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Our goal is to find irreducible representations of G = SL2(R). The actual work is prosaic, and we find
several sorts of representations of G, without any fancier ideas.

However, the completeness of the computation depends on more serious results. Further, the motivation for
this computation, and the idea that it could be fruitful, come from less pedestrian thinking.

The computation itself can be understood on its own terms without understanding the broader context. At
the same time, the fact that a few simple non-elementary ideas lead to such tangible computational results
is a motivation to study those non-elementary notions.

To understand the larger context: that Casselman’s subrepresentation theorem asserts that any
irreducible representation[1] π ofG is a subrepresentation of some one of the principal series representations
Is defined below. [2] Further, the quotient Is/π (or a further quotient that is irreducible) again imbeds in
some Is′ with another parameter value s′. Thus, any irreducible π appears as a (possibly subrepresentation of
a) kernel of a G-homomorphism Is → Is′ among principal series. Still further, examination of the eigenvalues

of the center of the enveloping algebra[3] on the Is shows that the only values s′ such that Is′ has a non-trivial
G-homomorphism Is → Is′ are s′ = s and s′ = 1 − s. There is a natural integral for a G-homomorphism
Is → Is′ , evaluated in terms of the gamma function on adroitly chosen vectors in the principal series. Again,
the computation itself is understandable without appreciating this grounding of it.

This computation also gives an approach to understand why the gamma function should not vanish.

[1] To be more accurate, the subrepresentation theorem in fact asserts the imbeddability of irreducible (g,K)

representations, also called (g,K)-modules. The aptness of this notion was one of Harish-Chandra’s basic and

indispensable contributions to this subject. Here g is the Lie algebra of G acting by the differentiated version of the

action of G (at least on smooth vectors of the representation), and K is a maximal compact subgroup of G. Thus,

the (g,K)-module structure forgets some of the structure of a G-representation.

[2] Actually, our present discussion only discusses half the principal series, namely the even or unramified ones.

[3] The enveloping algebra is the associative algebra generated by g with relations xy − yx = [x, y] for x, y ∈ g. The

structure of its center is described by an early theorem of Harish-Chandra, and by a Schur lemma the center acts by

scalars on irreducibles. Further, it is our good fortune that the eigenvalues of the center quite successfully distinguish

among principal series.

1



Paul Garrett: Kernels of intertwining operators (December 8, 2021)

1. Principal series representations

The usual useful subgroups [4] of G are

N = {nx =

(
1 x
0 1

)
: x ∈ R} M = {

(
a 0
0 1/a

)
: a ∈ R×}

and [5]

P = NM = MN

The unramified principal series representation [6] Is is as a space of smooth [7] functions f on G with
the prescribed left equivariance

Is = {f : f(nmg) = χs(p) f(g) for all p ∈ P, g ∈ G}

where s ∈ C and

χs

(
a ∗
0 a−1

)
= |a|2s

The group G acts on Is by the right regular representation, that is, by right translation of functions: [8]

(g · f)(x) = f(xg)

for g, x ∈ G. This action preserves smoothness, and since the action is right translation it does not disturb
the defining property of left equivariance by P .

[4] The usual terminology would refer to P as the standard parabolic, M its standard Levi component, and N its

unipotent radical. One need not know what sense these terms might have in general to follow the present discussion.

Rather, the simple objects to which the terms refer here might suggest that even the general sense of the terms might

be not too mysterious.

[5] Why this subgroup? The subgroup P arises naturally in many ways, among which is the fact that the quotient

P\G is compact. In this sense, P is a large subgroup of G. Further, it is a semi-direct product of N and M , the

former isomorphic to the real line with addition, the latter isomorphic to the multiplicative group of real numbers.

Thus, P is composed of parts already familiar to us.

[6] There is no series here in the mathematical sense, but, rather, a continuum of representations parametrized by

the complex variable s. They are principal in the colloquial sense of constituting a large chunk of the totality of all

(more-or-less irreducible) representations of G. They are unramified in the sense that the relevant homomorphisms

R× → C× factor through the absolute value on R×. The dependence of the unramified principal series on the

parameter s is often normalized, with the benefit of hindsight, in a different form than the innocent form we use here.

Specifically, our s would often be s+ 1, or 2s+ 1.

[7] Here smooth has the usual sense of infinitely differentiable.

[8] Why this space of functions? There are at least two parts to this question. Induction from representations of

a subgroup can be viewed as an adjoint functor to the forgetful functor of restriction of a representation to the

subgroup. That is, induction is a very reasonable way to make representations. Further, spaces of functions on a

group G itself are convenient models of isomorphism classes of representations.
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The standard intertwining operator [9] T = Ts : Is → I1−s is defined, for Re(s) sufficiently large, by

the integral [10]

(Tsf)(g) =

∫
N

f(wn · g) dn

where the longest Weyl element [11] w is

w =

(
0 −1
1 0

)
Convergence of this integral will be clarified shortly. Again, since the map is defined as an integration on
the left, it does not disturb the right action of G. To verify that (assuming convergence) the image really
does lie inside I1−s, observe that Tsf is left N -invariant by construction, and that for m ∈M

(Tsf)(mg) =

∫
N

f(wn ·mg) dn =

∫
N

f(wmm−1nm · g) dn = χ1(m) ·
∫
N

f(wmn · g) dn

by replacing n by mnm−1, taking into account the change of measure d(mnm−1) = χ1(m) · dn coming from(
a 0
0 a−1

)(
1 x
0 1

)(
a 0
0 a−1

)−1
=

(
1 a2x
0 1

)
Then this is

χ1(m) ·
∫
N

f(wmw−1 · wn · g) dn = χ1(m) ·
∫
N

f(m−1 · wn · g) dn

= χ1(m)χs(m
−1) ·

∫
N

f(wn · g) dn = χ1−s(m) · (Tsf)(g)

This verifies that Ts : Is → I1−s.

Recall [12] the Iwasawa decomposition

G = P ·K

where [13]

K = {
(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ R/2πiZ}

[9] This terminology is inherited from physics. In any case, an intertwining operator is simply a morphism of

representation spaces for a fixed group.

[10] Why this integral? This is an analogue of a finite-group method for writing formulas for intertwining operators

from a representation induced from a subgroup A to a representation induced from a subgroup B, with intertwining

operators roughly corresponding to double cosets A\G/B. For finite groups, this goes by the name of Mackey theory,

and Bruhat extended the idea to Lie groups and p-adic groups. For non-finite groups, there are issues of convergence

and analytic continuation. In any case, without further justification here, this integral is one that arises naturally.

[11] The 2-by-2 matrix at hand could certainly be mentioned without using this terminology, but it is constructive to

introduce general terminology in simple examples. Note that the Bruhat decomposition is G = P ∪ PwP . That is,

P\G/P has cardinality 2, and Mackey-Bruhat theory would tell us that there is just one possibility for an intertwining

operator, namely the one given by this integral.

[12] If necessary, from a former life? Anyway, we’ll only use an explicit form, so no general principle is necessary.

Instead, again, it is constructive to introduce general terminology in simple examples.

[13] This subgroup of G is a special orthogonal group, denoted SO(2), but we need nothing from this family of facts.

It is also a maximal compact subgroup of G, but, we do not need this, either.
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and note that the overlap is just P ∩ K = ±1. Thus, a function f in Is is completely determined by its
values on K, in fact, on {±1}\K. Conversely, for fixed s ∈ C, any smooth function fo on {±1}\K has a
unique extension (depending upon s) to a function f ∈ Is, by

f(pk) = χs(p) · fo(k)

Taking advantage of the simplicity [14] of this situation, we may expand smooth functions on K in classical
Fourier series

f

(
cos θ sin θ
− sin θ cos θ

)
=
∑
n∈Z

cn e
2πinθ

where the Fourier coefficients cn are rapidly decreasing due to the smoothness of f .

In studying the intertwining operators Ts, it turns out to be wise to restrict our attention to functions f ∈ Is
which are not merely smooth, but in fact are right K-finite in the sense that the Fourier expansion of f
restricted to K is finite. Thus, these functions will be finite sums of very simple functions in Is of the form

f(pk) = χs(p) · ρn(k)

where

ρn

(
cos θ sin θ
− sin θ cos θ

)
=
(
eiθ
)n

For any function f on G with
f(gk) = f(g) · ρ(k) (for k ∈ K)

with ρ among the ρn, say that f has (right) K-type ρ. If we believe the Iwasawa decomposition G = PK,
then

dimC{f ∈ Is : f has right K-type ρn} =

{
1 (n even)
0 (n odd)

In other words, the multiplicities [15] of the K-types in Is are just 1 and 0.

2. The main computation

We directly compute the effect of the intertwining operator Ts on f in Is with fixed right K-type ρ. Since
the left integration over N cannot affect the right K-type, Ts preserves K-types. Since the dimensions of
the subspaces of Is and I1−s with given K-type ρ are 1 (or 0), necessarily Ts maps the function spherical
vector

f(pk) = χs(p) · ρ(k)

to some multiple of the spherical vector

ϕ(pk) = χ1−s(p) · ρ(k)

To determine the constant, it suffices to evaluate (Tsf)(1), that is, to evaluate the integral

(Tsf)(1) =

∫
N

f(wn) dn =

∫
R
f(wnx) dx (with nx =

(
1 x
0 1

)
)

[14] In more than two dimensions special orthogonal groups SO(n) are not abelian.

[15] In a conflicting but equally common use of the word multiplicity, we would also say that as a representation space

for K the space Is is multiplicity-free.
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To evaluate f(wnx), use the Iwasawa decomposition wnx = pk. One convenient approach is to compute

(wnx)(wnx)> = (pk)(pk)> = pkk−1p> = pp>

since k is orthogonal. Letting

p =

(
a b
0 a−1

)
and expanding (wnx)(wnx)> gives(

1 −x
−x 1 + x2

)
=

(
a2 + b2 b/a
b/a 1/a2

)
from which a−2 = 1 + x2 and b/a = −x, so a = 1/

√
1 + x2 and b = −x/

√
1 + x2. Then

k = p−1g =

(√
1 + x2 −x√

1+x2

0 1√
1+x2

)(
0 −1
1 x

)
=

(
x√

1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

)
so the Iwasawa decomposition is

wnx = pk =

( 1√
1+x2

−x√
1+x2

0
√

1 + x2

)
·

(
x√

1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

)
Thus, with K-type ρ = ρ2n, with 2n ∈ 2Z,

f(wnx) = f(pk) = χs(p) · ρ2n(k) = (
1√

1 + x2
)2s · ( x− i√

1 + x2
)2n = (1 + x2)−s · ( x− i√

x− i ·
√
x+ i

)2n

= (1 + x2)−s · (x− i
x+ i

)n = (−1)n · (1 + ix)−s+n (1− ix)−s−n

Thus, our intertwining operator when applied to a vector [16] f ∈ Is with specified K-type ρ2n, evaluated at
1 ∈ G is

(Tsf)(1) =

∫
N

f(wn) dn = (−1)n
∫
R

(1 + ix)−s+n (1− ix)−s−n dx

To compute the latter, we use a standard trick employing the Gamma function. That is, for complex z in
the right half-plane, and for Re(s) > 0,

Γ(s) · z−s =

∫ ∞
0

tse−tz
dt

t

Thus, ∫
R

(1 + ix)−s+n (1− ix)−s−n dx

= Γ(s− n)−1Γ(s+ n)−1 ·
∫
R

∫ ∞
0

∫ ∞
0

e−u(1+ix)us−n e−v(1+ix)vs+n
du

u

dv

v
dx

Changing the order of integration and integrating in x first [17] gives an inner integral∫
R
eix(u−v) dx = 2π · δu−v

[16] The space of these functions is a vector space, certainly.

[17] This is not legitimate from an elementary viewpoint. However, it is a compelling heuristic, correctly suggests

the true conclusion, and can immediately be justified by Fourier inversion, as is done in the appendix where the

gamma function is discussed.
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where δ is the Dirac delta distribution. [18] Thus, the whole is

(Tsf)(1) = (−1)n
2π

Γ(s− n)Γ(s+ n)

∫ ∞
0

e−uus−n e−uus+nu−1u−1du

= (−1)n
2π

Γ(s− n)Γ(s+ n)

∫ ∞
0

e−2uu2s−1
du

u
= (−1)n

2π 21−2s Γ(2s− 1)

Γ(s− n)Γ(s+ n)

That is, under the intertwining Ts : Is → I1−s, the function f with right K-type ρ2n normalized such that
f(1) = 1 is mapped to the similarly-normalized function in I1−s with the same K-type, multiplied by that
last constant.

3. Subrepresentations

For brevity, let

λ(s, n) =
(−1)n · 2π · 21−2s Γ(2s− 1)

Γ(s− n)Γ(s+ n)

denote the constant computed above. The intertwining operator Ts is holomorphic [19] at so ∈ C if for all
integers n the function λ(s, n) is holomorphic at so.

The numerator Γ(2s− 1) has poles at

1

2
, 0, −1

2
, −1, −3

2
, −2, . . .

The half-integer poles are not canceled by the poles of the denominator, so Ts has poles at these half-integers.
At the non-positive integers, regardless of the value of n the poles of the denominator cancel the pole of the
numerator. That is, [20]

[3.1] Proposition: Ts : Is → I1−s is holomorphic away from

s =
1

2
, −1

2
, −3

2
, −5

2
, −7

2
, . . .

at which it has simple poles. ///

For s not an integer, the denominator has no poles, so (away from the half-integers at which the numerator
has a pole) λ(s, n) 6= 0 for all K-types ρ2n. Thus,

[3.2] Proposition: The intertwining operator Ts : Is → I1−s has trivial kernel for s not an integer (and
away from its poles). ///

[18] From this viewpoint it is a little difficult to account for the factor of 2π, but this becomes understandable when the

computation is redone via Fourier inversion. In any case, the constant is irrelevant to vanishing and non-vanishing.

[19] One should be wary of the notion of holomorphy of an intertwining-operator-valued function of a complex variable.

While many standard sources do treat holomorphic Hilbert-space-valued and Banach-space-valued functions, or even

Fréchet-space-valued functions, greater generality is rare. Nevertheless, it does turn out that our usual expectations

of Cauchy theory are fulfilled for a very broad class of topological vector spaces, namely locally convex, quasi-complete

spaces. The notion of local convexity is standard, but quasi-completeness is less so. But, in fact, essentially all the

topological vector spaces of interest fall into this class, including spaces of distributions, spaces of operators with

weak topologies, etc. Thus, mildly ironically, everything does turn out just fine, whether or not one worried about it.

[20] Recall that Γ(s) has no zeros, and simple poles at non-positive integers.
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Consider s = ` with 0 < ` ∈ Z. The numerator has no pole at `, while the denominator has a pole, yielding
a λ(`, n) = 0 for all integers

n = ±`, ±(`+ 1), ±(`+ 2), ±(`+ 3), . . .

Thus, for 0 < ` ∈ Z, I` has a non-trivial infinite-dimensional subrepresentation [21] consisting of these
K-types in the kernel of T` : I` → I1−`.

Consider s = −` with 0 ≥ −` ∈ Z. The numerator has a pole at −`, and the denominator has a double pole
for integers

n = 0, ±1, ±2, . . . , ±`

and a single pole for integers
n = ±(`+ 1), ±(`+ 2), ±(`+ 3), . . .

Thus, λ(−`, n) = 0 for the double poles, and the single poles cancel. Thus, for 0 ≥ ` ∈ Z, I` has a non-trivial
subrepresentation consisting of the finitely-many K-types at which the denominator has a double pole. These
are (therefore) finite-dimensional representations, the kernels of T−` : I−` → I1+`.

4. Return to smooth vectors

The explicit computation of the scalar λ(s, 2n) = (Tsf2n)(1) for f2n the normalized vector in Is with K-type
ρ2n also shows that Ts has an analytic continuation on smooth vectors in Is, nor merely K-finite vectors, as
follows. From Γ(s) · s = Γ(s+ 1) we see that

(Tsf2n)(1) =
(−1)n · 2π · 21−2s Γ(2s− 1)

Γ(s− n)Γ(s+ n)
= polynomial growth in n

Then let
f =

∑
n∈Z

c2n · f2n

be smooth in Is. Smoothness is equivalent to the rapid decrease [22] of the Fourier coefficients. Then

Tsf =
∑
n∈Z

λ(s, 2n) · c2n · f2n

still has rapidly decreasing coefficients, so is a smooth vector in I1−s. That is, away from the poles, the
intertwining operator Ts when analytically continued is defined on all smooth vectors in I1−s, not merely
K-finite ones.

5. Appendix: usual tricks with Γ(s)

The property of Γ(s) used above is standard, but sufficiently important that we review it. The gamma
function is given for Re(s) > 0 by Euler’s integral

Γ(s) =

∫ ∞
0

e−tts
dt

t

[21] These subrepresentations have names, based on how they arose in other circumstances: are the sum of the

holomorphic discrete series and anti-holomorphic discrete series representations.

[22] Rapid decrease means, as usual, that |n|N · |c2n| goes to 0 (as |n| → ∞) for every N . This equivalence is readily

proven by repeated integration by parts in the integrals yielding the Fourier coefficients.
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Replacing t by ty with y > 0

Γ(s) · y−s =

∫ ∞
0

e−tyts
dt

t

By analytic continuation to the right complex half-plane, for y > 0 and x ∈ R

Γ(s) · (y + 2πix)−s =

∫ ∞
0

e−t(y+2πix)ts
dt

t

Having analytically continued, we may let y = 1 again, obtaining

Γ(s) · (1 + 2πix)−s =

∫ ∞
0

e−t(1+2πix)ts
dt

t
=

∫ ∞
0

e−2πixt e−tts
dt

t

which is the Fourier transform of

ϕs(t) =

{
e−t ts−1 (t > 0)

0 (t < 0)

To compute the concrete integral for (Tsf)(1) we invoke the Plancherel theorem, that∫
R
f(x)ϕ(x) dx =

∫
R
f̂(x) ϕ̂(x) dx

and Fourier inversion. Then, with real s >> 0, replacing x by 2πx at the first step, and with real s,∫
R

(1 + ix)−s+n (1− ix)−s−n dx = 2π

∫
R

(1 + 2πix)−s+n (1− 2πix)−s−n dx

= 2π

∫
R
ϕ̂s−n(x) ϕ̂s+n(x) dx = 2π

∫
R
ϕs−n(x) ϕs+n(x) dx

=
2π

Γ(s− n) Γ(s+ n)

∫ ∞
0

e−uu−(s−n)−1 · e−uu−(s+n)−1 du =
2πΓ(2s− 1)

Γ(s− n) Γ(s+ n)

as computed more heuristically earlier. This also exhibits the constant 2π.
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