by at most an exponential function from the correct local L–factors for the representation
generated by fi.

Suppressing some details in the notation, the integral under consideration is

(3.6) I(χ0) =
∫
ZAGk\GA

Pé(g) f1(g) f̄2(g) dg

For χ0 (and archimedean data) in the range of absolute convergence, from the definition of the
Poincaré series, the integral unwinds to∫

ZAMk\GA

ϕ(g) f1(g) f̄2(g) dg

Using the Fourier expansion
f1(g) =

∑
ξ∈Zk\Mk

Wf1(ξ g)

this further unwinds to

(3.7)
∫
ZA\GA

ϕ(g)Wf1(g) f̄2(g) dg

Let J be the ideles, let C be the idele class group J/k× = GL1(A)/GL1(k), and let Ĉ be the
dual of C. By Fujisaki’s Lemma (see Weil [W1], page 32, Lemma 3.1.1), the idele class group C

is a product of a copy of (0,∞) and a compact group C0. By Pontryagin duality, Ĉ ≈ R × Ĉ0

with Ĉ0 discrete. For any compact open subgroup Ufin of the finite-prime part in C0, the dual of
C0/Ufin is finitely generated with rank [k : Q]−1. On C the spectral decomposition (Fourier-Mellin
inversion) for a suitable function F is

F (x) =
∫

bC
∫
C

F (y)χ(y) dy χ−1(x) dχ(3.8)

=
∑
χ′∈ bC0

1
2πi

∫
<(s)=σ

∫
C

F (y)χ′(y)|y|s dy χ′−1(x)|x|−s ds
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for a suitable Haar measure on C.
For ν infinite and s ∈ C, let

Kν(s, χ0,ν , χν) =
∫
Zν\MνNν

∫
Zν\Mν

ϕν(mνnν)Wf1,ν(mνnν)

·W f2,ν(m
′
νnν)χν(m

′
ν) |m′

ν |
s− 1

2
ν χν(mν)−1 |mν |

1
2−s
ν dm′

ν dnν dmν(3.9)

and set

(3.10) K∞(s, χ0, χ) =
∏
ν|∞

Kν(s, χ0,ν , χν)

Here χ0 =
⊗

ν χ0,ν is the character defining the monomial vector ϕ, and χ =
⊗

ν χν ∈ Ĉ0. For
admissible ϕ, the integral (3.9) converges absolutely for <(s) sufficiently large. We are especially
interested in the choice

(3.11) ϕν(n) =


(
1 + x2

)−w
2 for ν|∞ real, and n =

(
1 x

0 1

)
∈ Nν

(1 + (xx̄))−w for ν|∞ complex, and n =
(

1 x

0 1

)
∈ Nν

(v, w ∈ C)

The monomial vector ϕ generated by this choice is admissible for <(w) > 1 and <(v) > 3 (see
Appendix 1), and in Section 5 will yield an asymptotic formula for the GL2 integral moment over
the number field k. The main result of this section is

Theorem 3.12. For ϕ an admissible monomial vector as above, for suitable σ > 0,∫
ZAGk\GA

Pé · f1 · f2 = I(χ0) =
∑
χ∈ bC0

1
2πi

∫
<(s)=σ

L(1− s+ v, f1⊗χ) ·L(s, f̄2⊗χ)K∞(s, χ0, χ) ds

For a finite set of places S including archimedean places, all absolutely ramified primes, and all
finite bad places for f1 and f2, the sum is over a set Ĉ0,S of characters unramified outside S, with
bounded ramification at finite places, depending only upon f1 and f2.

Proof: Let J be the ideles of k. Via the identification

Hk\HA =
{(

a′ 0
0 1

)
: a′ ∈ J/k×

}
≈ C

for a Hecke character χ and for a ∈ J, write

χ

(
a 0
0 1

)
= χ(a)

Applying (3.8) to f̄2 and using the Fourier expansion

f2(g) =
∑

ξ∈Zk\Mk

Wf2(ξ g)
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the integral (3.7) is ∫
ZA\GA

ϕ(g)Wf1(g)

(∫
bC
∫
Hk\HA

f̄2(m′g)χ(m′) dm′ dχ

)
dg

=
∫

bC
∫

ZA\GA

ϕ(g)Wf1(g)
∫
Hk\HA

∑
ξ∈Hk

W f2(ξm
′g)χ(m′) dm′ dg

 dχ

=
∫

bC
(∫

ZA\GA

ϕ(g)Wf1(g)
∫
HA

W f2(m
′g)χ(m′) dm′ dg

)
dχ (identifying HA = J)

The interchange of order of integration is justified by the absolute convergence of the outer two
integrals, from the rapid decay of cuspforms along the split torus.

For fixed f1 and f2, the finite-prime ramification of the characters χ ∈ Ĉ is bounded, so there
are only finitely many bad finite primes for all the χ which appear. In particular, all the characters
χ which appear are unramified outside S and with bounded ramification, depending only on f1
and f2, at finite places in S. Thus, for ν ∈ S finite, there exists a compact open subgroup Uν of o×ν
such that the kernel of the νth component χν of χ contains Uν for all characters χ which appear.

Since f1 and f2 generate irreducibles locally everywhere, by uniqueness of Whittaker models
[JL], the Whittaker functions Wfi factor

Wfi
({gν : ν ≤ ∞}) = ΠνWfi,ν(gν)

Therefore, the inner integral over ZA\GA and J factors over primes, and

I(χ0) =
∫

bC Πν

(∫
Zν\Gν

∫
Hν

ϕν(gν)Wf1,ν(gν)W f2,ν(m
′
νgν)χν(m

′
ν) dm

′
ν dgν

)
dχ

Suppress the reference to the place ν to write the νth local integral more cleanly, as∫
Z\G

∫
H

ϕ(g)Wf1(g)W f2(m
′g)χ(m′) dm′ dg

Take ν finite such that both f1 and f2 are right Kν–invariant. With a ν–adic Iwasawa
decomposition g = mnk with m ∈M , n ∈ N , and k ∈ K, the Haar measure is d(mnk) = dmdndk
with Haar measures on the factors. The integral becomes∫

Z\MN

∫
H

ϕ(mn)Wf1(mn)W f2(m
′mn)χ(m′) dm′ dn dm

Use representatives H for Z\M . To symmetrize the integral, replace m′ by m′m−1 to obtain∫
HN

∫
H

ϕ(mn)Wf1(mn)W f2(m
′n)χ(m′)χ(m)−1 dm′ dn dm

The Whittaker functions Wfi have left N–equivariance

Wfi
(ng) = ψ(n)Wfi

(g) (fixed non-trivial ψ)
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so
Wfi(mn) = Wfi(mnm

−1m) = ψ(mnm−1)Wfi(m)

Thus, letting

X(m,m′) =
∫
N

ϕ(n)ψ(mnm−1)ψ(m′nm′−1) dn

the local integral is∫
H

∫
H

χ0(m)Wf1(m)W f2(m
′)χ(m′)χ−1(m)X(m,m′) dm′ dm

We claim that for m and m′ in the supports of the Whittaker functions, the inner integral X(m,m′)
is constant, independent of m, m′, and it is 1 for almost all finite primes. First, ϕ(mn) is 0, unless
n ∈M ·K ∩N , that is, unless n ∈ N ∩K. On the other hand,

ψ(mnm−1) ·Wf1(mk) = ψ(mnm−1) ·Wf1(m) = Wf1(mn) = Wf1(m) (for n ∈ N ∩K)

Thus, for Wf1(m) 6= 0, necessarily ψ(mnm−1) = 1. A similar discussion applies to Wf2 . So, up to
normalization, the inner integral is 1 for m, m′ in the supports of Wf1 and Wf2 . Then∫

H

∫
H

χ0(m)Wf1(m)W f2(m
′)χ(m′)χ−1(m) dmdm′

=
∫
H

(χ0 · χ−1)(m)Wf1(m) dm ·
∫
H

χ(m′)W f2(m
′) dm′

= Lν(χ0,ν · χ−1
ν | · |1/2ν , f1) · Lν(χν | · |1/2ν , f̄2)

i.e., the product of local factors of the standard L–functions in the theorem, up to exponential
functions at finitely many finite primes, by our assumptions on f1 and f2.

For non-trivial right K–type σ, the argument is similar but a little more complicated. The key
point is that the inner integral over N (as above) should not depend on mk and m′k, for mk
and m′k in the support of the Whittaker functions. Changing conventions for a moment, look at
Vσ–valued Whittaker functions, and consider any W in the νth Whittaker space for fi having right
K–isotype σ. Thus,

W (gk) = σ(k) ·W (g) (for g ∈ G and k ∈ K)

For ϕ(mn) 6= 0, again n ∈ N ∩K. Then

σ(k) · ψ(mnm−1) ·W (m) = W (mnk) = σ(k) ·W (mn) = σ(k) · σ(n) ·W (m)

where in the last expression n comes out on the right by the right σ–equivariance of W . For m
in the support of W , σ(n) acts by the scalar ψ(mnm−1) on W (mk), for all k ∈ K. Thus, σ(n)
is scalar on that copy of Vσ. At the same time, this scalar is σ(n), so is independent of m if
W (m) 6= 0. Thus, except for a common integral over K, the local integral falls into two pieces,
each yielding the local factor of the L–function. From Schur orthogonality, the common integral
over K is a constant, non-zero since the two vectors are collinear in the K–type. �

At this point the archimedean local factors of the Euler product are not entirely specified. The
option to vary the choices is useful in applications.
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§4. Spectral decomposition of Poincaré series

Now spectrally decompose the Poincaré Pé series defined in (3.1). Throughout this section,
assume that ϕ is admissible in the sense given at the end of Section 2. We shall see that Pé(g)
is not generally square-integrable. However, by choosing the archimedean part of the monomial
vector ϕ to have enough decay, and by subtracting an obvious Eisenstein series, the remainder is
in L2 and has sufficient decay so that its integrals against Eisenstein series converge absolutely,
by explicit computation. In particular, when the archimedean data is specialized to (3.11), the
Poincaré series Pé(g) has meromorphic continuation in the variables v and w: this follows from the
spectral decomposition, from the meromorphic continuation of the spectral fragments, and from
standard estimates on the aggregate. See [DG1], [DG2] when k = Q, Q(i).

Let k be a number field, G = GL2 over k, and ω a unitary character of Zk\ZA. From [GGPS],
[GJ], or [Go1] and [Go2], recall the decomposition

L2(ZAGk\GA, ω) = L2
cusp(ZAGk\GA, ω) ⊕ L2

cusp(ZAGk\GA, ω)⊥

where L2(ZAGk\GA, ω) is L2 functions with central character ω, and where L2
cusp(ZAGk\GA, ω)

is L2 cuspforms with central character ω. The orthogonal complement to cuspforms consists of
one-dimensional representations (the residual spectrum here) and integrals of Eisenstein series:

L2
cusp(ZAGk\GA, ω)⊥ ≈ {1− dimensional representations}

⊕
∫ ⊕

(GL1(k)\GL1(A))b
⊗
ν

IndGν

Pν
(χν δ1/2ν ) dχ

where δ is the modular function on PA, and the isomorphism is via Eisenstein series. Using this,
with central character ω trivial for our Poincaré series, explicitly decompose the Poincaré series as

Pé = Eisenstein series + discrete part + continuous part

The projection to cuspforms is straightforward componentwise:

Proposition 4.1. Let f be a cuspform on GA generating a spherical representation locally
everywhere, and suppose f corresponds to a spherical vector everywhere locally. In the region
of absolute convergence of the Poincaré series Pé(g), the integral∫

ZAGk\GA

f̄(g)Pé(g) dg

is an Euler product. At finite ν, the corresponding local factors are Lν(χ0,ν | · |1/2ν , f̄ ), up to
multiplicative constants depending on the set of absolutely ramified primes in k.

Of course, the spectral decomposition of a right KA–invariant automorphic form only involves
everywhere locally spherical cuspforms. Thus, the following computations can ignore holomorphic
discrete series and non-spherical principal series representations.

Proof: The computation uses the same facts as did the Euler factorization in the previous section.
From the Fourier expansion

f(g) =
∑

ξ∈Zk\Mk

W (ξg)
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unwind ∫
ZAGk\GA

f̄(g) Pé(g) dg =
∫
ZAMk\GA

∑
ξ

W (ξg)ϕ(g) dg =
∫
ZA\GA

W (g)ϕ(g) dg

=
∏
ν

(∫
Zν\Gν

W ν(gν)ϕν(gν) dgν

)
where the local Whittaker functions at finite places are normalized as in [JL] to give the correct
local L–factors.

At finite ν, suppressing the subscript ν, the integrand in the νth local integral is right Kν–
invariant, so we can integrate over Z\MN ≈ HN with left Haar measure. The νth Euler factor
is ∫

H

∫
N

W (mn)ϕ(mn) dn dm =
∫
H

∫
N

ψ(mnm−1)W (m)χ0(m)ϕ(n) dn dm

for all finite primes ν. The integral over n is∫
N

ψ(mnm−1)ϕ(n) dn

For ϕ(n) to be non-zero requires n to lie in M ·K, which further requires, as before, that n ∈ N∩K.
Again, W (m) = 0 unless

m(N ∩K)m−1 ⊂ N ∩K

The character ψ is trivial on N ∩ K. Thus, the integral over N is really the integral of 1 over
N ∩K. Thus, at finite primes ν, the local factor is∫

H

W (m)χ0(m) dm = Lν( 1
2 + v, , f̄ ) �

Let ϕ be given by (3.11). Take <(v) > 1 and <(w) > 1 to ensure absolute convergence of Pé(g),
by Proposition 2.6. The local integral in Proposition 4.1 at infinite ν is∫

Zν\Gν

W ν(gν)ϕν(gν) dgν = Gν( 1
2 + iµ̄

f,ν
; v, w)

where, up to a constant, at real places ν

(4.2) Gν(s; v, w) = π−v
Γ
(
v+1−s

2

)
Γ
(
v+w−s

2

)
Γ
(
v+s
2

)
Γ
(
v+w+s−1

2

)
Γ
(
w
2

)
Γ
(
v + w

2

)
and at complex places ν

(4.3) Gν(s; v, w) = (2π)−2v Γ(v + 1− s)Γ(v + w − s)Γ(v + s)Γ(v + w + s− 1)
Γ(w)Γ(2v + w)

In these expressions iµ
f,ν

and −iµ
f,ν

are the local parameters of the spherical principal series
representation generated by f at ν. That these integrals are ratios of products of gamma functions
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is an elementary computation: see [DG1] for the real case and [DG2] for the complex case, invoking
uniqueness of local Whittaker models.

In these spherical cases, the Whittaker functions are readily expressible in terms of the classical
K-Bessel functions, as

Wν

(
a

1

)
=

{
|a|1/2Kiµ

f,ν
(2π|a|) (for ν ≈ R)

|a|K2iµ
f,ν

(4π|a|) (for ν ≈ C)

Having computed the integrals 〈Pé, F 〉 of the Poincaré series against cuspforms F , with respect
to an orthonormal basis {F} of everywhere locally spherical cuspforms, the cuspidal part of the
spectral decomposition of the Poincaré series should be∑

F

〈Pé, F 〉 · F =
∑
F

ρ̄
F
G

F∞
(v, w)L(v + 1

2 , F ) · F

where the archimedean factors are grouped together as

G
F∞

(v, w) =
∏
ν|∞

Gν( 1
2 + iµ̄

F,ν
; v, w)

with Gν as in (4.2) and (4.3) for each F , with all ambiguous constants at infinite places absorbed
into ρ̄

F
. Traditionally, the constant ρ

F
is denoted by ρ

F
(1), referring to its appearance as the first

classical (numerical) Fourier coefficient of F . As mentioned at the beginning of this section, and as
demonstrated shortly, a modified form Pé∗ of the Poincaré series Pé(g), obtained by subtracting a
suitable Eisenstein series, is L2. From this it will follow that the above spectral sum is the discrete
L2 part of Pé.

Since Pé∗ is square-integrable for <(w) and <(v) large, the sum of projections to cuspforms
is certainly convergent in L2 for such v, w. In fact, for arbitrary v, w, the sum of projections to
cuspforms converges. In essence, the convergence follows from the fact that ρF · GF∞(v, w) has
exponential decay in the archimedean parameters of F . To see this, consider the usual integral
representation, against an Eisenstein series, of the completedGL2×GL2 Rankin-Selberg L–function
Λ(s, F⊗F̄ ) from [J]. For the general case of GLm×GLn, see the literature review in [CPS2]. Taking
the residue at s = 1 gives

residue of Eisenstein series = |ρ
F
|2 · L∞(1, F ⊗ F̄ ) · Res

s=1
L(s, F ⊗ F̄ ) (with |F |L2 = 1)

The constant on the left is manifestly independent of F . The local factors of the finite-prime
L–function L(s, F ⊗ F̄ ) on the right obtained from the integral representation differ from those
of the correct convolution L–function obtained from the local theory at only absolutely ramified
primes in k, and the discrepancies are readily estimated. This gives

|ρ
F
|2 =

residue of Eisenstein series
L∞(1, F ⊗ F̄ ) · Res

s=1
L(s, F ⊗ F̄ )

Comparing L∞(1, F ⊗ F̄ ) with G
F∞

(v, w) using Stirling’s formula, the ratio

|GF∞(v, w)|
|L∞(1, F ⊗ F̄ )|1/2
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has exponential decay in the archimedean parameters of F . Although it is far more than we
need, a sharp lower bound for the residue at s = 1 can be obtained by combining [HR] and [Ba].
Finally, a routine convexity bound implies that L( 1

2 + v, F ) grows at worst polynomially in the
archimedean data of F . The number of cuspforms with archimedean data within a given bound
grows polynomially, from Weyl’s Law [LV], or from the upper bound of [Do]. Thus, the spectral
sum is absolutely convergent for (v, w) ∈ C2, except for the poles of G

F∞
(v, w).

For the remaining decomposition, subtract (as in [DG1], [DG2], in a classical setting) an
Eisenstein series from the Poincaré series, leaving a function in L2 with sufficient decay to be
integrated against Eisenstein series. The correct Eisenstein series to subtract is visible from the
dominant part of the constant term of the Poincaré series, as follows. Write the Poincaré series as

Pé(g) =
∑

γ∈Mk\Gk

ϕ(γg) =
∑

γ∈Pk\Gk

∑
β∈Nk

ϕ(βγg)

By Poisson summation

(4.4) Pé(g) =
∑

γ∈Pk\Gk

∑
ψ∈(Nk\NA)b ϕ̂γg(ψ)

where ϕg(n) = ϕ(ng), and ϕ̂ is the Fourier transform along NA. The trivial–ψ (that is, with ψ = 1)
Fourier term

(4.5)
∑

γ∈Pk\Gk

ϕ̂γg(1)

is an Eisenstein series, since the function

g −→ ϕ̂g(1) =
∫
NA

ϕ(ng) dn

is left MA–equivariant by the character δχ0, and left NA–invariant.
For ξ ∈Mk,

ϕ̂ξg(ψ) =
∫
NA

ψ(n)ϕ(nξg) dn

=
∫
NA

ψ(n)ϕ(ξ · ξ−1nξ · g) dn =
∫
NA

ψ(ξnξ−1)ϕ(n · g) dn = ϕ̂g(ψξ)

where ψξ(n) = ψ(ξnξ−1), by replacing n by ξnξ−1, using the left Mk–invariance of ϕ, and invoking
the product formula to see that the change-of-measure is trivial. Since this action of Zk\Mk is
transitive on non-trivial characters on Nk\NA, for a fixed choice of non-trivial character ψ, the
sum over non-trivial characters can be rewritten as a more familiar sort of Poincaré series∑

γ∈Pk\Gk

∑
ψ′∈(Nk\NA)bϕ̂γg(ψ

′) =
∑

γ∈Pk\Gk

∑
ξ∈Zk\Mk

ϕ̂γg(ψξ)

=
∑

γ∈Pk\Gk

∑
ξ∈Zk\Mk

ϕ̂ξγg(ψ) =
∑

γ∈ZkNk\Gk

ϕ̂γg(ψ)
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Denote this version of the Poincaré series, with the Eisenstein series subtracted, by

(4.6) Pé∗(g) =
∑

γ∈ZkNk\Gk

ϕ̂γg(ψ) = Pé(g) −
∑

γ∈Pk\Gk

ϕ̂γg(1)

Remark: With (4.6), the square integrability of the Poincaré series in Theorem 2.7 is that, for ϕ
admissible, the modified Poincaré series Pé∗(g) is in L2(ZAGk\GA).

Now we describe the continuous part of the spectral decomposition. At every place ν, let ην
be the spherical vector in the (non-normalized) principal series IndGν

Pν
χν , with ην(1) = 1. Take

η =
⊗

ν≤∞ ην . The corresponding Eisenstein series is

Eχ(g) =
∑

γ∈Pk\Gk

η(γg)

For any left ZAGk–invariant and right KA–invariant square-integrable F on GA, write

〈F,Eχ〉 =
∫
ZAGk\GA

F (g)Eχ(g) dg

With suitable normalization of measures,

continuous-spectrum part of F =
∫

<(χ)= 1
2

〈F,Eχ〉 Eχ dχ

Explicitly, let

(4.7) κ = meas(J1/k×)

where the measure on J1/k× is the image of the measure γ on J defined in [W2], page 128. From
[W2], page 129, Corollary, the residue of the zeta-function of k at s = 1 is

Res
s=1

ζk(s) =
κ

|Dk|
1
2

where Dk is the discriminant of k. Then,

continuous-spectrum part of F =
1

4πiκ

∑
χ

∫
<(s)= 1

2

〈F,Es,χ〉 · Es,χ ds

where the sum is over all absolutely unramified characters χ ∈ Ĉ0. Here Es,χ = Eχ |·|s . In general,
this requires the isometric extension to L2 of integral formulas that do not converge on all of L2,
but do converge on the dense subspace of pseudo-Eisenstein series with compactly supported data,
as in [Go2], for example.

In our situation, Pé∗(g) is smooth and it and its derivatives are of sufficient decay for <(w) and
<(v) large, so the integrals against Eisenstein series, with parameter in a bounded vertical strip
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containing the critical line, converge absolutely. For the same reasons, the continuous part of its
spectral decomposition converges: this will be explicit in the computations below.

There is no residual spectrum component since residual automorphic forms on GL2 are
associated to one-dimensional representations, which have no Whittaker models. Thus, by Theorem
2.7 (see also the remark above), by Proposition 4.1 and (4.6), with respect to an orthonormal basis
{F} of everywhere locally spherical cuspforms, there is the spectral decomposition (with no residual
component)

(4.8) Pé =
(∫

N∞

ϕ∞

)
· Ev+1 +

∑
F

ρ
F
· GF∞(v, w) · L(v + 1

2 , F ) · F

+
1

4πiκ

∑
χ

∫
<(s)= 1

2

〈Pé∗, Es,χ〉 · Es,χ ds

where Es is Es,1. To compute the pairing 〈Pé∗, Es,χ〉 in the continuous part, first consider an
Eisenstein series

E(g) =
∑

γ∈Pk\Gk

η(γg)

for η left Pk–invariant, left MA–equivariant and left NA–invariant. The Fourier expansion of this
Eisenstein series is

E(g) =
∑

ψ∈(Nk\NA)b
∫
Nk\NA

ψ(n)E(ng) dn

For a fixed non-trivial character ψ, the ψth Fourier term is∫
Nk\NA

ψ(n)E(ng) dn =
∫
Nk\NA

ψ(n)
∑

γ∈Pk\Gk

η(γng) dn

=
∑

w∈Pk\Gk/Nk

∫
(Nk ∩w−1Pkw)\NA

ψ(n) η(wng) dn

=
∫
Nk\NA

ψ(n) η(ng) dn +
∫
NA

ψ(n) η(w◦ng) dn

= 0 +
∫
NA

ψ(n) η(w◦ng) dn (where w◦ =
(

0 1
1 0

)
)

because ψ is non-trivial and η is left NA–invariant. Denote the ψth Fourier term by

(4.9) WE(g) = WE
η, ψ(g) =

∫
NA

ψ(n) η(w◦ng) dn
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Proposition 4.10. Fix s ∈ C with <(s) > 1, and let ϕ∞ ∈ Ω` with <(v), ` sufficiently large.
Then

〈Pé∗, Es,χ〉 = χ(d)

(∫
Z∞\G∞

ϕ∞ ·W
E

s, χ,∞

)
L(v + s̄, χ) · L(v + 1− s̄, χ)

L(2s̄, χ2)
· |d|−(v−s̄+1/2)

where d is a differental idele ( [W2], page 113, Definition 4) with component 1 at archimedean
places.

Proof: Fix non-trivial ψ on Nk\NA. For <(v) and ` both large, the modified Poincaré series
Pé∗(g) has sufficient (polynomial) decay, so that we can unwind it to obtain (see (4.6))

(4.11)
∫
ZAGk\GA

Pé∗(g)Es,χ(g) dg =
∫
ZANA\GA

∫
Nk\NA

ϕ̂ng(ψ)Es,χ(ng) dn dg

=
∫
ZANA\GA

ϕ̂g(ψ)
∫
Nk\NA

ψ(n)Es,χ(ng) dn dg =
∫
ZANA\GA

ϕ̂g(ψ)W
E

s,χ(g) dg

Since
ϕ̂g(ψ) =

∫
NA

ψ(n)ϕ(ng) dn

the last integral in (4.11) is∫
ZANA\GA

∫
NA

ψ(n)ϕ(ng)W
E

s,χ(g) dn dg =
∫
ZANA\GA

∫
NA

ϕ(ng)W
E

s,χ(ng) dn dg

=
∫
ZA\GA

ϕ(g)W
E

s,χ(g) dg(4.12)

The Whittaker function of the Eisenstein series factors over primes, into local factors depending
only upon the local data at ν,

WE
s,χ =

⊗
ν

WE
s,χ,ν

Thus, by (4.11) and (4.12),

〈Pé∗, Es,χ〉 =

(∫
Z∞\G∞

ϕ∞ ·W
E

s,χ,∞

)
·
∏
ν<∞

∫
Zν\Gν

ϕν(gν)W
E

s,χ,ν(gν) dgν

At finite ν, using an Iwasawa decomposition and the vanishing of ϕν off MνKν (see (3.2)), as
in the integration against cuspforms, the local factor is∫

k×ν

|a|vνW
E

s,χ,ν

(
a

1

)
da

However, for Eisenstein series, the natural normalization of the Whittaker functions differs
from that used for cuspforms, instead presenting the local Whittaker functions as images under
intertwining operators. Specifically, define the normalized spherical vector for data s, χν to be

ην(pk) = |a/d|sν · χν(a/d)
(

for p =
(
a ∗

d

)
∈ Pν and k ∈ Kν

)
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The corresponding spherical local Whittaker function for Eisenstein series is the meromorphically
continued integral (see (4.9))

WE
s,χ,ν(g) =

∫
Nν

ψν(n) ην(w◦ng) dn

The Mellin transform of the Eisenstein-series normalization WE
s,χ,ν is readily compared to the

Mellin transform of the usual normalization as follows. Let dν ∈ k×ν be such that

(o∗ν)
−1 = dν · oν

Let d be the idele with νth component dν at finite places ν and component 1 at archimedean places.
Then for finite ν the νth local integral is (see Appendix 2 for details),∫

k×ν

|a|vνW
E

s,χ,ν

(
a 0
0 1

)
da = |dν |1/2ν · Lν(v + s̄, χν) · Lν(v + 1− s̄, χν)

Lν(2s̄, χ2
ν)

· |dν |−(v+1−s̄)
ν χν(dν )

and the proposition follows. �
Accordingly, the spectral decomposition (4.8) is

Pé =
(∫

N∞

ϕ∞

)
· Ev+1 +

∑
F

(∫
Z∞\G∞

ϕ∞ ·WF,∞

)
· L(v + 1

2 , F ) · F

(4.13)

+
∑
χ

χ(d)
4πiκ

∫
<(s)= 1

2

(∫
Z∞\G∞

ϕ∞ ·WE
1−s, χ,∞

)
L(v + 1− s, χ) · L(v + s, χ)

L(2− 2s, χ2)
|d|−(v+s−1/2) · Es,χ ds

where we replaced s̄ by 1 − s, for <(s) = 1
2 , to maintain holomorphy of the integrand. The

archimedean-place Whittaker functions can be expressed in terms of the usual K–Bessel function
as follows. Let

ην(nmk) = ηs, ν(nmk) = |a/d|sν
(

for n ∈ Nν , m =
(
a

d

)
∈Mν , k ∈ Kν

)
The normalization of the Whittaker function is

WE
s, ν(g) =

∫
Nν

ψν(n) ην(w◦ng) dn (for <(s)� 0 and fixed non-trivial ψ)

Then, for ν archimedean and fixed non-trivial character ψ0, ν on kν

WE
s, ν

(
a

1

)
=
∫
kν

ψ0, ν(x)
∣∣∣∣ a

aaι + xxι

∣∣∣∣s
ν

dx = |a|1−sν

∫
kν

ψ0, ν(ax)
1

|1 + xxι|sν
dx

by replacing x by ax, where ι is the complex conjugation for ν ≈ C and the identity map for ν ≈ R.
The usual computation shows that

WE
s,R

(
a

1

)
=
|a|1/2

π−sΓ(s)

∫ ∞

0

e−π(t+ 1
t )|a| ts−

1
2
dt

t
=

2 |a|1/2Ks−1/2(2π|a|)
π−sΓ(s)
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and, similarly (with the classical measure doubled, as in Iwasawa-Tate theory)

WE
s,C

(
a

1

)
=

|a|
(2π)−2sΓ(2s)

∫ ∞

0

e−2π(t+ 1
t )|a| t2s−1 dt

t
=

2 |a|K2s−1(4π|a|)
(2π)−2sΓ(2s)

To simplify the integral over Z∞\G∞ in the continuous part of (4.13), let

Φν(x) = ϕν

(
1 x
0 1

)
(for ν archimedean)

Using the right Kν–invariance and an Iwasawa decomposition,∫
Zν\Gν

ϕν ·WE
s, ν =

∫
k×ν

∫
kν

|a|vν Φν(x)WE
s, ν

(
a

1

)
ψ0, ν(ax) dx da(4.14)

=
∫
k×ν

|a|vν Φ̂ν(a)WE
s, ν

(
a

1

)
da

For χ ∈ Ĉ0 absolutely unramified, we have WE
s, χ, ν = WE

s+itν , ν
, where tν ∈ R is the parameter of

the local component χν of χ. Then all archimedean integrals in the continuous part of the spectral
decomposition of Pé∗ are given by (4.14) with s replaced by 1− s− itν .

In particular, for ϕν specialized to (3.11),

(4.15)
∫
Zν\Gν

ϕν ·WE
s, ν =


Gν(s; v, w)
π−sΓ(s)

if ν ≈ R

Gν(s; v, w)
(2π)−2s−1Γ(2s)

for ν ≈ C

where Gν(s; v, w) is given in (4.2) and (4.3). Furthermore, with these choices of ϕν ,

(4.16)
∫
Nν

ϕν =


√
π

Γ(w−1
2 )

Γ(w2 )
for ν ≈ R

2π (w − 1)−1 if ν ≈ C

As usual, let r1 and r2 denote the number of real and complex embeddings of k, respectively.
Following [DG1], Proposition 5.10, we now prove

Theorem 4.17. Let ϕ be as in (3.11). Then the Poincaré series Pé(g) has meromorphic
continuation to a region in C2 containing v = 0, w = 1. As a function of w, for v = 0, it
is holomorphic in the half-plane <(w) > 11/18, except for w = 1 where it has a pole of order
r1 + r2 + 1.

Proof: Let Pé∗cusp and Pé∗cont be, respectively, the discrete and continuous parts of Pé∗. Then the
spectral decomposition (4.13) is

Pé = R(w) · Ev+1 + Pé∗cusp + Pé∗cont

(
where R(w) =

∫
N∞

ϕ∞

)
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the integral being computed by (4.16). As in the proof of Proposition 4.1, the series giving Pé∗cusp∑
F

ρ̄
F
G

F∞
(v, w)L(v + 1

2 , F ) · F

converges absolutely for (v, w) ∈ C2, away from the poles of Gν( 1
2 + iµ̄

F,ν
; v, w). The fact that

Pé∗cusp is equal to this spectral sum follows from the square integrability of Pé∗ for <(w) > 1
and large <(v) (see Theorem 2.7, (4.6) and Appendix 1). Furthermore, using (4.2), (4.3) and the
Kim-Shahidi bound for the local parameters |<(iµ

f,ν
)| < 1/9 (see [K], [KS]), the cuspidal part

Pé∗cusp is holomorphic for v = 0 and <(w) > 11/18.
Estimates for the continuous part are easier than those for the cuspidal part: the most delicate

feature, the Siegel-zero-type estimates from [HR], are replaced by the easier de la Vallée-Poussin or
Hadamard-type lower bounds for GL1 L–functions on <(s) = 1, and by trivial convexity bounds
for the L–functions in the numerator. Thus, the integrands in the integrals in (4.13) have enough
decay in the parameters to ensure absolute convergence of the integral and sum over χ. Also, note
that Pé∗cont is holomorphic for <(v) > 1

2 and <(w) > 1. Aiming to analytically continue to v = 0,
first take <(v) = 1/2 + ε, and move the line of integration from σ = 1/2 to σ = 1/2 − 2ε. This
picks up the residue of the integrand corresponding to χ trivial, due to the pole of ζk(v + s) at
v + s = 1, that is, at s = 1− v. Its contribution is

1
2
Q(v; v, w) · |d|1/2 · |d|−1/2 · E1−v =

1
2
Q(v; v, w) · E1−v

where
Q(s; v, w) =

∫
Z∞\G∞

ϕ∞ ·WE
s,∞

is the ratio of products of gamma functions computed by (4.15). This expression of Pé∗cont is
holomorphic in v in the strip

1
2
− ε ≤ <(v) ≤ 1

2
+ ε

Now, take v with <(v) = 1/2 − ε, and then move the vertical integral from σ = 1/2 − 2ε back
to σ = 1/2. This picks up (−1) times the residue at the pole of ζk(v+1− s) at 1, that is, at s = v,
with another sign due to the sign of s inside this zeta function. Thus, we pick up the residue

1
2
Q(1− v; v, w) · ζk(2v)

ζk(2− 2v)
· |d|−2v+1 · Ev =

1
2
Q(1− v; v, w) · ζ∞(2− 2v)

ζ∞(2v)
· E1−v

where the last identity was obtained from the functional equation of the Eisenstein series Ev. Since
Gν(s; v, w) defined in (4.2) and (4.3) is invariant under s −→ 1 − s, it follows by (4.15) that the
above residues are equal. Note that the part of Pé∗cont corresponding to the vertical line integral
and the sum over χ is now holomorphic in a region of C2 containing v = 0, w = 1. In particular,
for v = 0, this part of the continuous spectrum is holomorphic in the half-plane <(w) > 1/2.

On the other hand, by direct computation, the apparent pole of R(w)Ev+1 at v = 0 (independent
of w) cancels the corresponding pole of Q(v; v, w)E1−v. To establish that the order of the pole
at w = 1, when v = 0, is r1 + r2 + 1, consider the most relevant terms (recall (4.15), (4.16)) in
the Laurent expansions of R(w)Ev+1 and Q(v; v, w)E1−v. Putting them together, we obtain an
expression

1
v
·
[

c1
(w − 1)r1+r2

− c2
(2v + w − 1)r1+r2

]
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for some constants c1, c2. As there is no pole at v = 0, we have c1 = c2. Canceling the factor 1/v,
and then setting v = 0, the assertion follows.

This completes the proof. �

§5. Asymptotics

Let k be a number field with r1 real places and r2 complex places. Let ϕ be as in (3.11). By
Theorem 3.12, for <(v) and <(w) sufficiently large, the integral I(χ0) = I(v, w) defined by (3.6) is

(5.1) I(v, w) =
∑

χ∈ bC0,S

1
2πi

∫
<(s)=σ

L(1− s+ v, , f1 ⊗ χ) L(s, f̄2 ⊗ χ)K∞(s, v, w, χ) ds

where K∞(s, v, w, χ) is given by (3.9) and (3.10), and where the sum is over χ ∈ Ĉ0 unramified
outside S and with bounded ramification, depending only upon f1 and f2.

By Theorem 4.17, I(v, w) has meromorphic continuation to a region in C2 containing v = 0,
w = 1. In particular, for f1 = f2 = f̄ , then I(0, w) is holomorphic for <(w) > 11/18, except for
w = 1 where it has a pole of order r1 + r2 + 1.

We want to shift the line of integration to <(s) = 1
2 in (5.1) and set v = 0. To do so, we need

an analytic continuation and reasonable decay in |=(s)| for the kernel function K∞(s, v, w, χ).
In fact, for applications, we want precise asymptotics as the parameters s, v, w, χ vary. By
the decomposition (3.10), the analysis of the kernel K∞(s, v, w, χ) reduces to the corresponding
analysis of the local component Kν(s, v, w, χν), for ν|∞. For ν complex, the asymptotic formula
in [DG2] Theorem 6.2 suffices. For coherence, the simple computation is included which matches,
as it should, the local integral (3.9), for ν complex, the integral (4.15) in [DG2].

Fix a complex place ν. Every irreducible unitary representation of GL2(C) is a principal series
representation (see [GJ], [GGPS]), and the spherical ones are spherical principal series. Recall that
any character χν of Zν\Mν ≈ C× has the form

χν(mν) = |zν |
`ν
2 +itν

C
z−`νν

(
mν =

(
zν 0
0 1

)
, tν ∈ R, `ν ∈ Z

)
Then, the local integral (3.9) at ν is of the form

Kν(s, v, w, χν) =

∞∫
0

∞∫
0

∫
C

π∫
−π

π∫
−π

(|x|2 + 1)
−w

e2πi·TrC/R(a1xe
iθ1−a2xe

iθ2 )

· a2v+1−2s−2itν
1 K2iµ1

(4πa1) a2s+2itν−1
2 K2iµ̄2

(4πa2) ei`νθ1e−i`νθ2 dθ1dθ2 dx da1da2

Replacing x by x/a1, we obtain

Kν(s, v, w, χν) =

∞∫
0

∞∫
0

∫
C

π∫
−π

π∫
−π

(
a1√
|x|2 + a2

1

)2w

e
2πi·TrC/R

(
xeiθ1− a2

a1
xeiθ2

)
· a2v−1−2s−2itν

1 K2iµ1
(4πa1) a2s+2itν−1

2 K2iµ̄2
(4πa2) ei`νθ1e−i`νθ2 dθ1dθ2 dx da1da2

Upon further substituting

a1 = r cosφ x1 = r sinφ cos θ x2 = r sinφ sin θ a2 = u cosφ
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with 0 ≤ φ ≤ π
2 and 0 ≤ θ ≤ 2π, then

Kν(s, v, w, χν) =

∞∫
0

∞∫
0

π
2∫

0

2π∫
0

π∫
−π

π∫
−π

(cosφ)2w+2v−1 e2πi·TrC/R(r sinφ·ei(θ+θ1)−u sinφ·ei(θ+θ2))

· r2v+1−2s−2itνK2iµ1
(4πr cosφ)u2s+2itν−1K2iµ̄2

(4πu cosφ) ei`νθ1e−i`νθ2 sinφ dθ1dθ2 dθ dφ dr du

Using the Fourier expansion

eit sin θ =
∞∑

k=−∞

Jk(t) eikθ

we obtain

Kν(s, v, w, χν) = (2π)3
∞∫
0

∞∫
0

π
2∫

0

K2iµ1
(4πr cosφ)K2iµ̄2

(4πu cosφ)J`ν (4πr sinφ)J`ν (4πu sinφ)

· u2s+2itν r2v+2−2s−2itν (cosφ)2w+2v−1 sinφ
dφdrdu

ru

In the notation of [DG2], equation (4.15), this is essentially K`ν (2s+ 2itν , 2v, 2w). It follows that
Kν(s, v, w, χν) is analytic in a region D : <(s) = σ > 1

2 − ε0, <(v) > −ε0 and <(w) > 3
4 , with a

fixed (small) ε0 > 0, and moreover, we have the asymptotic formula

Kν(s, v, w, χν) = π−2v+1A(v, w, µ1 , µ2) ·
(
1 + `2ν + 4(t+ tν)2

)−w
·
[
1 + Oσ, v, w, µ1 , µ2

((√
1 + `2ν + 4(t+ tν)2

)−1
)]

(5.2)

where A(v, w, µ1, µ2) is the ratio of products of gamma functions

(5.3)

22w−2v−4 Γ(w + v + iµ1 + iµ̄2)Γ(w + v − iµ1 + iµ̄2)Γ(w + v + iµ1 − iµ̄2)Γ(w + v − iµ1 − iµ̄2)
Γ(2w + 2v)

For ν real, the corresponding argument (including the integrals that arise from the (anti-)
holomorphic discrete series) is even simpler (see [DG1] and [Zh2]). In this case, the asymptotic
formula of Kν(s, v, w, χν) becomes

Kν(s, v, w, χν) = B(v, w, µ1 , µ2) ·
(
1 + |t+ tν |

)−w
·
[
1 + Oσ, v, w, µ1 , µ2

((
1 + |t+ tν |

)−1
)]

(5.4)

where

B(v, w, µ1, µ2) = 2w−2 π−v
Γ(w+v+iµ1+iµ2

2 )Γ(w+v−iµ1+iµ2
2 )Γ(w+v+iµ1−iµ2

2 )Γ(w+v−iµ1−iµ2
2 )

Γ(w + v)
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It now follows that for <(w) sufficiently large,

(5.5) I(0, w) =
∑

χ∈ bC0,S

1
2π

∞∫
−∞

L
(

1
2 − it, , f1 ⊗ χ

)
· L
(

1
2 + it, , f̄2 ⊗ χ

)
K∞( 1

2 + it, 0, w, χ) dt

Since I(0, w) has analytic continuation to <(w) > 11/18, a mean value result can already be
established by standard arguments. For instance, assume f1 = f2 = f̄ , and choose a function h(w)
which is holomorphic and with sufficient decay (in |=(w)|) in a suitable vertical strip containing
<(w) = 1. For example, one can choose a suitable product of gamma functions. Consider the
integral

(5.6)
1
i

∫
<(w)=L

I(0, w)h(w)Tw dw

with L a large positive constant. Assuming h(1) = 1, we have the asymptotic formula

(5.7)
∑

χ∈ bC0,S

∞∫
−∞

|L( 1
2 + it, f ⊗ χ)|2 ·M

χ, T
(t) dt ∼ AT (log T )

r1+r2

for some computable positive constant A, where

(5.8) M
χ, T

(t) =
1

2πi

∫
<(w)=L

K∞( 1
2 + it, 0, w, χ)h(w)Tw dw

For a character χ ∈ Ĉ0, put

(5.9) κ
χ
(t) =

∏
ν≈R

(1 + |t+ tν |) ·
∏
ν≈C

(
1 + `2ν + 4(t+ tν)2

)
(t ∈ R)

where itν and `ν are the parameters of the local component χν of χ. Since χ is trivial on the
positive reals, ∑

ν|∞

dν tν = 0

with dν = [kν : R] the local degree. For applications, it might be more convenient to work with a
slightly modified function Z(w) defined by

(5.10) Z(w) =
∑

χ∈ bC0,S

∞∫
−∞

|L( 1
2 + it, f ⊗ χ)|2 · κχ(t)−w dt

obtained from the function I(0, w) by taking just the main terms in the asymptotic formulas (5.2)
and (5.4) of the local components Kν(s, 0, w, χν). Its analytic properties can be transferred (with
some technical adjustments) from those of I(0, w). As an illustration of this fact, we show that
the right-hand side of (5.10) is absolutely convergent for <(w) > 1. Using the asymptotic formulae
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(5.2) and (5.4), it clearly suffices to verify the absolute convergence of the right-hand side of (5.5),
with f1 = f2 = f̄ , when w > 1.

To see the absolute convergence of the defining expression (5.5) for I(0, w), first note that the
triple integral expressing Kν(s, v, w, χν) can be written as

(5.11) Kν( 1
2 + it, 0, w, χν) = (2π)3

π
2∫

0

(cosφ)2w−1 sinφ · |Vµ
f,ν

, χν
(t, φ)|2 dφ (for ν ≈ C)

when v = 0 and <(s) = 1
2 , where

(5.12) Vµ
f,ν

, χν
(t, φ) =

∞∫
0

u2i(tν+t)K2iµ
f,ν

(4πu cosφ)J|`ν |
(4πu sinφ) du

Here we also used the well-known identity J−`ν (z) = (−1)`νJ`ν (z). The convergence of the last
integral is justified by 6.576, integral 3, page 716 in [GR]. For ν ≈ R, the local integral (3.9)
has a similar form, when v = 0 and <(s) = 1/2, as it can be easily verified by a straightforward
computation.

The form of the integral (5.11) allows us to adopt the argument used in the proof of Landau’s
Lemma to our context giving the desired conclusion. We shall follow [C], proof of Theorem 6, page
115.

Choose a sufficiently large real number a such that the right-hand side of (5.5) is convergent at
w = a. Since I(0, w) is holomorphic for <(w) > 1, its Taylor series

∞∑
j=0

(w − a)j

j!
I(j)(0, a)(5.13)

=
1
2π

∞∑
j=0

(w − a)j

j!

∑
χ∈ bC0,S

∞∫
−∞

|L( 1
2 + it, f ⊗ χ)|2 · K(j)

∞ ( 1
2 + it, 0, a, χ) dt

has radius of convergence a − 1. Using the structure of (5.11) and its analog at real places, we
have that

(w − a)j · K(j)
∞ ( 1

2 + it, 0, a, χ) ≥ 0 (for w ≤ a)

Having all terms non-negative in (5.13) when w < a, we can interchange the first sum with the
second and the integral. Since

K∞( 1
2 + it, 0, w, χ) =

∞∑
j=0

(w − a)j

j!
K(j)
∞ ( 1

2 + it, 0, a, χ)

the absolute convergence of (5.10) for <(w) > 1 follows.
Setting w = 1 + ε, then for arbitrary T > 1,∑

χ∈ bC0,S

∫
Iχ (T )

|L( 1
2 + it, f ⊗ χ)|2 · T−1−ε dt < Z(1 + ε) �ε 1
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where Iχ(T ) = {t ∈ R : κχ(t) ≤ T}, and hence

(5.14)
∑

χ∈ bC0,S

∫
Iχ (T )

|L( 1
2 + it, f ⊗ χ)|2 dt �ε T

1+ε

Only finitely many characters contribute to the left-hand sum. This estimate is compatible with
the convexity bound, in the sense that it implies for example that

T∫
0

|L( 1
2 + it, f)|2 dt �ε T

[k:Q]+ε

Therefore, the function Z(w) defined by (5.10) leads to averages of reasonable size suitable for
applications. We return to a further study of the analytic properties of this function in a
forthcoming paper.

Concluding remarks: The choice (3.11) of the data ϕν at archimedean places was made for
simplicity, to illustrate the non-vacuousness of the structural framework. Specifically, this choice
yields cogent asymptotics, and gives an averaging that is not too long, i.e., is compatible with the
convexity bound. This choice sufficed for our purposes, which were to stress generality, leaving
aside more technical issues necessary to obtain sharper results. Its use allowed quick understanding
of the size of the averages via the pole at w = 1.

The function I(v, w) in (5.1) is analytic for v in a neighborhood of 0 and <(w) sufficiently large,
from the analytic properties of K∞(s, v, w, χ) in Section 5. By computing I(v, w) using (4.13), this
observation can be used to find the value of the constant κ given in (4.7).

§Appendix 1. Convergence of Poincaré series

The aim of this appendix is to discuss the proofs of Proposition 2.6 and Theorem 2.7. Given
the lack of complete arguments in the literature, we have given a full account, applicable more
generally. For a careful discussion of some aspects of GL(2), see [GJ] and [CPS1]. Note that the
latter source needs some small corrections in the inequalities on pages 28 and 29.

We first prove the absolute convergence of the Poincaré series, uniformly on compacts on GA,
for G = GL2 over a number field k with ring of integers o, for <(v) > 1 and <(w) > 1. Second, we
recall the notion of norm on a group, to prove convergence in L2 for admissible data (see the end
of Section 2), also reproving pointwise convergence by a more broadly applicable method.

Toward our first goal, we need an elementary comparison of sums and integrals under mild
hypotheses. Let V1, . . . , Vn be finite-dimensional real vector spaces, with fixed inner products, and
put

V = V1 ⊕ . . .⊕ Vn (orthogonal direct sum)

with the natural inner product. Fix a lattice Λ in V , and let F be a period parallelogram for Λ
in V , containing 0. Let g be a real-valued function on V with g(ξ) ≥ 1, such that 1/g has finite
integral over V , and is multiplicatively bounded on each translate ξ +F , in the sense that, for each
ξ ∈ Λ,

sup
y∈ξ+F

1
g(y)

� inf
y∈ξ+F

1
g(y)

(with implied constant independent of ξ)
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For a differentiable function f , let ∇if be the gradient of f in the Vi variable. Then,∑
ξ∈Λ

|f(ξ)| �
∫
V

|f(ξ)| dξ +
∑
i

sup
ξ∈V

(
g(ξ) · |∇if(ξ)|

)
with the implied constant independent of f .

The following calculus argument gives this comparison (Abel summation). Let vol(Λ) be the
natural measure of V/Λ. Certainly,

vol(Λ) ·
∑
ξ∈Λ

|f(ξ)| =
∑
ξ∈Λ

|f(ξ)| ·
∫
ξ+F

dx

and
f(ξ)

∫
ξ+F

dx =
∫
ξ+F

(f(ξ)− f(x)) dx +
∫
ξ+F

f(x) dx

The sum over ξ ∈ Λ of the latter integrals is obviously the integral of f over V , as in the claim. The
differences f(ξ)− f(x) require further work. For i = 1, . . . , n, let xi and yi be the Vi–components
of x, y ∈ V , respectively. Let

di(F ) = sup
x,y∈F

|xi − yi|

By the Mean Value Theorem, we have the easy estimate

|f(ξ)− f(x)| ≤
n∑
i=1

di(F ) · sup
y∈ξ+F

|∇if(y)|

Then, ∑
ξ∈Λ

∫
ξ+F

|f(ξ)− f(x)| dx �
∑
ξ∈Λ

n∑
i=1

sup
y∈ξ+F

|∇if(y)|

=
n∑
i=1

∑
ξ∈Λ

sup
y∈ξ+F

(
1

g(y)
g(y)|∇if(y)|

)
≤

n∑
i=1

∑
ξ∈Λ

(
sup

y∈ξ+F

1
g(y)

)
·
(

sup
y∈V

g(y) |∇if(y)|
)

�
∫
V

du

g(u)
·
∑
i

sup
y∈V

(
g(y)|∇if(y)|

)
�
∑
i

sup
y∈V

(
g(y)|∇if(y)|

)
This gives the indicated estimate.

The above estimate will show that the Poincaré series with parameter v is dominated by the
sum of an Eisenstein series at v and an Eisenstein series at v + 1 + ε for every ε > 0, under
mild assumptions on the archimedean data. Such an Eisenstein series converges absolutely and
uniformly on compacts for <(v) > 1, either by Godement’s criterion, in classical guise in [B], or
by more elementary estimates that suffice for GL2. Thus, the Poincaré series converges absolutely
and uniformly for <(v) > 1.

The assumptions on the archimedean data

Φ∞(x) = ϕ∞

(
1 x

1

)
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are that ∫
k∞

|Φ∞(ξ)| dξ < +∞

and, letting ∇ν be the gradient along the summand kν of k∞, that, for each ν|∞,

sup
ξ∈k∞

|∇νΦ∞(ξ)| < ∞

The comparison argument is as follows. To make a vector from which to form an Eisenstein series,
left-average the kernel

ϕ

((
a

d

)(
1 x

1

))
= |a/d|v · Φ(x) (extended by right KA–invariance)

for the Poincaré series over Nk. That is, form

ϕ̃(g) =
∑
β∈Nk

ϕ(β · g)

This must be proven to be dominated by a vector (or vectors) from which Eisenstein series are
formed. The usual vector for standard spherical Eisenstein series is

ηs

(
a ∗

d

)
= |a/d|s

extended to GA by right KA–invariance. We claim that

ϕ̃ � ηv + ηv+1+ε (for all ε > 0)

Since all functions ϕ, ϕ̃ and ηs are right KA–invariant and have trivial central character, it suffices
to consider g = nh with n ∈ NA and

h =
(
y

1

)
∈ HA

Let

nt =
(

1 t
1

)
We have

ϕ(nξ · nxh) = ϕ(h · h−1nξnxh) = ϕ(h · h−1nξ+xh) = |y|v · Φ
(

1
y · (ξ + x)

)
Thus, to dominate the Poincaré series by an Eisenstein series, it suffices to prove that∑

ξ∈k

Φ
(

1
y · (ξ + x)

)
� 1 + |y| (uniformly in x ∈ NA, y ∈ J)

Since ϕ̃ is left Nk–invariant, it suffices to take x ∈ A to lie in a set of representatives X for A/k,
such as

X = k∞/o ⊕
∏
ν<∞ oν
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where, by abuse of notation, k∞/o refers to a period parallelogram for the lattice o in k∞. As ϕ
and ϕ̃ are left Hk–invariant, so we can adjust y in J by k×. Since J1/k× is compact, we can choose
representatives in J for J/k× lying in C ′ · (0,+∞) for some compact set C ′ ⊂ J1, with (0,+∞)
embedded in J as usual by

t −→ (t1/n, t1/n, . . . , t1/n, 1, 1, . . . , 1, . . . ) (non-trivial entries at archimedean places)

where n = [k : Q]. Further, for simplicity, we may adjust the representatives y such that |y|ν ≤ 1
for all finite primes ν. The compactness of C ′ implies that

|y| ≤
∏
ν|∞ |yν |ν � |y| (with implied constant depending only on k)

Likewise, due to the compactness, the archimedean valuations of representatives have bounded
ratios.

At a finite place, Φν
(

1
y · (x+ ξ)

)
vanishes unless

1
y
· (x+ ξ) ∈ oν

That is, since we want a uniform bound in x ∈ oν , this vanishes unless

ξ ∈ oν + y · oν ⊂ oν

since we have taken representatives y with yν integral at all finite ν. Thus, the sum over ξ in k
reduces to a sum over ξ with archimedean part in the lattice Λ = o ⊂ k∞.

Setting up a comparison as above, let

V = k∞ =
⊕
ν|∞

kν

Let vol(Λ) be the volume of Λ. For archimedean place ν let ∇ν be the gradient along kν , and
dν(Λ) the maximum of |xν − yν |ν for x, y ∈ F , a fixed period parallelogram for Λ in k∞. We have∑

ξ∈Λ

Φ
(

1
y · (ξ + x)

)
�
∫
k∞

Φ∞
(

1
y · (ξ + x)

)
dξ +

∑
ν|∞

sup
ξ∈k∞

(
g(ξ) · |∇νΦ∞(ξ)|

)
for any suitable weight function g. In the integral, replace ξ by ξ−x, and then by ξ · y, to see that∫

k∞

Φ∞
(

1
y · (ξ + x)

)
dξ = |y|∞ ·

∫
k∞

Φ∞(ξ) dξ � |y| ·
∫
k∞

Φ∞(ξ) dξ

with the implied constant depending only upon k, using the choice of representatives y for J/k×.
To estimate the sum, for x ∈ k∞, fix ε > 0 and take weight function

g(ξ) =
∏
ν|∞ (1 + |ξ|2ν)

1
2+ε

This is readily checked to have the multiplicative boundedness property needed: the function g is
continuous, and for |ξ| ≥ 2|x|, we have the elementary

1
2 · |ξ| ≤ |ξ − x| ≤ 2 · |ξ|
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from which readily follows the bound for g(ξ).
What remains is to compute the indicated supremums with attention to their dependence on y.

At an archimedean place ν,

sup
ξ∈k∞

(
g(ξ) · |∇νΦν

(
1
y · (ξ + x)

)
|
)

= sup
ξ∈k∞

(
g(ξ − x) · |∇νΦν

(
1
y · ξ

)
|
)

� sup
ξ∈k∞

(
g(ξ) · |∇νΦν

(
1
y · ξ

)
|
)

by using the boundedness property of g. Then replace ξ by ξ · y, to obtain

sup
ξ∈k∞

(g(y · ξ) · |∇νΦν(ξ)|)

Since
(1 + |y|2ν |ξ|2ν) ≤ (1 + |y|2ν) · (1 + |ξ|2ν) (for all ν|∞)

we have g(y · ξ) ≤ g(y) · g(ξ), and

sup
ξ∈k∞

(g(y · ξ) · |∇νΦν(ξ)|) ≤ g(y) · sup
ξ∈k∞

(
g(ξ) · |∇νΦν(ξ)|

)
Here the weighted supremums of the gradients appear, which we have assumed finite.

Finally, estimate
g(y) =

∏
ν|∞

(1 + |y|2ν)

with y in our specially chosen set of representatives. For these representatives, for any two
archimedean places ν1 and ν2, we have

|y|
nν1
ν1
� |y|

nν2
ν2

where the nνi are the local degrees nνi = [kνi : R]. Therefore,

|y|ν � |y|nν/n

where n =
∑
ν nν is the global degree. Thus,∏

ν|∞

(1 + |y|2ν) � 1 + |y|2

Then, ∏
ν|∞

(1 + |y|2ν)
1
2+ε � (1 + |y|2) 1

2+ε

Putting this all together, for every ε > 0

ϕ̃

(
y ∗
0 1

)
� |y|v · (1 + |y|2) 1

2+ε = |y|v + |y|v+1+2ε = ηv

(
y ∗
0 1

)
+ ηv+1+2ε

(
y ∗
0 1

)
which is the desired domination of the Poincaré series by a sum of Eisenstein series.
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For the particular choice of archimedean data

Φ∞(ξ) =
∏
ν≈R

1
(1 + ξ2)wν/2

·
∏
ν≈C

1
(1 + ξ ξ)wν

the integrability condition is met when <(wν) > 1 for all archimedean ν. Similarly, the weighted
supremums of gradients are finite for <(wν) > 1.

Altogether, this particular Poincaré series is absolutely convergent for <(v) > 1 + 2ε and
<(wν) > 1 + ε, for every ε > 0. This proves Proposition 2.6.

Soft convergence estimates on Poincaré series: Now we give a different approach to convergence,
more convenient for proving square integrability of Poincaré series. It is more robust, and does also
reprove pointwise convergence, but gives a weaker result than the previous more explicit approach.
Let G be a (locally compact, Hausdorff, separable) unimodular topological group. Fix a compact
subgroup K of G. A norm g −→ ‖g‖ on G is a positive real-valued continuous function on G with
properties

• ‖g‖ ≥ 1 and ‖g−1‖ = ‖g‖
• Submultiplicativity: ‖gh‖ ≤ ‖g‖ · ‖h‖
• K–invariance: for g ∈ G, k ∈ K, ‖k · g‖ = ‖g · k‖ = ‖g‖
• Integrability: for some σo ≥ 0∫

G

‖g‖−σ dt < +∞ (for all σ > σo)

For a discrete subgroup Γ of G, we claim the corresponding summability:∑
γ∈Γ

1
‖γ‖σ

< +∞ (for all σ > σo)

The proof is as follows. From
‖γ · g‖ ≤ ‖γ‖ · ‖g‖

for σ > 0
1

‖γ‖σ · ‖g‖σ
≤ 1
‖γ · g‖σ

Invoking the discreteness of Γ in G, let C be a small open neighborhood of 1 ∈ G such that

C ∩ Γ = {1}

Then,∫
C

dg

‖g‖σ
·
∑
γ∈Γ

1
‖γ‖σ

≤
∫
C

∑
γ∈Γ

1
‖γ · g‖σ

dg =
∑
γ∈Γ

∫
γ−1C

1
‖g‖σ

dg ≤
∫
G

dg

‖g‖σ
< +∞

This gives the indicated summability. Let H be a closed subgroup of G, and define a relative norm

‖g‖
H

= inf
h∈H∩Γ

‖h · g‖
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From the definition, there is the left H ∩ Γ–invariance

‖h · g‖
H

= ‖g‖
H

(for all h ∈ H ∩ Γ)

Note that ‖ ‖
H

depends upon the discrete subgroup Γ.

Moderate increase, sufficient decay: Let H be a closed subgroup of G. A left H ∩ Γ–invariant
complex-valued function f on G is of moderate growth modulo H ∩ Γ, when, for some σ > 0,

|f(g)| � ‖g‖σ
H

The function f is rapidly decreasing modulo H ∩ Γ if

|f(g)| � ‖g‖−σ
H

(for all σ > 0)

The function f is sufficiently rapidly decreasing modulo H ∩ Γ (for a given purpose) if

|f(g)| � ‖g‖−σ
H

(for some sufficiently large σ > 0)

Since ‖g‖
H

is an infimum, for σ > 0 the power ‖g‖−σ is a supremum

1
‖g‖σH

= sup
h∈H∩Γ

1
‖hg‖σ

Pointwise convergence of Poincaré series: We claim that, for f left H∩Γ–invariant and sufficiently
rapidly decreasing mod H ∩ Γ, the Poincaré series

Pf (g) =
∑

γ∈(H∩Γ)\Γ

f(γ · g)

converges absolutely and uniformly on compacts. To see this, first note that, for all h ∈ H ∩ Γ,

‖γ‖
H
≤ ‖h · γ‖ = ‖h · γg · g−1‖ ≤ ‖hγg‖ · ‖g−1‖

Thus, taking the inf over h ∈ H ∩ Γ,

‖γ‖
H

‖g−1‖
≤ ‖γ · g‖

H

Thus, for σ > 0,
1

‖γ · g‖σ
H

≤ ‖g‖
σ

‖γ‖σ
H

and

Pf (g) =
∑

γ∈(H∩Γ)\Γ

f(γ · g) �
∑

γ∈(H∩Γ)\Γ

1
‖γ · g‖σ

H

≤ ‖g‖σ ·
∑

γ∈(H∩Γ)\Γ

1
‖γ‖σ

H

≤ ‖g‖σ ·
∑

γ∈(H∩Γ)\Γ

∑
h∈H∩Γ

1
‖h · γ‖σ

= ‖g‖σ ·
∑
γ∈Γ

1
‖γ‖σ

� ‖g‖σ (for σ > σo)
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estimating a sup of positive terms by the sum, for σ > σo to assure that the sum over Γ converges.

Moderate growth of Poincaré series: Next, we claim that Poincaré series are of moderate growth
modulo Γ, namely, that

Pf (g) � ‖g‖σΓ (for all σ > σo)

Indeed, the previous estimate is uniform in g, and the left-hand side is Γ–invariant. That is, for
all γ ∈ Γ,

Pf (g) = Pf (γ · g) � ‖γ · g‖σ (for all σ > σo, with implied constant independent of g, γ)

Taking the inf over γ gives the assertion.

Square integrability of Poincaré series: Next, we claim that for f leftH∩Γ–invariant and sufficiently
rapidly decreasing mod H ∩ Γ, Pf is square-integrable on Γ\G. Specifically, assume that

|f(g)| � |g|−2σ (for some σ > σo)

Unwind, and use the assumed estimate on f along with the above-proven moderate growth of the
Poincaré series: ∫

Γ\G
|Pf |2 =

∫
(H∩Γ)\G

|f | · |Pf | �
∫

(H∩Γ)\G
‖g‖−2σ

H
· ‖g‖σ

H
dg

Estimating a sup by a sum, and unwinding further,∫
(H∩Γ)\G

‖g‖−σ
H

dg ≤
∫

(H∩Γ)\G

∑
h∈(H∩Γ)\Γ

‖h · g‖−σ dg =
∫
G

‖g‖−σ dg < +∞

since σ > σo. This proves the square integrability of the Poincaré series.

Construction of a norm on PGL2(A): We want a norm on G = PGL2(A) over a number field k
that meets the conditions above, including the integrability, with K the image in PGL2(A) of the
maximal compact ∏

ν≈R
O2(R)×

∏
ν≈C

U(2)×
∏
ν<∞

GL2(oν)

of GL2(A). We take Γ to be the image in PGL2(A) of GL2(k). Let g be the algebraic Lie algebra
of GL2 over k, so that, at each place ν of k,

gν = {2-by-2 matrices with entries in kν}

Let ρ denote the Adjoint representation of GL2 on g, namely,

ρ(g)(x) = gxg−1 (for g ∈ GL2 and x ∈ g)

The kernel of ρ on GL2 is the center Z, so the image G of GL2 under ρ is PGL2. As expected, let

Gν = ρ(GL2(kν)) = GL2(kν)/Zν Kν = ρ(GL2(oν)) = GL2(oν)/(Zν ∩GL2(oν))



36 ADRIAN DIACONU PAUL GARRETT

and
Γ = Gk = ρ(GL2(k)) = GL2(k)/Zk

Since Γ is a subgroup of GLk(gk), it is discrete in the adelization of GLk(gk), so is discrete in GA.
Let {eij} be the 2-by-2 matrices with non-zero entry just at the (i, j)th location, where the entry
is 1.

At an archimedean place ν of k, put a Hilbert space structure on gν by

〈x, y〉 = tr(y∗x)

where y∗ is y–transpose for ν real, and y–transpose-conjugate for ν complex. We put the usual
(sup-norm) operator norm on linear operators T on gν , namely

|T |op = sup
|x|≤1

|Tx|

By design, since the inner product on gν is ρ(Kν)–invariant, this operator norm is invariant under
ρ(Kν). Note that at complex places this set-up effectively uses a classical normalization of the
absolute value on C, rather than the product-formula normalization.

For a non-archimedean local field k with norm | · |ν and ring of integers o, give gν the sup-norm

|
∑
ijaij eij | = sup

ij
|aij |ν (with aij ∈ kν)

There is the operator norm on GLkν
(gν) given by

|g|op = sup
x∈V, |x|≤1

|g · x|

By design, this norm is invariant under ρ(Kν).

Norms on local groups and adele groups: For any place ν of k, define a (local) norm ‖g‖ν on the
image Gν = PGL2(kν) of GL2(kν) in GLkν (gν) by

‖g‖ν = max{|g|op, |g−1|op}

Since the norm on gν is Kν–invariant, and Kν is stable under inverse, the operator norms are left
and right Kν–invariant, and the norms ‖ ‖ν are left and right Kν–invariant. Note that for ν <∞
the operator norm is 1 on Kν . To prove that

‖g · h‖ν ≤ ‖g‖ν · ‖h‖ν

use the definition:
‖g · h‖ν = max{|gh|op, |h−1g−1|op}

≤ max{|g|op · |h|op, |g−1|op · |h−1|op} ≤ max{|g|op, |g−1|op} ·max{|h|op, |h−1|op} = ‖g‖ν · ‖h‖ν

For g = {gν} in the adele group GA, let

‖g‖ =
∏
ν ‖gν‖ν

The factors in the product are 1 for all but finitely many places. The left and right K–invariance
for K =

∏
ν Kν follows from the local Kν–invariance. Invariance under inverse is likewise clear.
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Integrability: Toward integrability, we explicitly bound the local integrals∫
Gν

‖g‖−σν dg

At finite primes, use the p–adic Cartan decomposition (here just the elementary divisor theorem)
inherited from GL2(kν) via the quotient map, namely,

Gν =
⊔

δ∈Aν/(Aν∩ZνKν)

Kν · δ ·Kν (where Aν is diagonal matrices)

By conjugating by permutation matrices and adjusting by Zν , we may assume, further, that

δ =
(
δ1

1

)
(with |δ1| ≥ 1)

For any choice $ν of local parameter for kν , we may adjust by Aν ∩Kν so that δ1 is a power of
$. On a given Kν double coset, the norm is

‖Kν · δ ·Kν‖ν = ‖δ‖ν = max{|ρ(δ)|op, |ρ(δ−1)|op} = max{|δ1|ν , |δ1|−1
ν }

and
meas (KνδKν) = meas (Kν) · card(Kν\KνδKν)

Let q = qν be the residue field cardinality, and let |δ|ν = q` with ` ≥ 0. Then,

card Kν\KνδKν = card (Kν ∩ δ−1Kνδ)\Kν ≤ card Kν(`)\Kν

where Kν(`) is a sort of congruence subgroup, namely,

Kν(`) =
{(

a b
c d

)
∈ Kν : c ∈ $` · oν

}
Let K ′

ν = {g ∈ Kν : g = I2 mod $o}, and let Fq be the finite field with q elements. We have an
elementary estimate

[Kν : Kν(1)] =
[Kν : K ′

ν ]
[Kν(1) : K ′

ν ]
= card{lines in F2

q} =
q2 − 1
q − 1

= q + 1

and
[Kν(`) : Kν(`+ 1)] = q (for ` ≥ 1)

Thus,

[Kν : Kν(`)] ≤ (1 +
1
q
) · q` (for ` ≥ 1)

Thus, the integral of ‖g‖−σν has an upper bound∫
Gν

dg

‖g‖σν
≤ 1 + (1 +

1
q
)
∑
`≥1

q−σ` · q` ≤ 1 + (1 +
1
q
)
∑
`≥1

(q1−σ)`
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For σ > 1, the geometric series converges. Thus,∫
Gν

dg

‖g‖σν
≤ 1 + (1 +

1
q
) · q1−σ

1− q1−σ
=

1 + q−σ

1− q1−σ
=

1− q−2σ

(1− q−σ)(1− q1−σ)

Note that there is no leading constant.
The integrability condition on the adele group can be verified by showing the finiteness of the

product of the corresponding local integrals. Since there are only finitely many archimedean places,
it suffices to consider the product over finite places. By comparison to the zeta function of the
number field k, ∏

ν<∞

1− q−2σ
ν

(1− q−σν )(1− q1−σν )
< ∞ (for σ > 2)

Thus, letting Gfin be the finite-prime part of the idele group GA,∫
Gfin

dg

‖g‖σ
=
∏
ν<∞

∫
Gν

dg

‖g‖σν
< +∞ (for σ > 2)

For integrability locally at archimedean places, exploit the left and right Kν–invariance, via
Weyl’s integration formula. Let Aν be the image under Ad of the standard maximal split torus
from GL2(kν), namely, real diagonal matrices. Let Φ+ = {α} be the singleton set of standard
positive roots of Aν , namely

α :
(
a1

a2

)
−→ a1/a2

gα be the α–rootspace, and, for a ∈ Aν , let

D(a) = |α(a)− α−1(a)|dimR gα

with the classical absolute value on C (not the product formula normalization). The Weyl formula
for a left and right Kν–invariant function f on Gν is∫

Gν

f(g) dg =
∫
Aν

D(a) · f(a) da

with Haar measure on Aν . For PGL2, the dimension dimR gα is 1 for kν ≈ R and is 2 for kν ≈ C.
The norm of a diagonal element is easily computed via the adjoint action on gν , namely

‖a‖ν = max{|a1/a2|, |a2/a1|}

with the classical absolute values on R or C. Thus,

D(a) � ‖a‖dν
ν (with dν = [kν : R])

Thus, the integral over PGL2(kν) is dominated by a one-dimensional integral, namely,∫
Gν

dg

‖g‖σν
=
∫
Aν

D(a)
‖a‖σν

da �
∫ ∞

0

(max(|t|, |t|−1)dν−σ dt

t
(with dν = [kν : R])
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The latter integral is estimated by∫
k×ν

(max(|x|, |x|−1)−β dx =
∫
|x|≤1

(|x|−1)−β dx+
∫
|x|≥1

|x|−β dx < +∞ (for β > 1)

for ν either real or complex. Note that the norm is that occurring in the product formula. This
gives the desired local integrability for σ > 2 at archimedean places, and completes the proof of
global integrability. That is, we can take σo = 2.

Poincaré series for GL2: Recall the context of Sections 2 and 3. Let G = GL2(A) over a number
field k, Z the center of GL2, and Kν the standard maximal compact in Gν . Let

M =
{(
∗ 0
0 ∗

)}
N =

{(
1 ∗
0 1

)}
To form a Poincaré series, let ϕ =

⊗
ν ϕν , where each ϕν is right Kν–invariant, Zν–invariant, and

on Gν

ϕν

((
a

1

)(
1 x

1

))
= |a|vν · Φν(x)

where at finite primes Φν is the characteristic function of the local integers oν . At archimedean
places, we assume that Φν is sufficiently continuously differentiable, and that these derivatives are
absolutely integrable. The global function ϕ is left Mk–invariant, by the product formula. Then,
let

f(g) =
∫
NA

ψ(n)ϕ(ng) dn

where ψ is a standard non-trivial character on Nk\NA ≈ k\A. As in (4.6), but with slightly
different notation, the Poincaré series of interest is

Pé∗(g) =
∑

γ∈ZkNk\Gk

f(γ · g)

Convergence uniformly pointwise and in L2: From above, to show that this converges absolutely
and uniformly on compacts, and also that it is in L2(ZAGk\GA), use a norm on the group
PGL2 = GL2/Z, take Γ = PGL2(k), and show that f is sufficiently rapidly decreasing on PGL2(A)
modulo Nk.

To give the sufficient decay modulo Nk, it suffices to prove sufficient decay of f(nm) for n in a
well-chosen set of representatives for Nk\NA, and for m among representatives

m =
(
a

1

)
for MA/ZA. For m ∈MA and n ∈ NA, the submultiplicativity ‖nm‖ ≤ ‖n‖ · ‖m‖ gives

1
‖n‖σ · ‖m‖σ

≤ 1
‖nm‖σ

(for σ > 0)
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That is, roughly put, it suffices to prove decay in NA and MA separately. Since Nk\NA has a set
of representatives E that is compact, on such a set of representatives the norm is bounded. Thus,
it suffices to prove that

f(nm) � 1
‖m‖σ

(
for n ∈ E, and m =

(
a

1

))
Since f factors over primes, as does ‖m‖, it suffices to give suitable local estimates.

At finite ν, the νth local factor of f is left ψ–equivariant by Nν , and

fν(nm) = ψ(n) ·
∫
Nν

ψ(n′)ϕν(n′m) dn′ = ψ(n) ·
∫
Nν

ψ(n′)ϕν(m ·m−1n′m) dn′

= ψ(n) · |a|ν ·
∫
kν

ψo(ax) |a|vν · Φν(x) dx

where for finite ν Φν is the characteristic function of the local integers, and

ψ

(
1 x

1

)
= ψo(x) m =

(
a

1

)
Thus,

|fν(nm)| = |a|<(v)+1
ν ·

∫
kν

ψo(ax) Φν(x) dx = |a|<(v)+1
ν · Φ̂ν(a)

At every finite place ν, Φν has compact support, and at almost every finite ν, Φ̂ν is simply the
characteristic function of oν . Thus, almost everywhere,

|fν(nm)| ≤ |a|<(v)+1
ν · Φ̂ν(a) ≤

(
max{|a|ν , |a|−1

ν }
)−(<(v)+1)

= ‖m‖−(<(v)+1)
ν

At the finitely many finite places where Φ̂ is not exactly the characteristic function of oν , the same
argument still gives the weaker but sufficient estimate

|fν(nm)| ≤ |a|<(v)+1
ν · Φ̂ν(a) �

(
max{|a|ν , |a|−1

ν }
)−(<(v)+1)

= ‖m‖−(<(v)+1)
ν

Thus, we have the finite-prime estimate∏
ν<∞

|fν(nm)| �
∏
ν<∞

‖m‖−(<(v)+1)
ν

From above, the sufficient decay condition for square integrability is

<(v) + 1 > 2σ0 = 4

so we need <(v) > 3.
At archimedean places, given ` > 0, for Φν sufficiently differentiable with absolutely integrable

derivatives, ordinary Fourier transform theory implies that

|Φ̂ν(a)| � (1 + |a|ν)−`
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Thus, from the general local calculation above,

|fν(nm)| = |a|<(v)+1
ν · Φ̂ν(a) � |a|<(v)+1

ν · (1 + |a|ν)−` �

 ‖m‖
−(<(v)+1))
ν (for |a|ν ≤ 1)

‖m‖−(`−<(v)−1)
ν (for |a|ν ≥ 1)

Thus, for sufficient decay for square-integrability, we need

<(v) + 1 > 2σ0 = 4

or <(v) > 3, the same condition as from the finite-prime discussion. Further, we need

`−<(v)− 1 > 2σ0 = 4

which is ` > <(v) + 5.
In summary, for <(v) > 3 and ` > <(v) + 5, the function f has sufficient decay so

that the associated Poincaré series Pé∗ = Pf converges uniformly on compacts, and is in
L2(ZAGL2(k)\GL2(A)). This proves Theorem 2.7.

§Appendix 2. Mellin transform of Eisenstein Whittaker functions

The computation discussed in this appendix was needed in the proof of Proposition 4.10. While
the details of this computation are given below, we also cite [W2], Chapter VII, for standard facts
about the Tate-Iwasawa theory of zeta integrals.

The global Mellin transform of WE factors∫
J
|a|vWE

s, χ

(
a 0
0 1

)
da =

∏
ν

∫
k×ν

|a|vνWE
s, χ, ν

(
a 0
0 1

)
da

To compute this, we cannot simply change the order of integration, since this would produce a
divergent integral along the way. Instead, we present the vectors ην in a different form. Let Φν be
any Schwartz function on k2

ν invariant under Kν (under the obvious right action of GL2), and put

η′ν(g) = χν(det g) |det g|sν ·
∫
k×ν

χ2
ν(t) |t|2sν · Φν(t · e2 · g) dt

where e2 = e2, ν is the second basis element in k2
ν . This η′ν has the same left Pν–equivariance as

ην , namely

η′ν

((
a ∗
0 d

)
· g
)

= |a/d|sν · χν(a/d) · η′ν(g)

For Φν invariant under the standard maximal compact Kν of GL2(kν), the function η′ν is right
Kν–invariant. By the Iwasawa decomposition, up to constant multiples, there is only one such
function, so

η′ν(g) = η′ν(1) · ην(g) (since ην(1) = 1)

and1

η′ν(1) =
∫
k×ν

χ2(t) |t|2s · Φ(t · e2 · 1) dt = ζν(2s, χ2, Φ(0, ∗)) (a Tate-Iwasawa zeta integral)

1From now on, to avoid clutter, suppress the subscript ν where there is no risk of confusion. For instance, we
shall write | · |, ψ, χ, etc., rather than | · |ν , ψν , χν , etc.
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Thus, it suffices to compute the local Mellin transform of

η′ν(1) ·WE
s, χ, ν(m) =

∫
Nν

ψ(n) η′ν(w◦nm) dn = χ(a)|a|s
∫
Nν

ψ(n)
∫
k×ν

χ2(t)|t|2s Φ(t · e2 ·w◦nm) dt dn

= χ(a)|a|s
∫
kν

ψ(x)
∫
k×ν

χ2(t)|t|2s Φ(tx, ta) dt dx
(

with m =
(
a 0
0 1

))
At finite primes ν, we may as well take Φ to be

Φ(t, x) = choν (t) · choν (x) (chX = characteristic function of set X)

Then η′ν(1) is exactly an L–factor (see [W2], page 119, Proposition 10)

η′ν(1) = ζν(2s, χ2, choν ) = Lν(2s, χ2)

and (for further details see [W2], page 107, Corollary 1, and page 108, Corollary 3),

η′ν(1) ·WE
s, χ, ν

(
a 0
0 1

)
= χ(a)|a|s

∫
kν

ψ(x) choν
(tx)

∫
k×ν

χ2(t)|t|2s choν (ta) dt dx

= χ(a)|a|s meas (oν)
∫
k×ν

cho∗ν
(1/t)χ2(t)|t|2s−1 choν (ta) dt

= |d
ν
|1/2 · χ(a)|a|s

∫
k×ν

cho∗ν
(1/t)χ2(t)|t|2s−1 choν (ta) dt

where dν ∈ k×ν is such that (o∗ν)
−1 = dν · oν . We can compute now the Mellin transform∫

k×ν

|a|v ·
(
χ(a)|a|s

∫
k×ν

cho∗ν (1/t)χ2(t)|t|2s−1 choν (ta) dt
)
da

Replace a by a/t, and then t by 1/t to obtain a product of two zeta integrals(∫
k×ν

|a|v · χ(a)|a|s choν (a) da
)
·
(∫

k×ν

cho∗ν (1/t)χ(t)|t|s−1−v dt

)
= ζν(v + s, χ, choν

) · ζν(v + 1− s, χ, cho∗−1
ν

)

= Lν(v + s, χ) · Lν(v + 1− s, χ) · |dν |−(v+1−s) χ(dν )

Thus, dividing through by η′ν(1) and putting back the measure constant, the Mellin transform
of WE

s, χ, ν is

∫
k×ν

|a|vWE
s, χ, ν

(
a 0
0 1

)
da = |dν |1/2 ·

Lν(v + s, χ) · Lν(v + 1− s, χ)
Lν(2s, χ2)

· |d
ν
|−(v+1−s) χ(dν )

Let d be the idele whose νth component is dν for finite ν and whose archimedean components
are all 1. The product over all finite primes ν of these local factors is∫

Jfin
|a|vWE

s, χ

(
a 0
0 1

)
da = |d|1/2 · L(v + s, χ) · L(v + 1− s, χ)

L(2s, χ2)
· |d|−(v+1−s) χ(d)
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In our application, we will replace s by 1− s and χ by χ, giving∫
Jfin
|a|vWE

1−s, χ

(
a 0
0 1

)
da = |d|1/2 · L(v + 1− s, χ) · L(v + s, χ)

L(2− 2s, χ2)
· |d|−(v+s) χ(d)

In particular, with χ trivial,∫
Jfin
|a|vWE

1−s

(
a 0
0 1

)
da = |d|1/2 · ζk(v + 1− s) · ζk(v + s)

ζk(2− 2s)
· |d|−(v+s)
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[W2] A. Weil, Basic number theory, Springer-Verlag, Berlin-Heidelberg-New York, 1995.

[Za] N.I. Zavorotny, Automorphic functions and number theory, Part I, II (Russian), Akad. Nauk SSSR,
Dal’nevostochn. Otdel., Vladivostok (1989), 69–124a, 254.

[Zh1] Q. Zhang, Integral mean values of modular L–functions, J. Number Theory 115 (2005), 100–122.

[Zh2] Q. Zhang, Integral mean values of Maass L–functions, IMRN, Art. ID 41417, 19 pp. (2006).

Adrian Diaconu, School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: cad@math.umn.edu

Paul Garrett, School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: garrett@math.umn.edu


