# The Jacobi product formula 

Paul Garrett, garrett@math.umn.edu, (c)2001

Theorem: (Jacobi Product Formula) Let $w, q$ be indeterminates. Then in the formal power series ring $\mathbf{Z}\left[w, w^{-1}\right][[q]]$ in $q$ over the ring $\mathbf{Z}\left[w, w^{-1}\right]$

$$
1+\sum_{n \geq 1}\left(w^{2 n}+w^{-2 n}\right) q^{n^{2}}=\prod_{n \geq 1}\left(1-q^{2 n}\right)\left(1+q^{2 n-1} w^{2}\right)\left(1+q^{2 n-1} w^{-2}\right)
$$

Corollary: For $q \in \mathbf{C}$ and $w \in \mathbf{C}$ with $|q|<1$ the Jacobi Product Formula holds as an equality of holomorphic functions. For example, for $z$ in the complex upper half-plane, letting $q=e^{\pi i z}$,

$$
\sum_{n \in \mathbf{Z}} e^{\pi i n^{2} z}=\prod_{n \geq 1}\left(1-q^{2 n}\right)\left(1+q^{2 n-1}\right)\left(1+q^{2 n-1}\right)
$$

In particular, this expression is non-zero for $z$ in the complex upper half-plane.
Proof: Consider the partial product

$$
\varphi_{m}(q, w)=\prod_{1 \leq n \leq m}\left(1+q^{2 n-1} w^{2}\right)\left(1+q^{2 n-1} w^{-2}\right)
$$

Regroup the terms of $\varphi_{m}(q, w)$ by powers of $w^{2}$ and $w^{-2}$ :

$$
\varphi_{m}(q, w)=\Phi_{m, 0}+\left(w^{2}+w^{-2}\right) \Phi_{m, 1}+\ldots+\left(w^{2 m}+w^{-2 m}\right) \Phi_{m, m}
$$

for suitable polynomials $\Phi_{m, i} \in \mathbf{Z}[q]$. The top polynomial $\Phi_{m, m}$ is easy to determine, namely

$$
\Phi_{m, m}=q^{1+3+5+\ldots+(2 m-3)+(2 m-1)}=q^{m^{2}}
$$

We will obtain a recursion for the other $\Phi_{m, n}$ 's. Replacing $w$ by $q w$ in $\varphi$ gives

$$
\begin{gathered}
\varphi_{m}(q, q w)=\prod_{1 \leq n \leq m}\left(1+q^{2 n+1} w^{2}\right)\left(1+q^{2 n-3} w^{-2}\right) \\
=\left(1+q^{2 m+1} w^{2}\right)\left(1+q^{-1} w^{-2}\right)\left(1+q w^{2}\right)^{-1}\left(1+q^{2 n-1} w^{-2}\right)^{-1} \varphi_{m}(q, w)
\end{gathered}
$$

just by regrouping factors. The middle two leftover factors nearly cancel, leaving

$$
\left(q w^{2}+q^{2 m}\right) \varphi_{m}(q, q w)=\left(1+q^{2 m+1} w^{2}\right) \varphi_{m}(q, w)
$$

Equating the coefficients of $w^{2-2 n}$ in the latter equality yields (for $n \geq 1$ )

$$
q \cdot \Phi_{m, n} \cdot q^{-2 n}+q^{2 m} \cdot \Phi_{m, n-1} \cdot q^{2-2 n}=\Phi_{m, n-1}+q^{2 m+1} \Phi_{m, n}
$$

from which we obtain

$$
\Phi_{m, n}=q^{2 n-1}\left(1-q^{2 m-2 n+2}\right)\left(1-q^{2 m+2 n}\right)^{-1} \Phi_{m, n-1}
$$

Thus, by the obvious induction we obtain the product expansion

$$
\Phi_{m, n}=q^{n^{2}}\left(\prod_{1 \leq i \leq n} \frac{1-q^{2 m-2 i+2}}{1-q^{2 m+2 i}}\right) \Phi_{m, 0}
$$

We already have $\Phi_{m, m}=q^{m^{2}}$, so

$$
q^{m^{2}}=\Phi_{m, m}=q^{m^{2}}\left(\prod_{1 \leq i \leq m} \frac{1-q^{2 m-2 i+2}}{1-q^{2 m+2 i}}\right) \Phi_{m, 0}
$$

from which we conclude that

$$
\Phi_{m, 0}=\prod_{1 \leq i \leq m} \frac{1-q^{2 m+2 i}}{1-q^{2 m-2 i+2}}=\prod_{1 \leq i \leq m} \frac{1-q^{2 m+2 i}}{1-q^{2 i}}
$$

by replacing $i$ by $m+1-i$ in the denominators (and rearranging). Then

$$
\Phi_{m, n}=q^{n^{2}}\left(\prod_{1 \leq i \leq n} \frac{1-q^{2 m-2 i+2}}{1-q^{2 m+2 i}}\right)\left(\prod_{1 \leq i \leq m} \frac{1-q^{2 m+2 i}}{1-q^{2 i}}\right)
$$

As $i \rightarrow \infty, q^{i} \rightarrow 0$, by definition of the topology on $\mathbf{Z}[[q]]$. Thus, for fixed $n$, as $m \rightarrow \infty$, except for the factors $1-q^{2 i}$, the factors in $\Phi_{m, n}$ go to 1 in $\mathbf{Z}[[q]]$. That is, for any fixed $n \geq 1$, as $m \rightarrow \infty$

$$
\Phi_{m, n} \rightarrow \prod_{1 \leq i} \frac{1}{1-q^{2 i}}
$$

Thus, the equality

$$
\prod_{1 \leq n \leq m}\left(1+q^{2 n-1} w^{2}\right)\left(1+q^{2 n-1} w^{-2}\right)=\Phi_{m, 0}+\sum_{1 \leq n \leq m} q^{n^{2}}\left(w^{2 n}+w^{-2 n}\right) \Phi_{m, n}
$$

for each fixed $m$ (by which the $\Phi_{m, n}$ were initially defined) becomes, as $m \rightarrow \infty$,

$$
\prod_{1 \leq n}\left(1+q^{2 n-1} w^{2}\right)\left(1+q^{2 n-1} w^{-2}\right)=\left(\prod_{1 \leq i} \frac{1}{1-q^{2 i}}\right)\left(1+\sum_{1 \leq n} q^{n^{2}}\left(w^{2 n}+w^{-2 n}\right)\right)
$$

which gives

$$
\prod_{1 \leq n}\left(1-q^{2 n}\right)\left(1+q^{2 n-1} w^{2}\right)\left(1+q^{2 n-1} w^{-2}\right)=1+\sum_{1 \leq n} q^{n^{2}}\left(w^{2 n}+w^{-2 n}\right)
$$

which is the asserted identity.

