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Using the ideas of [Casselman 1980] descended from the Borel-Matsumoto theorem on admissible
representations of p-adic reductive groups containing Iwahori-fixed vectors, it is possible to give an easily
verifiable sufficient criterion for irreducibility of degenerate principal series. This result is not comparable to
irreducibility results such as [Muić-Shahidi 1998], but is easily proven and easily applied.

Let G be a p-adic reductive group, P a minimal parabolic, N its unipotent radical, B the Iwahori subgroup
matching P , and K a maximal compact subgroup containing B. As usual, a character χ : P/N → C× is
unramified if it is trivial on P ∩K. Let δ = δP be the modular function on P , and ρ = ρP = δ

1/2
P the square

root of this modular function.

1. Generic algebras

Let (W,S) be a Coxeter system, and fix a commutative ring R. We consider S-tuples of pairs (as, bs) of
elements of R, subject to the requirement that if s1 = ws2w

−1 for w ∈ W and s1, s2 ∈ S, then as1 = as2

and bs1 = bs2 . Refer to the constants as, bs as structure constants. Let A be a free R-module with R-basis
{Tw : w ∈ W}.

Theorem: Given a Coxeter system (W,S) and structure constants as, bs (s ∈ S) there is exactly one
associative algebra structure on A so that

TsTw = Tsw for `(sw) > `(w)
T 2

s = asTs + bsT1 for all s ∈ S

and with the requirement that T1 is the identity in A. With this associative algebra structure, we also have

TsTw = asTw + bsTsw for `(sw) < `(w)

Further, the right-handed version of these identities hold

TwTs = Tws for `(ws) > `(w)
TwTs = asTw + bsTws for `(ws) < `(w)

Granting the theorem, for given structure constants define the generic algebra

A = A(W,S, {(as, bs) : s ∈ S})

to be the associative R-algebra determined by the theorem.

Remark: If all as = 0 and bs = 1 then the associated generic algebra is the group algebra of the group
W over the ring R. When (W,S) is affine suitable structure constants yield the Iwahori-Hecke algebra of
associated p-adic groups. Most often, this is

as = q − 1 bs = q
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where q is the residue field cardinality of a discrete valuation ring.

Proof: First, we see that the right-handed versions of the statements follow from the left-handed ones. Let
`(wt) > `(w) for w ∈ W and t ∈ S. Since `(wt) > `(w), there is s ∈ S such that `(sw) < `(w). Then

`(sw) + 1 = `(w) = `(wt)− 1 ≤ `(swt) + 1− 1 = `(swt) ≤ `(sw) + 1

Thus,
`(w) = `(swt) > `(sw)

Then Tw = Ts Tsw and
TwTt = (TsTsw)Tt = TsTswt = Twt

where the first equality follows from `(w) = `(ssw) > `(sw), the second follows by induction on length, and
the third follows from `(sswt) > `(swt). This gives the desired result. If `(wt) < `(w), then by the result
just proven TwtTt = Tw. Multiplying both sides by Tt on the right yields

TwTt = TwtT
2
t = Twt(atTt + btT1) = atTwtTt + btTwt = atTw + btTwt

where we computed T 2
t by the defining relation. Thus, the right-handed versions follow from the left-handed.

Next, suppose that `(sw) < `(w) and prove that

TsTw = asTw + bsTsw

If `(w) = 1, then w = s, and the desired equality is the assumed equality

T 2
s = asTs + bsT1

Generally, from `(s(sw)) = `(w) > `(sw) follows TsTsw = Tw. Then

TsTw = T 2
s Tsw = (asTs + bsT1)Tsw = asTsTsw + bsTsw = asTw + bsTsw

as asserted. Thus, the multiplication rule for `(sw) < `(w) follows from the rule for `(sw) > `(w) and from
the formula for T 2

s .

Uniqueness is easy. If w = s1 . . . sn is reduced, then

Tw = Ts1 . . . Tsn

Therefore, A is generated as an R-algebra by the Ts (for s ∈ S) and by T1. The relations yield the rule for
multiplication of any two Tw1 and Tw2 .

Now prove existence of this associative algebra for given data. Let A denote the free R-module on elements
Tw for w ∈ W . In the ring EndR(A) we have slleft multiplications λs and right multiplications ρs for s ∈ S
given by

λs(Tw) = Tsw for `(sw) > `(w)
λs(Tw) = asTw + bsTsw for `(sw) < `(w)

ρs(Tw) = Tws for `(ws) > `(w)
ρs(Tw) = asTw + bsTws for `(ws) < `(w)

Grant for the moment that the λs commute with the ρt. Let λ be the subalgebra of E generated by the λs.
Let ϕ : λ → A by ϕ(λ) = λ(T1). Thus, for example, ϕ(1) = T1 and, for all s ∈ S, ϕ(λs) = Ts. Certainly ϕ
is a surjective R-module map, since for every reduced expression w = s1 . . . sn

ϕ(λs1 . . . λsn) = (λs1 . . . λsn)(1) = λs1 . . . λsn−1Tsn = λs1 . . . λsn−2Tsn−1sn = . . . = Ts1...sn = Tw
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To prove injectivity of ϕ, suppose ϕ(λ) = 0. We will prove, by induction on `(w), that λ(Tw) = 0 for all
w ∈ W . By definition, ϕ(λ) = 0 means λ(T1) = 0. Now suppose `(w) > 0. Then there is t ∈ S so that
`(wt) < `(w). We are assuming that we already know that ρt commutes with λ, so

λ(Tw) = λ(T(wt)t) = λρtTwt = ρtλTwt = 0

by induction on length.

Thus, λ is a free R-module with basis {λw : w ∈ W}. This R-module isomorphism also implies that
λw = λs1 . . . λsn

for any reduced expression w = s1 . . . sn. The natural R-algebra structure on λ can be
transported to A, leaving only the checking of the relations.

To check the relations suppose that `(sw) > `(w). For a reduced expression w = s1 . . . sn the expression
ss1 . . . sn is a reduced expression for sw. Thus,

λsλw = λsλs1 . . . λsn
= λsw

That is, we have the desired relation λsλw = λsw.

We check the other relation λ2
s = asλs + bsλ1 by evaluating at Tw ∈ A. For `(sw) > `(w),

λ2
s(Tw) = λs(λsTw) = λs(Tsw) = asTsw + bsTw =

= asλsTw + bsλ1Tw = (asλs + bsλ1)Tw

If `(sw) < `(w), then
λ2

s(Tw) = λs(λsTw) = λs(asTw + bsTsw) =

= asλsTw + bsTsTsw = asλsTw + bsλ1Tw = (asλs + bsλ1)Tw

This proves that λ2
s = asλs + bsλ1, as desired.

The argument is complete except for the fact that the left and right multiplication operators λs and ρt

commute with each other. A little exercise on Coxeter groups prepares for this.

Proposition: Let (W,S) be a Coxeter system, w ∈ W , and s, t ∈ S. If both `(swt) = `(w) and
`(sw) = `(wt), then swt = w (and s = wtw−1.) In particular, as = at and bs = bt, since s and t are
conjugate.

Proof: Let w = s1 . . . sn be a reduced expression. On one hand, for `(sw) > `(w)

`(w) = `(s(wt)) < `(sw)

so the Exchange Condition applies. Namely, there is v ∈ W such that sw = vt and such that either
v = ss1 . . . ŝi . . . sn or v = w. But v = ss1 . . . ŝi . . . sn is not possible, since this would imply that

`(wt) = `(s1 . . . ŝi . . . sn) < `(w)

contradicting the present hypothesis
`(wt) = `(sw) > `(w)

On the other hand, for `(sw) < `(w) = `(s(sw)), the hypotheses are met by sw in place of w, so the previous
argument applies. Thus s(sw) = (sw)t, which gives w = swt. ///

Now the commutativity of the operators λs and ρt.

Lemma: For s, t ∈ S, the operators λs, ρt commute.

Proof: Prove that λsρt − ρtλs = 0 by evaluating the left-hand side on Tw. There are few possibilities for
the relative lengths of w, sw,wt, swt, and in each case the result follows by direct computation, although we
need to use the proposition from above in two of them:
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If `(w) < `(wt) = `(sw) < `(swt), then by the definitions of the operators λs, ρt we have

λsρtTw = λsTwt = Tswt

In the opposite case `(w) > `(wt) = `(sw) > `(swt),

λsρtTw = λs(atTw + btTwt) = at(asTw + bsTsw) + bt(asTwt + bsTswt)

which, by rearranging and reversing the argument with s and t interchanged and left and right interchanged,
is

as(atTw + btTwt) + bs(atTsw + btTswt) = ρtλsTw

In the case that `(wt) = `(sw) < `(swt) = `(w) invoke the proposition just above. We have as = at and
bs = bt and sw = wt. Then compute directly

λsρtTw = λs(atTw + btTwt) = at(asTw + bsTsw) + btTswt

= as(atTw + btTwt) + bsTswt = ρt(asTw + bsTsw) = ρtλsTw

as desired.

When `(wt) < `(w) = `(swt) < `(sw)

λsρtTw = λs(atTw + btTwt) = atTsw + btTswt = ρt(λsTw)

A corresponding argument applies in the case opposite to the previous one wherein `(sw) < `(w) = `(swt) <
`(wt).

When `(w) = `(swt) < `(sw) = `(wt) again invoke the proposition above to obtain as = at and bs = bt and
also sw = wt. Then

λsρtTw = λsTwt = asTwt + bsTswt = atTsw + btTswt = ρtTsw = ρtλsTw

This finishes the proof of commutativity, and of the theorem on generic algebras. ///

2. Strict Iwahori-Hecke algebras

This section demonstrates that Iwahori-Hecke algebras attached to groups acting suitably on buildings are
generic algebras in the sense above. The argument depends only upon the local finiteness of the building.

Let G be a group acting strongly transitively on a thick building X, preserving a labelling. (The strong
transitivity means that G is transitive upon pairs C ⊂ A where C is a chamber in an apartment A in the
given apartment system.) Let (W,S) be the Coxeter system associated to the apartments: each apartment
is isomorphic to the Coxeter complex of (W,S). Conversely, a choice of apartment and chamber within it
specifies (W,S). We assume always that S is finite. The subgroup B is the stabilizer of C.

The local finiteness hypothesis is that we assume that for all s ∈ S the cardinality

qs = card(BsB/B) = card(B\BsB)

is finite. Recall that the subgroup of G stabilizing the facet Fs of C of type {s} for s ∈ S is

P = Ps = B{1, s}B = B tBsB

The subgroup B is the subgroup of P additionally stabilizing C, so BsB is the subset of B〈s〉B mapping C
to another chamber s-adjacent to C (that is, with common facet Fs of type {s}.) Therefore, BsB/B is in
bijection with the set of chambers s-adjacent to C (other than C itself) by g → gC.
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That is, the local finiteness hypothesis is that every facet is the facet of only finitely-many chambers.
Equivalently, since S is finite, each chamber is adjacent to only finitely-many other chambers.

Fix a field k of characteristic zero. Let
H = Hk(G, B)

be the Iwahori-Hecke algebra in G over the field k, that is, the collection of left and right B-invariant
k-valued functions on G supported on finitely-many cosets Bg in G.

The convolution product on H is
(f ∗ ϕ)(g) =

∑
h∈B\G

f(gh−1)ϕ(h)

The hypothesis that ϕ is supported on finitely-many cosets Bx implies that the sum in the previous expression
is finite. Since ϕ is left B-invariant and f is right B-invariant the summands are constant on cosets Bg, so
summing over B\G makes sense. Nevertheless, we must prove that the product is again in H. We do this in
the course of the theorem.

Generally, let chE be the characteristic function of a subset E of G. By the Bruhat-Tits decomposition, if
indeed they are in H(G, B), the functions chBwB form a k-basis for H(G, B). This Hecke algebra is visibly
a free k-module.

Theorem: Each BgB is a finite union of cosets Bx, the algebra H is closed under convolution products,
and

chBsB ∗ chBwB = chBswB for `(sw) > `(w)

chBsB ∗ chBsB = aschBsB + bschB

with
as = qs − 1 and bs = qs

That is, these Iwahori-Hecke operators form a generic algebra with the indicated structure constants. Further,
for a reduced expression w = s1 . . . sn (that is, with n = `(w) and all si ∈ S), we have

qw = qs1 . . . qsn

Proof: First prove that double cosets BwB are finite unions of cosets Bx at the same time that we study
one of the requisite identities for the generic algebra structure. This also will prove that H is closed under
convolution products. Do induction on the length of w ∈ W . Take s ∈ S so that `(sw) > `(w). At g ∈ G
where chBsB ∗ chBwB does not vanish, there is h ∈ G so that chBsB(gh−1)chBwB(h) 6= 0. For such h, we
have gh−1 ∈ BsB and h ∈ BwB. Thus, by the Bruhat cell multiplication rules,

g = (gh−1)h ∈ BsB ·BwB = BswB

Since this convolution product is left and right B-invariant

chBsB ∗ chBwB = c · chBswB

for some positive rational number c = c(s, w).

Compute the constant c = c(s, w) by summing the previous equality over B\G

c · qsw = c · card(B\BswB) = c ·
∑

g∈B\G

chBswB(g) =

= c ·
∑

g∈B\G

(chBsB ∗ chBwB)(g) =
∑

g∈B\G

∑
h∈B\G

chBsB(gh−1)chBwB(h) =
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=
∑ ∑

chBsB(g)chBwB(h) = qs qw

(the latter by replacing g by gh, interchanging order of summation.)

Thus, c = qsqw/qsw and for `(sw) > `(w)

chBsB ∗ chBwB = qsqwq−1
sw chBswB

This shows incidentally that the cardinality qsw of B\BwB is finite for all w ∈ W , and therefore that the
Hecke algebra is closed under convolution.

Now consider the other identity required of a generic algebra. Since

BsB ·BsB = B tBsB

we need evaluate (Ts ∗ Ts)(g) only at g = 1 and g = s. For g = 1 the sum defining the convolution is

(chBsB ∗ chBsB)(1) =
∑

h∈B\G

chBsB(h−1)chBsB(h) = qs =

= (qs − 1) · 0 + qs · 1 = (qs − 1)chBsB(1) + qschB(1)

For g = s

(chBsB ∗ chBsB)(s) =
∑

h∈B\G

chBsB(sh−1)chBsB(h) =

= card(B\(BsB ∩BsBs))

Let P be the parabolic subgroup P = B ∪ BsB. This is the stabilizer of the facet Fs. The innocent fact
that P is a group gives

BsB ∩BsBs = (P −B) ∩ (P −B)s = (P −B) ∩ (Ps−Bs) =

= (P −B) ∩ (P −Bs) = P − (B tBs)

Therefore, BsB ∩BsBs consists of [P : B]− 2 left B-cosets. This number is (qs + 1)− 2 = qs − 1. Thus,

chBsB ∗ chBsB = (qs − 1)chBsB + qschB

Therefore, with Tw = q−1
w chBwB we obtain a generic algebra with structure constants as = (1 − q−1

s ) and
bs = q−1

s . However, this is a weaker conclusion than desired, as we wish to prove that for `(sw) > `(w)

qsqw = qsw

If so, then our earlier computation would show that

chBsB ∗ chBwB = chBswB

Then taking simply Tw = chBwB would yield a generic algebra with structure constants as = qs − 1 and
bs = qs.

On one hand, (with `(sw) > `(w)) evaluate both sides of

chBsB ∗ chBwB = qsqwq−1
sw chBswB

at sw. The left-hand side is∑
h∈B\G

chBsB(swh−1)chBwB(h) = card(B\(BsB(sw) ∩BwB)) =

6



Paul Garrett: Representations with Iwahori-fixed vectors (February 19, 2005)

= card(B\(BsBs ∩BwBw−1)) ≥ card(B\(Bss ∩Bww−1)) = card(B\B) = 1

The right-hand side is qsqwq−1
sw , so

qsqw ≥ qsw

On the other hand, invoking the theorem on generic algebras (with `(sw) > `(w))

q−1
s chBsB ∗ q−1

sw chBswB = (1− q−1
s )q−1

sw chBswB + q−1
s q−1

w chBwB

This gives
chBsB ∗ chBswB = (qs − 1)chBswB + qswq−1

w chBwB

Evaluate both sides at w. The right side is qswq−1
w and the left is

card(B\(BsBw ∩BswB)) = card(B\(BsB ∩BswBw−1)) =

= card(B\(BsB ∩BsBBwB · w−1)) ≥ card(B\(BsB ∩BsBww−1)) = card(B\BsB) = qs

by the cell multiplication rules. That is,
qsw ≥ qsqw

Combining these two computations yields qsw = qsqw. Induction on length gives the assertion

qs1...sn = qs1 . . . qsn

for a reduced expression s1 . . . sn ∈ W . Thus, we obtain the generic algebra as claimed. ///

3. Representations with Iwahori-fixed vectors

Here we prove the Borel-Matsumoto theorem. The structure of the Iwahori-Hecke algebras is the essential
ingredient in this proof. Again, G is a p-adic reductive group and B an Iwahori subgroup. More specifically,
let Go be the label-preserving subgroup of G, and take B to be the subgroup in Go stabilizing a chosen
chamber in a chosen apartment in the associated (affine) building.

Theorem: (Borel, Matsumoto, Casselman) Let G be a reductive p-adic group with Iwahori subgroup B
(unique up to conjugation) and corresponding minimal parabolic subgroup P . Let Mo = B∩M be a maximal
compact subgroup of a chosen Levi component M = MP of P . Let π be a smooth representation of G with

dim πB < ∞

(Admissibility of π would assure the latter condition.) Under the quotient map q : π → πN from π to its
Jacquet module πN with respect to P , the B-fixed vectors πB in π map complex-linear isomorphically to
the Mo-fixed vectors (πN )Mo in πN .

Proof: (See [Casselman 1980]) Let P be a minimal parabolic subgroup of G matching B. We grant the
general fact that for any parabolic Q and matching parahoric BQ, the BQ-fixed vectors surject to the BQ-
fixed vectors in the Q-Jacquet module. Thus, the strength of the present assertion is the injectivity. Let
π(N) be the kernel of the quotient mapping to the P -Jacquet module. If v ∈ πB ∩ π(N), then there is a
large-enough compact open subgroup N1 of N such that∫

N1

n · v dn = 0

Take a ∈ MP such that aN1a
−1 ⊂ No, where B has Iwahori factorization B = Nopp

1 MoNo. (The notation
is potentially misleading: N1 is large while Nopp

1 is relatively small.) Further, we may take a to lie inside
the label-preserving subgroup Go of G. Then

0 = a · 0 =
∫

N1

anv dn =
∫

N1

ana−1 · av dn =
∫

aN1a−1
n · av dn
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Then ∫
No

n · av dn =
∫

No/aN1a−1

∫
aN1a−1

non · av dn dno =
∫

No/aN1a−1
no · 0 dno = 0

Normalize the measure of B to be 1. Then

0 =
∫

N
opp
1

∫
Mo

0 dm dnopp =
∫

N
opp
1

∫
Mo

∫
No

nopp m n · av dn dmdnopp =
∫

B

b · av db

Further, since v ∈ πB , ∫
B

b · v db = v

Thus, ∫
BaB

x · v dx =
∫

B

∫
B

ba′ · v db′ db =
∫

B

ba · v db = 0

from just above. That is,
chBaB v = 0

For some reflections si there is a reduced expression s1 . . . sn such that

BaB = Bs1 . . . snB

By the structural results for the Iwahori-Hecke algebra,

chBaB = chBs1B ∗ . . . ∗ chBsnB

Each of the functions chBsiB acting on π stabilizes the finite-dimensional complex vector space πB . For
s ∈ S, the structural assertion

ch2
BsB = qs chBsB + (qs − 1) chB

says that any eigenvalue λ of chBsB on πB must satisfy

λ2 = qs λ + (qs − 1)

so

λ =
qs ±

√
q2
s − 4(qs − 1)

2
=

qs ± (qs − 2)
2

= 1, qs − 1

That is, no eigenvalue can be 0. Thus, each chBsB gives an invertible operator on πB , and chBaB is necessarily
invertible, contradicting our earlier conclusion unless v = 0. That is,

πB ∩ π(N) = 0

after all. ///

4. Imbeddings to unramified principal series

The Borel-Matsumoto theorem on representations with Iwahori-fixed vectors gives several important
corollaries about admissible spherical representations and the structure of unramified principal series.

Corollary: An irreducible admissible representation π with non-zero B-fixed vector imbeds into an
unramified principal series representation.

Proof: Since the set πB of B-fixed vectors in π is non-trivial, by the theorem the space of Mo-fixed vectors
πMo

N in the Jacquet module πN is non-trivial. Since the Jacquet-module functor preserves admissibility,
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πMo

N is finite-dimensional. Since P is minimal, M/Mo is an abelian group. Thus, πMo

N has an irreducible
P -quotient χ which is a complex one-dimensional space upon which M/Mo acts. That is, M acts on χ by
an unramified character (that is, a character trivial on Mo). By Frobenius Reciprocity, we obtain a non-zero
G-map π → IndG

P χ, which must be an isomorphism since π is irreducible. ///

Corollary: Every G-subrepresentation and every G-quotient of an unramified principal series representa-
tion of G is generated by its B-fixed vectors.

Proof: Let π be a subrepresentation of an unramified principal series

Iχ = IndG
P ρ χ

where ρ is the square root of the modular function for P . From Frobenius Reciprocity

0 6= HomG(π, Iχ) ≈ HomM (πN , ρχ)

Since πMo

N ≈ πB as complex vector spaces (from above), πB 6= 0. That is, any subrepresentation π of an
unramified principal series contains a non-zero B-fixed vector.

Taking contragredients, the inclusion
π ⊂ Iχ

give rise to a surjection
Iχ̌ ≈ Ǐχ → π̌

Let H be the kernel. We have shown that HB is non-trivial.

///

Corollary: If an unramified principal series representation Iχ = iP χ is not generated by its unique (up
to constant multiples) spherical vector ϕ (for fixed choice K of maximal compact), then there is a non-zero
intertwining T : Iχ → Iχ′ from Iχ to another unramified principal series Iχ′ such that Tϕ = 0.

Proof: (Following Casselman) Let V be the proper submodule generated by the spherical vector. Then
Iχ/V 6= 0, so is still admissible (since an unramified principal series representation is admissible, and
admissibility is preserved in quotients). And it is generated by its B-fixed vectors (Iχ/V )B , by the theorem,
which then necessarily form a finite-dimensional subspace. Thus, Iχ/V is finitely-generated, so has an
irreducible quotient σ, which (by the corollary) still has a non-zero B-fixed vector. Thus, σ imbeds into an
unramified principal series Iχ′ . That is, we have a non-zero intertwining

Iχ → Iχ/V → σ → Iχ′

This proves the corollary. ///

5. Irreducibility criteria

First recall some relatively elementary standard facts about principal series representations. Let W be the
(spherical) Weyl group of G, acting on P/N by conjugation, where N is the unipotent radical of the minimal
parabolic P . Let W act on one-dimensional group homomorphisms

χ : P/N → C×

by
(wχ)(x) = χ(w−1xw)

9
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As usual, say that χ is regular if wχ = χ only for w = 1. Let Iχ = iP χ denote the (smooth) normalized
unramified principal series

Iχ = iP χ = IndG
P ρP χ

Let ϕχ be the unique K-spherical vector in Iχ such that ϕχ(1) = 1.

Theorem: Let χ be an unramified character.
• If T : Iχ → Iχ′ is a non-zero intertwining, then χ′ = wχ for some w ∈ W .
• If χ is regular, then for all w ∈ W

dim HomG(Iχ, Iwχ) = 1

///

In particular, for fixed regular χ and w ∈ W , the non-zero map

Tχ,w : Iχ → Iwχ

defined (for suitable inequalities imposed upon χ to ensure convergence, and then by analytic continuation)
by

Tχ,wf(g) =
∫

N∩w−1Nw\N
f(w−1ng) dn

is the only such intertwining, up to a constant.

Theorem: The holomorphically parametrized family χ → Tχ,w (for fixed w ∈ W ) of intertwining operators
Iχ → Iwχ has a holomorphic continuation to all regular χ. The holomorphically continued intertwining is
not the zero intertwining. ///

Theorem: ([Casselman 1980]) Let χ be a regular character, let ϕχ be the spherical vector in IndG
P χ

normalized so that ϕχ(1) = 1. There is an explicit not-identically-zero rational function λw(χ) of χ so that

Tχ,w(ϕχ) = λw(χ) · ϕwχ

///

Corollary: ([Casselman 1980]) Let λ(χ) = λwo(χ) be the function attached to the longest Weyl element
wo in the spherical Weyl group. For regular characters χ, the spherical vector ϕχ generates Iχ if and only if
λ(χ) 6= 0.

Proof: Let V be the subrepresentation generated by the spherical vector. If V is not all of Iχ, then the
quotient Iχ/V is non-zero. By the corollary of the Borel-Matsumoto theorem, this quotient has a non-zero
intertwining to an unramified principal series Iχ′ . Necessarily χ′ = wχ for some w ∈ W . Either by looking
at the rational functions λw(χ) directly, or by realizing that in a finite Coxeter group W for any w there is
w′ such that the longest element wo is expressible as wo = w′w with

`(wo) = `(w′) + `(w)

Thus,
Tw′,χ′ ◦ Tw,χ = Two,χ

and therefore
λwo,χ = λw′(χ′) · λw(χ) = λw′(χ′) · 0 = 0

Thus, when the spherical vector fails to generate Iχ, λwo
(χ) = 0. On the other hand, if λwo

(χ) = 0, the
spherical vector is in the kernel of the non-zero intertwining operator Two(χ), so the spherical vector cannot
generate Iχ. ///

Remark: These intertwining operators are well understood. A conceptual proof of meromorphic
continuation can be given by some form of Bernstein’s continuation principle. One version is in [Garrett 1997].
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In fact, since the compositions of these intertwinings must fall back into the same class, one can make a
stronger assertion about the relationships among the intertwinings and among the λw’s for w1w2 = w3, etc.

Corollary: (Casselman) For regular χ, the unramified principal series Iχ is irreducible if and only if
λ(χ) 6= 0 and λ(χ−1) 6= 0.

Proof: Suppose V is a proper G-submodule of Iχ. On one hand, if V contains ϕχ, then ϕχ fails to generate
all of Iχ, so λ(χ) = 0. On the other hand, if V does not contain ϕχ, then the (smooth) contragredient
Ǐχ ≈ Iχ−1 has a proper submodule

X = {x ∈ Ǐχ : x(V ) = 0}

which necessarily contains the spherical vector ϕχ−1 . That is, Ǐχ is not generated by its spherical vector, so
λ(χ−1) = 0. ///

Now let Q be any other parabolic subgroup containing P , with unipotent radical NQ. Let σ : Q/NQ → C×

be an unramified character. Let

iQσ = IndG
Q ρQ σ

be the normalized degenerate principal series. By restriction, such σ gives an unramified character on P and
we have an injection

iQσ = IndG
Q ρQ σ → IndG

P ρQ σ = IndG
P ρP · ρ−1

P ρQ σ = iP (ρ−1
P ρQ σ)

The following is an obvious extension to degenerate principal series of Casselman’s results for unramified
principal series, though the condition we obtain ceases to be provably necessary for irreducibility.

Corollary: For an unramified character σ of Q, if ρ−1
P ρQ σ is regular, and if λ(ρ−1

P ρQ σ) 6= 0 and
λ(ρ−1

P ρQ σ−1) 6= 0, then the (normalized) degenerate principal series iQσ is irreducible.

Proof: First, we verify that if the spherical vector ϕσ in iQσ generates iQσ, and if the same is true for the
contragredient ǐQσ ≈ iQσ̌, then iQσ is irreducible. Indeed, suppose that iQσ had a proper submodule V . On
one hand, if V contains the spherical vector, then the spherical vector fails to generate iQσ. On the other
hand, if V does not contain the spherical vector, then in the contragredient the submodule

X = {x ∈ ǐQσ : x(V ) = 0}

is proper and contains the spherical vector, so the spherical vector fails to generate ǐQσ.

Now we relate this to the generation of unramified principal series by the spherical vector. From the obvious
inclusion

ǐQσ ≈ iQσ̌ → iP (ρ−1
P ρQ σ̌)

by dualizing we obtain a surjection of the contragredients, which (by choice of the normalizations) gives a
surjection

iP (ρP ρ−1
Q σ) → iQσ

If the spherical vector in iQσ fails to generate iQσ, then surely the same is true of iP (ρP ρ−1
Q σ). The obvious

parallel remark applies to the contragredient. If ρP ρ−1
Q σ is regular, then we may invoke Casselman’s criterion

for generation of unramified principal series by the spherical vector. ///
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