Representations with Iwahori-fixed vectors

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu//garrett/

- Generic algebras
- Strict Iwahori-Hecke algebras
- Representations with Iwahori-fixed vectors
- Proof of the Borel-Matsumoto theorem
- Irreducibility criteria

Using the ideas of [Casselman 1980] descended from the Borel-Matsumoto theorem on admissible representations of p-adic reductive groups containing Iwahori-fixed vectors, it is possible to give an easily verifiable sufficient criterion for irreducibility of degenerate principal series. This result is not comparable to irreducibility results such as [Muić-Shahidi 1998], but is easily proven and easily applied.

Let G be a p-adic reductive group, P a minimal parabolic, N its unipotent radical, B the Iwahori subgroup matching P, and K a maximal compact subgroup containing B. As usual, a character $\chi: P / N \rightarrow \mathbf{C}^{\times}$is unramified if it is trivial on $P \cap K$. Let $\delta=\delta_{P}$ be the modular function on P, and $\rho=\rho_{P}=\delta_{P}^{1 / 2}$ the square root of this modular function.

1. Generic algebras

Let (W, S) be a Coxeter system, and fix a commutative ring R. We consider S-tuples of pairs $\left(a_{s}, b_{s}\right)$ of elements of R, subject to the requirement that if $s_{1}=w s_{2} w^{-1}$ for $w \in W$ and $s_{1}, s_{2} \in S$, then $a_{s_{1}}=a_{s_{2}}$ and $b_{s_{1}}=b_{s_{2}}$. Refer to the constants a_{s}, b_{s} as structure constants. Let \mathcal{A} be a free R-module with R-basis $\left\{T_{w}: w \in W\right\}$.

Theorem: Given a Coxeter system (W, S) and structure constants $a_{s}, b_{s}(s \in S)$ there is exactly one associative algebra structure on \mathcal{A} so that

$$
\begin{array}{rlll}
T_{s} T_{w} & =T_{s w} & & \text { for } \quad \ell(s w)>\ell(w) \\
T_{s}^{2} & =a_{s} T_{s}+b_{s} T_{1} & & \text { for all } s \in S
\end{array}
$$

and with the requirement that T_{1} is the identity in \mathcal{A}. With this associative algebra structure, we also have

$$
T_{s} T_{w}=a_{s} T_{w}+b_{s} T_{s w} \quad \text { for } \quad \ell(s w)<\ell(w)
$$

Further, the right-handed version of these identities hold

$$
\begin{array}{ll}
T_{w} T_{s}=T_{w s} & \text { for } \quad \ell(w s)>\ell(w) \\
T_{w} T_{s}=a_{s} T_{w}+b_{s} T_{w s} & \text { for } \ell(w s)<\ell(w)
\end{array}
$$

Granting the theorem, for given structure constants define the generic algebra

$$
\mathcal{A}=\mathcal{A}\left(W, S,\left\{\left(a_{s}, b_{s}\right): s \in S\right\}\right)
$$

to be the associative R-algebra determined by the theorem.
Remark: If all $a_{s}=0$ and $b_{s}=1$ then the associated generic algebra is the group algebra of the group W over the ring R. When (W, S) is affine suitable structure constants yield the Iwahori-Hecke algebra of associated p-adic groups. Most often, this is

$$
a_{s}=q-1 \quad b_{s}=q
$$

where q is the residue field cardinality of a discrete valuation ring.
Proof: First, we see that the right-handed versions of the statements follow from the left-handed ones. Let $\ell(w t)>\ell(w)$ for $w \in W$ and $t \in S$. Since $\ell(w t)>\ell(w)$, there is $s \in S$ such that $\ell(s w)<\ell(w)$. Then

$$
\ell(s w)+1=\ell(w)=\ell(w t)-1 \leq \ell(s w t)+1-1=\ell(s w t) \leq \ell(s w)+1
$$

Thus,

$$
\ell(w)=\ell(s w t)>\ell(s w)
$$

Then $T_{w}=T_{s} T_{s w}$ and

$$
T_{w} T_{t}=\left(T_{s} T_{s w}\right) T_{t}=T_{s} T_{s w t}=T_{w t}
$$

where the first equality follows from $\ell(w)=\ell(s s w)>\ell(s w)$, the second follows by induction on length, and the third follows from $\ell(s s w t)>\ell(s w t)$. This gives the desired result. If $\ell(w t)<\ell(w)$, then by the result just proven $T_{w t} T_{t}=T_{w}$. Multiplying both sides by T_{t} on the right yields

$$
T_{w} T_{t}=T_{w t} T_{t}^{2}=T_{w t}\left(a_{t} T_{t}+b_{t} T_{1}\right)=a_{t} T_{w t} T_{t}+b_{t} T_{w t}=a_{t} T_{w}+b_{t} T_{w t}
$$

where we computed T_{t}^{2} by the defining relation. Thus, the right-handed versions follow from the left-handed. Next, suppose that $\ell(s w)<\ell(w)$ and prove that

$$
T_{s} T_{w}=a_{s} T_{w}+b_{s} T_{s w}
$$

If $\ell(w)=1$, then $w=s$, and the desired equality is the assumed equality

$$
T_{s}^{2}=a_{s} T_{s}+b_{s} T_{1}
$$

Generally, from $\ell(s(s w))=\ell(w)>\ell(s w)$ follows $T_{s} T_{s w}=T_{w}$. Then

$$
T_{s} T_{w}=T_{s}^{2} T_{s w}=\left(a_{s} T_{s}+b_{s} T_{1}\right) T_{s w}=a_{s} T_{s} T_{s w}+b_{s} T_{s w}=a_{s} T_{w}+b_{s} T_{s w}
$$

as asserted. Thus, the multiplication rule for $\ell(s w)<\ell(w)$ follows from the rule for $\ell(s w)>\ell(w)$ and from the formula for T_{s}^{2}.

Uniqueness is easy. If $w=s_{1} \ldots s_{n}$ is reduced, then

$$
T_{w}=T_{s_{1}} \ldots T_{s_{n}}
$$

Therefore, \mathcal{A} is generated as an R-algebra by the T_{s} (for $s \in S$) and by T_{1}. The relations yield the rule for multiplication of any two $T_{w_{1}}$ and $T_{w_{2}}$.
Now prove existence of this associative algebra for given data. Let \mathcal{A} denote the free R-module on elements T_{w} for $w \in W$. In the $\operatorname{ring} \operatorname{End}_{R}(\mathcal{A})$ we have slleft multiplications λ_{s} and right multiplications ρ_{s} for $s \in S$ given by

$$
\begin{array}{llcll}
\lambda_{s}\left(T_{w}\right) & = & T_{s w} & \text { for } & \ell(s w)>\ell(w) \\
\lambda_{s}\left(T_{w}\right) & = & a_{s} T_{w}+b_{s} T_{s w} & \text { for } & \ell(s w)<\ell(w) \\
& & & & \\
\rho_{s}\left(T_{w}\right) & = & T_{w s} & \text { for } & \ell(w s)>\ell(w) \\
\rho_{s}\left(T_{w}\right) & = & a_{s} T_{w}+b_{s} T_{w s} & \text { for } & \ell(w s)<\ell(w)
\end{array}
$$

Grant for the moment that the λ_{s} commute with the ρ_{t}. Let λ be the subalgebra of \mathcal{E} generated by the λ_{s}. Let $\varphi: \lambda \rightarrow \mathcal{A}$ by $\varphi(\lambda)=\lambda\left(T_{1}\right)$. Thus, for example, $\varphi(1)=T_{1}$ and, for all $s \in S, \varphi\left(\lambda_{s}\right)=T_{s}$. Certainly φ is a surjective R-module map, since for every reduced expression $w=s_{1} \ldots s_{n}$

$$
\varphi\left(\lambda_{s_{1}} \ldots \lambda_{s_{n}}\right)=\left(\lambda_{s_{1}} \ldots \lambda_{s_{n}}\right)(1)=\lambda_{s_{1}} \ldots \lambda_{s_{n-1}} T_{s_{n}}=\lambda_{s_{1}} \ldots \lambda_{s_{n-2}} T_{s_{n-1} s_{n}}=\ldots=T_{s_{1} \ldots s_{n}}=T_{w}
$$

To prove injectivity of φ, suppose $\varphi(\lambda)=0$. We will prove, by induction on $\ell(w)$, that $\lambda\left(T_{w}\right)=0$ for all $w \in W$. By definition, $\varphi(\lambda)=0$ means $\lambda\left(T_{1}\right)=0$. Now suppose $\ell(w)>0$. Then there is $t \in S$ so that $\ell(w t)<\ell(w)$. We are assuming that we already know that ρ_{t} commutes with λ, so

$$
\lambda\left(T_{w}\right)=\lambda\left(T_{(w t) t}\right)=\lambda \rho_{t} T_{w t}=\rho_{t} \lambda T_{w t}=0
$$

by induction on length.
Thus, λ is a free R-module with basis $\left\{\lambda_{w}: w \in W\right\}$. This R-module isomorphism also implies that $\lambda_{w}=\lambda_{s_{1}} \ldots \lambda_{s_{n}}$ for any reduced expression $w=s_{1} \ldots s_{n}$. The natural R-algebra structure on λ can be transported to \mathcal{A}, leaving only the checking of the relations.
To check the relations suppose that $\ell(s w)>\ell(w)$. For a reduced expression $w=s_{1} \ldots s_{n}$ the expression $s s_{1} \ldots s_{n}$ is a reduced expression for $s w$. Thus,

$$
\lambda_{s} \lambda_{w}=\lambda_{s} \lambda_{s_{1}} \ldots \lambda_{s_{n}}=\lambda_{s w}
$$

That is, we have the desired relation $\lambda_{s} \lambda_{w}=\lambda_{s w}$.
We check the other relation $\lambda_{s}^{2}=a_{s} \lambda_{s}+b_{s} \lambda_{1}$ by evaluating at $T_{w} \in \mathcal{A}$. For $\ell(s w)>\ell(w)$,

$$
\begin{gathered}
\lambda_{s}^{2}\left(T_{w}\right)=\lambda_{s}\left(\lambda_{s} T_{w}\right)=\lambda_{s}\left(T_{s w}\right)=a_{s} T_{s w}+b_{s} T_{w}= \\
=a_{s} \lambda_{s} T_{w}+b_{s} \lambda_{1} T_{w}=\left(a_{s} \lambda_{s}+b_{s} \lambda_{1}\right) T_{w}
\end{gathered}
$$

If $\ell(s w)<\ell(w)$, then

$$
\begin{gathered}
\lambda_{s}^{2}\left(T_{w}\right)=\lambda_{s}\left(\lambda_{s} T_{w}\right)=\lambda_{s}\left(a_{s} T_{w}+b_{s} T_{s w}\right)= \\
=a_{s} \lambda_{s} T_{w}+b_{s} T_{s} T_{s w}=a_{s} \lambda_{s} T_{w}+b_{s} \lambda_{1} T_{w}=\left(a_{s} \lambda_{s}+b_{s} \lambda_{1}\right) T_{w}
\end{gathered}
$$

This proves that $\lambda_{s}^{2}=a_{s} \lambda_{s}+b_{s} \lambda_{1}$, as desired.
The argument is complete except for the fact that the left and right multiplication operators λ_{s} and ρ_{t} commute with each other. A little exercise on Coxeter groups prepares for this.

Proposition: Let (W, S) be a Coxeter system, $w \in W$, and $s, t \in S$. If both $\ell(s w t)=\ell(w)$ and $\ell(s w)=\ell(w t)$, then $s w t=w$ (and $s=w t w^{-1}$.) In particular, $a_{s}=a_{t}$ and $b_{s}=b_{t}$, since s and t are conjugate.

Proof: Let $w=s_{1} \ldots s_{n}$ be a reduced expression. On one hand, for $\ell(s w)>\ell(w)$

$$
\ell(w)=\ell(s(w t))<\ell(s w)
$$

so the Exchange Condition applies. Namely, there is $v \in W$ such that $s w=v t$ and such that either $v=s s_{1} \ldots \hat{s_{i}} \ldots s_{n}$ or $v=w$. But $v=s s_{1} \ldots \hat{s_{i}} \ldots s_{n}$ is not possible, since this would imply that

$$
\ell(w t)=\ell\left(s_{1} \ldots \hat{s_{i}} \ldots s_{n}\right)<\ell(w)
$$

contradicting the present hypothesis

$$
\ell(w t)=\ell(s w)>\ell(w)
$$

On the other hand, for $\ell(s w)<\ell(w)=\ell(s(s w))$, the hypotheses are met by $s w$ in place of w, so the previous argument applies. Thus $s(s w)=(s w) t$, which gives $w=s w t$.

Now the commutativity of the operators λ_{s} and ρ_{t}.
Lemma: For $s, t \in S$, the operators λ_{s}, ρ_{t} commute.
Proof: Prove that $\lambda_{s} \rho_{t}-\rho_{t} \lambda_{s}=0$ by evaluating the left-hand side on T_{w}. There are few possibilities for the relative lengths of $w, s w, w t, s w t$, and in each case the result follows by direct computation, although we need to use the proposition from above in two of them:

If $\ell(w)<\ell(w t)=\ell(s w)<\ell(s w t)$, then by the definitions of the operators λ_{s}, ρ_{t} we have

$$
\lambda_{s} \rho_{t} T_{w}=\lambda_{s} T_{w t}=T_{s w t}
$$

In the opposite case $\ell(w)>\ell(w t)=\ell(s w)>\ell(s w t)$,

$$
\lambda_{s} \rho_{t} T_{w}=\lambda_{s}\left(a_{t} T_{w}+b_{t} T_{w t}\right)=a_{t}\left(a_{s} T_{w}+b_{s} T_{s w}\right)+b_{t}\left(a_{s} T_{w t}+b_{s} T_{s w t}\right)
$$

which, by rearranging and reversing the argument with s and t interchanged and left and right interchanged, is

$$
a_{s}\left(a_{t} T_{w}+b_{t} T_{w t}\right)+b_{s}\left(a_{t} T_{s w}+b_{t} T_{s w t}\right)=\rho_{t} \lambda_{s} T_{w}
$$

In the case that $\ell(w t)=\ell(s w)<\ell(s w t)=\ell(w)$ invoke the proposition just above. We have $a_{s}=a_{t}$ and $b_{s}=b_{t}$ and $s w=w t$. Then compute directly

$$
\begin{gathered}
\lambda_{s} \rho_{t} T_{w}=\lambda_{s}\left(a_{t} T_{w}+b_{t} T_{w t}\right)=a_{t}\left(a_{s} T_{w}+b_{s} T_{s w}\right)+b_{t} T_{s w t} \\
=a_{s}\left(a_{t} T_{w}+b_{t} T_{w t}\right)+b_{s} T_{s w t}=\rho_{t}\left(a_{s} T_{w}+b_{s} T_{s w}\right)=\rho_{t} \lambda_{s} T_{w}
\end{gathered}
$$

as desired.
When $\ell(w t)<\ell(w)=\ell(s w t)<\ell(s w)$

$$
\lambda_{s} \rho_{t} T_{w}=\lambda_{s}\left(a_{t} T_{w}+b_{t} T_{w t}\right)=a_{t} T_{s w}+b_{t} T_{s w t}=\rho_{t}\left(\lambda_{s} T_{w}\right)
$$

A corresponding argument applies in the case opposite to the previous one wherein $\ell(s w)<\ell(w)=\ell(s w t)<$ $\ell(w t)$.
When $\ell(w)=\ell(s w t)<\ell(s w)=\ell(w t)$ again invoke the proposition above to obtain $a_{s}=a_{t}$ and $b_{s}=b_{t}$ and also $s w=w t$. Then

$$
\lambda_{s} \rho_{t} T_{w}=\lambda_{s} T_{w t}=a_{s} T_{w t}+b_{s} T_{s w t}=a_{t} T_{s w}+b_{t} T_{s w t}=\rho_{t} T_{s w}=\rho_{t} \lambda_{s} T_{w}
$$

This finishes the proof of commutativity, and of the theorem on generic algebras.

2. Strict Iwahori-Hecke algebras

This section demonstrates that Iwahori-Hecke algebras attached to groups acting suitably on buildings are generic algebras in the sense above. The argument depends only upon the local finiteness of the building.
Let G be a group acting strongly transitively on a thick building X, preserving a labelling. (The strong transitivity means that G is transitive upon pairs $C \subset A$ where C is a chamber in an apartment A in the given apartment system.) Let (W, S) be the Coxeter system associated to the apartments: each apartment is isomorphic to the Coxeter complex of (W, S). Conversely, a choice of apartment and chamber within it specifies (W, S). We assume always that S is finite. The subgroup B is the stabilizer of C.
The local finiteness hypothesis is that we assume that for all $s \in S$ the cardinality

$$
q_{s}=\operatorname{card}(B s B / B)=\operatorname{card}(B \backslash B s B)
$$

is finite. Recall that the subgroup of G stabilizing the facet F_{s} of C of type $\{s\}$ for $s \in S$ is

$$
P=P_{s}=B\{1, s\} B=B \sqcup B s B
$$

The subgroup B is the subgroup of P additionally stabilizing C, so $B s B$ is the subset of $B\langle s\rangle B$ mapping C to another chamber s-adjacent to C (that is, with common facet F_{s} of type $\{s\}$.) Therefore, $B s B / B$ is in bijection with the set of chambers s-adjacent to C (other than C itself) by $g \rightarrow g C$.

That is, the local finiteness hypothesis is that every facet is the facet of only finitely-many chambers. Equivalently, since S is finite, each chamber is adjacent to only finitely-many other chambers.
Fix a field k of characteristic zero. Let

$$
\mathcal{H}=\mathcal{H}_{k}(G, B)
$$

be the Iwahori-Hecke algebra in G over the field k, that is, the collection of left and right B-invariant k-valued functions on G supported on finitely-many cosets $B g$ in G.

The convolution product on \mathcal{H} is

$$
(f * \varphi)(g)=\sum_{h \in B \backslash G} f\left(g h^{-1}\right) \varphi(h)
$$

The hypothesis that φ is supported on finitely-many cosets $B x$ implies that the sum in the previous expression is finite. Since φ is left B-invariant and f is right B-invariant the summands are constant on cosets $B g$, so summing over $B \backslash G$ makes sense. Nevertheless, we must prove that the product is again in \mathcal{H}. We do this in the course of the theorem.
Generally, let ch_{E} be the characteristic function of a subset E of G. By the Bruhat-Tits decomposition, if indeed they are in $\mathcal{H}(G, B)$, the functions $\operatorname{ch}_{B w B}$ form a k-basis for $\mathcal{H}(G, B)$. This Hecke algebra is visibly a free k-module.

Theorem: Each $B g B$ is a finite union of cosets $B x$, the algebra \mathcal{H} is closed under convolution products, and

$$
\begin{gathered}
\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}=\operatorname{ch}_{B s w B} \quad \text { for } \quad \ell(s w)>\ell(w) \\
\operatorname{ch}_{B s B} * \operatorname{ch}_{B s B}=a_{s} \operatorname{ch}_{B s B}+b_{s} \operatorname{ch}_{B}
\end{gathered}
$$

with

$$
a_{s}=q_{s}-1 \text { and } b_{s}=q_{s}
$$

That is, these Iwahori-Hecke operators form a generic algebra with the indicated structure constants. Further, for a reduced expression $w=s_{1} \ldots s_{n}$ (that is, with $n=\ell(w)$ and all $s_{i} \in S$), we have

$$
q_{w}=q_{s_{1}} \ldots q_{s_{n}}
$$

Proof: First prove that double cosets $B w B$ are finite unions of cosets $B x$ at the same time that we study one of the requisite identities for the generic algebra structure. This also will prove that \mathcal{H} is closed under convolution products. Do induction on the length of $w \in W$. Take $s \in S$ so that $\ell(s w)>\ell(w)$. At $g \in G$ where $\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}$ does not vanish, there is $h \in G$ so that $\operatorname{ch}_{B s B}\left(g h^{-1}\right) \operatorname{ch}_{B w B}(h) \neq 0$. For such h, we have $g h^{-1} \in B s B$ and $h \in B w B$. Thus, by the Bruhat cell multiplication rules,

$$
g=\left(g h^{-1}\right) h \in B s B \cdot B w B=B s w B
$$

Since this convolution product is left and right B-invariant

$$
\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}=c \cdot \operatorname{ch}_{B s w B}
$$

for some positive rational number $c=c(s, w)$.
Compute the constant $c=c(s, w)$ by summing the previous equality over $B \backslash G$

$$
\begin{gathered}
c \cdot q_{s w}=c \cdot \operatorname{card}(B \backslash B s w B)=c \cdot \sum_{g \in B \backslash G} \operatorname{ch}_{B s w B}(g)= \\
=c \cdot \sum_{g \in B \backslash G}\left(\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}\right)(g)=\sum_{g \in B \backslash G} \sum_{h \in B \backslash G} \operatorname{ch}_{B s B}\left(g h^{-1}\right) \operatorname{ch}_{B w B}(h)=
\end{gathered}
$$

Paul Garrett: Representations with Iwahori-fixed vectors (February 19, 2005)

$$
=\sum \sum \operatorname{ch}_{B s B}(g) \operatorname{ch}_{B w B}(h)=q_{s} q_{w}
$$

(the latter by replacing g by $g h$, interchanging order of summation.)
Thus, $c=q_{s} q_{w} / q_{s w}$ and for $\ell(s w)>\ell(w)$

$$
\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}=q_{s} q_{w} q_{s w}^{-1} \operatorname{ch}_{B s w B}
$$

This shows incidentally that the cardinality $q_{s w}$ of $B \backslash B w B$ is finite for all $w \in W$, and therefore that the Hecke algebra is closed under convolution.
Now consider the other identity required of a generic algebra. Since

$$
B s B \cdot B s B=B \sqcup B s B
$$

we need evaluate $\left(T_{s} * T_{s}\right)(g)$ only at $g=1$ and $g=s$. For $g=1$ the sum defining the convolution is

$$
\begin{gathered}
\left(\operatorname{ch}_{B s B} * \operatorname{ch}_{B s B}\right)(1)=\sum_{h \in B \backslash G} \operatorname{ch}_{B s B}\left(h^{-1}\right) \operatorname{ch}_{B s B}(h)=q_{s}= \\
=\left(q_{s}-1\right) \cdot 0+q_{s} \cdot 1=\left(q_{s}-1\right) \operatorname{ch}_{B s B}(1)+q_{s} \operatorname{ch}_{B}(1)
\end{gathered}
$$

For $g=s$

$$
\begin{gathered}
\left(\operatorname{ch}_{B s B} * \operatorname{ch}_{B s B}\right)(s)=\sum_{h \in B \backslash G} \operatorname{ch}_{B s B}\left(s h^{-1}\right) \operatorname{ch}_{B s B}(h)= \\
=\operatorname{card}(B \backslash(B s B \cap B s B s))
\end{gathered}
$$

Let P be the parabolic subgroup $P=B \cup B s B$. This is the stabilizer of the facet F_{s}. The innocent fact that P is a group gives

$$
\begin{gathered}
B s B \cap B s B s=(P-B) \cap(P-B) s=(P-B) \cap(P s-B s)= \\
=(P-B) \cap(P-B s)=P-(B \sqcup B s)
\end{gathered}
$$

Therefore, $B s B \cap B s B s$ consists of $[P: B]-2$ left B-cosets. This number is $\left(q_{s}+1\right)-2=q_{s}-1$. Thus,

$$
\operatorname{ch}_{B s B} * \operatorname{ch}_{B s B}=\left(q_{s}-1\right) \operatorname{ch}_{B s B}+q_{s} \operatorname{ch}_{B}
$$

Therefore, with $T_{w}=q_{w}^{-1} \operatorname{ch}_{B w B}$ we obtain a generic algebra with structure constants $a_{s}=\left(1-q_{s}^{-1}\right)$ and $b_{s}=q_{s}^{-1}$. However, this is a weaker conclusion than desired, as we wish to prove that for $\ell(s w)>\ell(w)$

$$
q_{s} q_{w}=q_{s w}
$$

If so, then our earlier computation would show that

$$
\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}=\operatorname{ch}_{B s w B}
$$

Then taking simply $T_{w}=\operatorname{ch}_{B w B}$ would yield a generic algebra with structure constants $a_{s}=q_{s}-1$ and $b_{s}=q_{s}$.
On one hand, (with $\ell(s w)>\ell(w)$) evaluate both sides of

$$
\operatorname{ch}_{B s B} * \operatorname{ch}_{B w B}=q_{s} q_{w} q_{s w}^{-1} \operatorname{ch}_{B s w B}
$$

at $s w$. The left-hand side is

$$
\sum_{h \in B \backslash G} \operatorname{ch}_{B s B}\left(s w h^{-1}\right) \operatorname{ch}_{B w B}(h)=\operatorname{card}(B \backslash(B s B(s w) \cap B w B))=
$$

$$
=\operatorname{card}\left(B \backslash\left(B s B s \cap B w B w^{-1}\right)\right) \geq \operatorname{card}\left(B \backslash\left(B s s \cap B w w^{-1}\right)\right)=\operatorname{card}(B \backslash B)=1
$$

The right-hand side is $q_{s} q_{w} q_{s w}^{-1}$, so

$$
q_{s} q_{w} \geq q_{s w}
$$

On the other hand, invoking the theorem on generic algebras (with $\ell(s w)>\ell(w)$)

$$
q_{s}^{-1} \operatorname{ch}_{B s B} * q_{s w}^{-1} \operatorname{ch}_{B s w B}=\left(1-q_{s}^{-1}\right) q_{s w}^{-1} \operatorname{ch}_{B s w B}+q_{s}^{-1} q_{w}^{-1} \operatorname{ch}_{B w B}
$$

This gives

$$
\operatorname{ch}_{B s B} * \operatorname{ch}_{B s w B}=\left(q_{s}-1\right) \operatorname{ch}_{B s w B}+q_{s w} q_{w}^{-1} \operatorname{ch}_{B w B}
$$

Evaluate both sides at w. The right side is $q_{s w} q_{w}^{-1}$ and the left is

$$
\begin{gathered}
\operatorname{card}(B \backslash(B s B w \cap B s w B))=\operatorname{card}\left(B \backslash\left(B s B \cap B s w B w^{-1}\right)\right)= \\
=\operatorname{card}\left(B \backslash\left(B s B \cap B s B B w B \cdot w^{-1}\right)\right) \geq \operatorname{card}\left(B \backslash\left(B s B \cap B s B w w^{-1}\right)\right)=\operatorname{card}(B \backslash B s B)=q_{s}
\end{gathered}
$$

by the cell multiplication rules. That is,

$$
q_{s w} \geq q_{s} q_{w}
$$

Combining these two computations yields $q_{s w}=q_{s} q_{w}$. Induction on length gives the assertion

$$
q_{s_{1} \ldots s_{n}}=q_{s_{1}} \ldots q_{s_{n}}
$$

for a reduced expression $s_{1} \ldots s_{n} \in W$. Thus, we obtain the generic algebra as claimed.

3. Representations with Iwahori-fixed vectors

Here we prove the Borel-Matsumoto theorem. The structure of the Iwahori-Hecke algebras is the essential ingredient in this proof. Again, G is a p-adic reductive group and B an Iwahori subgroup. More specifically, let G_{o} be the label-preserving subgroup of G, and take B to be the subgroup in G_{o} stabilizing a chosen chamber in a chosen apartment in the associated (affine) building.

Theorem: (Borel, Matsumoto, Casselman) Let G be a reductive p-adic group with Iwahori subgroup B (unique up to conjugation) and corresponding minimal parabolic subgroup P. Let $M_{o}=B \cap M$ be a maximal compact subgroup of a chosen Levi component $M=M^{P}$ of P. Let π be a smooth representation of G with

$$
\operatorname{dim} \pi^{B}<\infty
$$

(Admissibility of π would assure the latter condition.) Under the quotient map $q: \pi \rightarrow \pi_{N}$ from π to its Jacquet module π_{N} with respect to P, the B-fixed vectors π^{B} in π map complex-linear isomorphically to the M_{o}-fixed vectors $\left(\pi_{N}\right)^{M_{o}}$ in π_{N}.

Proof: (See [Casselman 1980]) Let P be a minimal parabolic subgroup of G matching B. We grant the
 fixed vectors in the Q-Jacquet module. Thus, the strength of the present assertion is the injectivity. Let $\pi(N)$ be the kernel of the quotient mapping to the P-Jacquet module. If $v \in \pi^{B} \cap \pi(N)$, then there is a large-enough compact open subgroup N_{1} of N such that

$$
\int_{N_{1}} n \cdot v d n=0
$$

Take $a \in M^{P}$ such that $a N_{1} a^{-1} \subset N_{o}$, where B has Iwahori factorization $B=N_{1}^{\mathrm{opp}} M_{o} N_{o}$. (The notation is potentially misleading: N_{1} is large while N_{1}^{opp} is relatively small.) Further, we may take a to lie inside the label-preserving subgroup G_{o} of G. Then

$$
0=a \cdot 0=\int_{N_{1}} a n v d n=\int_{N_{1}} a n a^{-1} \cdot a v d n=\int_{a N_{1} a^{-1}} n \cdot a v d n
$$

Then

$$
\int_{N_{o}} n \cdot a v d n=\int_{N_{o} / a N_{1} a^{-1}} \int_{a N_{1} a^{-1}} n_{o} n \cdot a v d n d n_{o}=\int_{N_{o} / a N_{1} a^{-1}} n_{o} \cdot 0 d n_{o}=0
$$

Normalize the measure of B to be 1 . Then

$$
0=\int_{N_{1}^{\mathrm{opp}}} \int_{M_{o}} 0 d m d n^{\mathrm{opp}}=\int_{N_{1}^{\mathrm{opp}}} \int_{M_{o}} \int_{N_{o}} n^{\mathrm{opp}} m n \cdot a v d n d m d n^{\mathrm{opp}}=\int_{B} b \cdot a v d b
$$

Further, since $v \in \pi^{B}$,

$$
\int_{B} b \cdot v d b=v
$$

Thus,

$$
\int_{B a B} x \cdot v d x=\int_{B} \int_{B} b a^{\prime} \cdot v d b^{\prime} d b=\int_{B} b a \cdot v d b=0
$$

from just above. That is,

$$
\operatorname{ch}_{B a B} v=0
$$

For some reflections s_{i} there is a reduced expression $s_{1} \ldots s_{n}$ such that

$$
B a B=B s_{1} \ldots s_{n} B
$$

By the structural results for the Iwahori-Hecke algebra,

$$
\operatorname{ch}_{B a B}=\operatorname{ch}_{B s_{1} B} * \ldots * \operatorname{ch}_{B s_{n} B}
$$

Each of the functions $\operatorname{ch}_{B s_{i} B}$ acting on π stabilizes the finite-dimensional complex vector space π^{B}. For $s \in S$, the structural assertion

$$
\operatorname{ch}_{B s B}^{2}=q_{s} \operatorname{ch}_{B s B}+\left(q_{s}-1\right) \operatorname{ch}_{B}
$$

says that any eigenvalue λ of $\operatorname{ch}_{B s B}$ on π^{B} must satisfy

$$
\lambda^{2}=q_{s} \lambda+\left(q_{s}-1\right)
$$

so

$$
\lambda=\frac{q_{s} \pm \sqrt{q_{s}^{2}-4\left(q_{s}-1\right)}}{2}=\frac{q_{s} \pm\left(q_{s}-2\right)}{2}=1, q_{s}-1
$$

That is, no eigenvalue can be 0 . Thus, each $\operatorname{ch}_{B s B}$ gives an invertible operator on π^{B}, and $\operatorname{ch}_{B a B}$ is necessarily invertible, contradicting our earlier conclusion unless $v=0$. That is,

$$
\pi^{B} \cap \pi(N)=0
$$

after all.

4. Imbeddings to unramified principal series

The Borel-Matsumoto theorem on representations with Iwahori-fixed vectors gives several important corollaries about admissible spherical representations and the structure of unramified principal series.

Corollary: An irreducible admissible representation π with non-zero B-fixed vector imbeds into an unramified principal series representation.

Proof: Since the set π^{B} of B-fixed vectors in π is non-trivial, by the theorem the space of M_{o}-fixed vectors $\pi_{N}^{M_{o}}$ in the Jacquet module π_{N} is non-trivial. Since the Jacquet-module functor preserves admissibility,
$\pi_{N}^{M_{o}}$ is finite-dimensional. Since P is minimal, M / M_{o} is an abelian group. Thus, $\pi_{N}^{M_{o}}$ has an irreducible P-quotient χ which is a complex one-dimensional space upon which M / M_{o} acts. That is, M acts on χ by an unramified character (that is, a character trivial on M_{o}). By Frobenius Reciprocity, we obtain a non-zero G-map $\pi \rightarrow \operatorname{Ind}_{P}^{G} \chi$, which must be an isomorphism since π is irreducible.

Corollary: Every G-subrepresentation and every G-quotient of an unramified principal series representation of G is generated by its B-fixed vectors.

Proof: Let π be a subrepresentation of an unramified principal series

$$
I_{\chi}=\operatorname{Ind}_{P}^{G} \rho \chi
$$

where ρ is the square root of the modular function for P. From Frobenius Reciprocity

$$
0 \neq \operatorname{Hom}_{G}\left(\pi, I_{\chi}\right) \approx \operatorname{Hom}_{M}\left(\pi_{N}, \rho \chi\right)
$$

Since $\pi_{N}^{M_{o}} \approx \pi^{B}$ as complex vector spaces (from above), $\pi^{B} \neq 0$. That is, any subrepresentation π of an unramified principal series contains a non-zero B-fixed vector.
Taking contragredients, the inclusion

$$
\pi \subset I_{\chi}
$$

give rise to a surjection

$$
I_{\tilde{\chi}} \approx \check{I}_{\chi} \rightarrow \check{\pi}
$$

Let H be the kernel. We have shown that H^{B} is non-trivial.

Corollary: If an unramified principal series representation $I_{\chi}=i_{P} \chi$ is not generated by its unique (up to constant multiples) spherical vector φ (for fixed choice K of maximal compact), then there is a non-zero intertwining $T: I_{\chi} \rightarrow I_{\chi^{\prime}}$ from I_{χ} to another unramified principal series $I_{\chi^{\prime}}$ such that $T \varphi=0$.

Proof: (Following Casselman) Let V be the proper submodule generated by the spherical vector. Then $I_{\chi} / V \neq 0$, so is still admissible (since an unramified principal series representation is admissible, and admissibility is preserved in quotients). And it is generated by its B-fixed vectors $\left(I_{\chi} / V\right)^{B}$, by the theorem, which then necessarily form a finite-dimensional subspace. Thus, I_{χ} / V is finitely-generated, so has an irreducible quotient σ, which (by the corollary) still has a non-zero B-fixed vector. Thus, σ imbeds into an unramified principal series $I_{\chi^{\prime}}$. That is, we have a non-zero intertwining

$$
I_{\chi} \rightarrow I_{\chi} / V \rightarrow \sigma \rightarrow I_{\chi^{\prime}}
$$

This proves the corollary.

5. Irreducibility criteria

First recall some relatively elementary standard facts about principal series representations. Let W be the (spherical) Weyl group of G, acting on P / N by conjugation, where N is the unipotent radical of the minimal parabolic P. Let W act on one-dimensional group homomorphisms

$$
\chi: P / N \rightarrow \mathbf{C}^{\times}
$$

by

$$
(w \chi)(x)=\chi\left(w^{-1} x w\right)
$$

As usual, say that χ is regular if $w \chi=\chi$ only for $w=1$. Let $I_{\chi}=i_{P} \chi$ denote the (smooth) normalized unramified principal series

$$
I_{\chi}=i_{P} \chi=\operatorname{Ind}_{P}^{G} \rho_{P} \chi
$$

Let φ_{χ} be the unique K-spherical vector in I_{χ} such that $\varphi_{\chi}(1)=1$.
Theorem: Let χ be an unramified character.

- If $T: I_{\chi} \rightarrow I_{\chi^{\prime}}$ is a non-zero intertwining, then $\chi^{\prime}=w \chi$ for some $w \in W$.
- If χ is regular, then for all $w \in W$

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(I_{\chi}, I_{w \chi}\right)=1
$$

In particular, for fixed regular χ and $w \in W$, the non-zero map

$$
T_{\chi, w}: I_{\chi} \rightarrow I_{w \chi}
$$

defined (for suitable inequalities imposed upon χ to ensure convergence, and then by analytic continuation) by

$$
T_{\chi, w} f(g)=\int_{N \cap w^{-1} N w \backslash N} f\left(w^{-1} n g\right) d n
$$

is the only such intertwining, up to a constant.
Theorem: The holomorphically parametrized family $\chi \rightarrow T_{\chi, w}$ (for fixed $w \in W$) of intertwining operators $I_{\chi} \rightarrow I_{w \chi}$ has a holomorphic continuation to all regular χ. The holomorphically continued intertwining is not the zero intertwining.

Theorem: ([Casselman 1980]) Let χ be a regular character, let φ_{χ} be the spherical vector in $\operatorname{Ind}_{P}^{G} \chi$ normalized so that $\varphi_{\chi}(1)=1$. There is an explicit not-identically-zero rational function $\lambda_{w}(\chi)$ of χ so that

$$
T_{\chi, w}\left(\varphi_{\chi}\right)=\lambda_{w}(\chi) \cdot \varphi_{w \chi}
$$

Corollary: ([Casselman 1980]) Let $\lambda(\chi)=\lambda_{w_{o}}(\chi)$ be the function attached to the longest Weyl element w_{o} in the spherical Weyl group. For regular characters χ, the spherical vector φ_{χ} generates I_{χ} if and only if $\lambda(\chi) \neq 0$.

Proof: Let V be the subrepresentation generated by the spherical vector. If V is not all of I_{χ}, then the quotient I_{χ} / V is non-zero. By the corollary of the Borel-Matsumoto theorem, this quotient has a non-zero intertwining to an unramified principal series $I_{\chi^{\prime}}$. Necessarily $\chi^{\prime}=w \chi$ for some $w \in W$. Either by looking at the rational functions $\lambda_{w}(\chi)$ directly, or by realizing that in a finite Coxeter group W for any w there is w^{\prime} such that the longest element w_{o} is expressible as $w_{o}=w^{\prime} w$ with

$$
\ell\left(w_{o}\right)=\ell\left(w^{\prime}\right)+\ell(w)
$$

Thus,

$$
T_{w^{\prime}, \chi^{\prime} \circ} \circ T_{w, \chi}=T_{w_{o}, \chi}
$$

and therefore

$$
\lambda_{w_{o}, \chi}=\lambda_{w^{\prime}}\left(\chi^{\prime}\right) \cdot \lambda_{w}(\chi)=\lambda_{w^{\prime}}\left(\chi^{\prime}\right) \cdot 0=0
$$

Thus, when the spherical vector fails to generate $I_{\chi}, \lambda_{w_{o}}(\chi)=0$. On the other hand, if $\lambda_{w_{o}}(\chi)=0$, the spherical vector is in the kernel of the non-zero intertwining operator $T_{w_{o}}(\chi)$, so the spherical vector cannot generate I_{χ}.

Remark: These intertwining operators are well understood. A conceptual proof of meromorphic continuation can be given by some form of Bernstein's continuation principle. One version is in [Garrett 1997].

In fact, since the compositions of these intertwinings must fall back into the same class, one can make a stronger assertion about the relationships among the intertwinings and among the λ_{w} 's for $w_{1} w_{2}=w_{3}$, etc.

Corollary: (Casselman) For regular χ, the unramified principal series I_{χ} is irreducible if and only if $\lambda(\chi) \neq 0$ and $\lambda\left(\chi^{-1}\right) \neq 0$.

Proof: Suppose V is a proper G-submodule of I_{χ}. On one hand, if V contains φ_{χ}, then φ_{χ} fails to generate all of I_{χ}, so $\lambda(\chi)=0$. On the other hand, if V does not contain φ_{χ}, then the (smooth) contragredient $\check{I}_{\chi} \approx I_{\chi^{-1}}$ has a proper submodule

$$
X=\left\{x \in \check{I}_{\chi}: x(V)=0\right\}
$$

which necessarily contains the spherical vector $\varphi_{\chi^{-1}}$. That is, \check{I}_{χ} is not generated by its spherical vector, so $\lambda\left(\chi^{-1}\right)=0$.
Now let Q be any other parabolic subgroup containing P, with unipotent radical N^{Q}. Let $\sigma: Q / N^{Q} \rightarrow \mathbf{C}^{\times}$ be an unramified character. Let

$$
i_{Q} \sigma=\operatorname{Ind}_{Q}^{G} \rho_{Q} \sigma
$$

be the normalized degenerate principal series. By restriction, such σ gives an unramified character on P and we have an injection

$$
i_{Q} \sigma=\operatorname{Ind}_{Q}^{G} \rho_{Q} \sigma \rightarrow \operatorname{Ind}_{P}^{G} \rho_{Q} \sigma=\operatorname{Ind}_{P}^{G} \rho_{P} \cdot \rho_{P}^{-1} \rho_{Q} \sigma=i_{P}\left(\rho_{P}^{-1} \rho_{Q} \sigma\right)
$$

The following is an obvious extension to degenerate principal series of Casselman's results for unramified principal series, though the condition we obtain ceases to be provably necessary for irreducibility.

Corollary: For an unramified character σ of Q, if $\rho_{P}^{-1} \rho_{Q} \sigma$ is regular, and if $\lambda\left(\rho_{P}^{-1} \rho_{Q} \sigma\right) \neq 0$ and $\lambda\left(\rho_{P}^{-1} \rho_{Q} \sigma^{-1}\right) \neq 0$, then the (normalized) degenerate principal series $i_{Q} \sigma$ is irreducible.

Proof: First, we verify that if the spherical vector φ_{σ} in $i_{Q} \sigma$ generates $i_{Q} \sigma$, and if the same is true for the contragredient $\check{i}_{Q} \sigma \approx i_{Q} \check{\sigma}$, then $i_{Q} \sigma$ is irreducible. Indeed, suppose that $i_{Q} \sigma$ had a proper submodule V. On one hand, if V contains the spherical vector, then the spherical vector fails to generate $i_{Q} \sigma$. On the other hand, if V does not contain the spherical vector, then in the contragredient the submodule

$$
X=\left\{x \in \check{i}_{Q} \sigma: x(V)=0\right\}
$$

is proper and contains the spherical vector, so the spherical vector fails to generate $\check{i}_{Q} \sigma$.
Now we relate this to the generation of unramified principal series by the spherical vector. From the obvious inclusion

$$
\check{i}_{Q} \sigma \approx i_{Q} \check{\sigma} \rightarrow i_{P}\left(\rho_{P}^{-1} \rho_{Q} \check{\sigma}\right)
$$

by dualizing we obtain a surjection of the contragredients, which (by choice of the normalizations) gives a surjection

$$
i_{P}\left(\rho_{P} \rho_{Q}^{-1} \sigma\right) \rightarrow i_{Q} \sigma
$$

If the spherical vector in $i_{Q} \sigma$ fails to generate $i_{Q} \sigma$, then surely the same is true of $i_{P}\left(\rho_{P} \rho_{Q}^{-1} \sigma\right)$. The obvious parallel remark applies to the contragredient. If $\rho_{P} \rho_{Q}^{-1} \sigma$ is regular, then we may invoke Casselman's criterion for generation of unramified principal series by the spherical vector.

6. Bibliography

[Casselman 1980] W. Casselman, The unramified principal series of p-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387-406.
[Garrett 1997] P. Garrett, Euler factorization of global integrals, in 'Euler Products and Eisenstein Series', Proc. Symp. Pure Math. vol. 66.
[Muić-Shahidi 1998] G. Muić, F. Shahidi, Irreducibility of standard representations for Iwahori-spherical representations, Math. Ann. 312 (1998), no. 1, pp. 151-165.

