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The goal here is to recover a family of assertions of the form

H∗(Γ\X) ≈ H∗(Γ)

where the left-hand side is singular cohomology of a topological space Γ\X obtained as a quotient of a
homeomorphic copy of an open ball X by the action of a discrete group Γ, and the right-hand side is group
cohomology of Γ. A striking aspect of this is that the essence of the argument concerns homotopy rather
than (co-) homology.

A brief outline of the early history, as in [Dieudonné 1989] and [Maclane 1963], is as follows. (See also
[Weibel].) The fact that homology (or at least the collection of Betti numbers) is determined by π1(X)
for X having πi(X) = {1} for i > 1 was known from [Hurewicz 1935]. Nascent ideas concerning tangible
applications of low-degree group (co-) homology appeared in [Baer 1934]. But explicit formation of the notion
of group cohomology (beyond H1 and H2, and perhaps H3) as an artifact of a construction of spaces with
specified π1 and no higher homotopy occurred in [Eilenberg MacLane 1943] and [Eilenberg MacLane 1945],
and independently in [Eckmann 1946]. The homology assertion was in [Hopf 1945] and independently in
[Freudenthal 1946]. [MacLane 1963] also cites [Hopf 1942] as a predecessor, treating the second Betti group,
but this source is less widely available.

The functorial construction of a CW-complex K(G, 1) given here roughly follows the readable account in
[Hatcher 2002]. It is a relatively simple matter to observe that the construction does incidentally yield the
(by-now standard!) bar construction of a free resolution of the trivial G-module. Once this is realized,
the isomorphism of the singular and algebraic homology is immediate.

For those who have wondered about the motivation for group (co-) homology beyond H 1, H2, and perhaps
H3, this history may indicate that discovery of (co-) homology functorially attached to a group G was an
accidental side-effect of a functorial construction of the corresponding K(G, 1)[

�
] by Eilenberg and MacLane.

Hurewicz studied the n = 1 case of the topological problem. Eilenberg and MacLane treated the case of
general n, and observed that the homotopy invariance of (co-) homology groups attached to a functorially
constructed K(G, 1) gave a (co-) homology theory for groups as a by-product. Indeed, the so-called bar
resolution for group (co-) homology is the construction of K(G, 1) with the geometry removed. Further,
the fact that the (co-) homology groups of a K(G, 1) are independent of constructions (via homotopies)
apparently suggested that group (co-) homology should not depend upon the specific resolution. Thus, the
mystery of the motivation for higher group (co-) homology is partly resolved by understanding it as an
artifact of the construction of K(G, 1)’s and K(G, n)’s.

However, even if we take this somewhat skeptical view of the creation or discovery of group (co-) homology,
by now we appreciate it as consisting of derived functors of the functors that take co-fixed (resp. fixed)
vectors in a representation. That is, (co-) homology spaces have a natural existence, so, as usual, it would
be unwise to ignore them, regardless of history.

[
�
] As below, a topological space X is a K(G, 1) if it has π1(X) ≈ G and πi(X) = {1} for i > 1. Sometimes one

requires that X be a CW-complex. The functorial construction here rarely yields a finite-dimensional CW-complex,

so accommodation must be made for the possibility of infinite-dimensional spaces. Similarly, a K(G, n) has prescribed

πn(X) ≈ G and other homotopy trivial.
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We will prove that the homotopy type of a connected CW-complex X = K(G, 1) (with π1(X) = G and
vanishing higher homotopy) is uniquely determined by the group G, and then construct a CW-complex [ � ]

BG ' K(G, 1) whose singular chain complex is literally the bar resolution of G in group homology. Finally,
we discuss the simple observation that this construction of BG gives a free resolution of the trivial G-module,
thus yielding group homology.

1. CW-complexes

A CW-complex[ � ] is a nice topological space created by sticking together balls of various dimensions. [ � ]

More precisely, let Bn be the closed unit ball in Rn, and let Sn−1 = ∂Bn be the (n − 1)-sphere bounding
Bn. An n-cell is a topological space en homeomorphic to Bn. Collections of n-cells for n = 0, 1, 2, . . . are
assembled into a CW-complex X as follows.

We begin by specifying a discretely topologized set X0, the 0-skeleton of X .

Inductively, granting that the (n−1)-skeleton Xn−1 of the CW-complex X is already constructed, we specify
a set of n-cells en

i and attaching maps

ϕn
i : ∂en

i ≈ Sn−1 −→ Xn−1

Then the n-skeleton Xn is the quotient

Xn =

(
Xn−1 t

⊔

i

en
i

)
/ ∼

where ∼ is the equivalence relation which identifies each x ∈ ∂en
i with its image ϕn

i (x) ∈ Xn−1. By abuse of
language, we identify each cell en

i with its image in Xn.

The whole CW-complex X =
⋃

n Xn is the colimit (in the category of topological spaces), and thus has
a uniquely specified colimit topology. That is, X has the unique topology [ � ] such that every inclusion
jn : Xn −→ X is continuous, and such that for every family of maps

fn : Xn −→ Y

[ � ] The notation BG for this construction of a functorial K(G, 1) is standard.

[ � ] As in [Hatcher 2002], the C refers to closure finiteness, meaning that the closure of each cell meets only finitely-many

other cells, and the W refers to the topology, sometimes called the weak topology. (Since it is literally a colimit

topology, we will call it the colimit topology.)

[ � ] Although there are technical reasons to discuss simplices and simplicial complexes prior to discussion of CW-

complexes, in the end the latter viewpoint is much more convenient, if only as a more flexible descriptive language.

[ � ] More important than the name per se, the acknowledgement that the topology is that of a colimit tells quite explicitly

why we take this topology, since we make clear its mapping properties in advance.
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with the compatibility condition that for m < n the diagram

Xm
⊂

//

fm
!!B

BB
BB

BB
B

Xn

fn
~~||

||
||

||

Y

commutes, there is a unique f : X −→ Y such that all diagrams

Xn

jn
//

fn
  

BB
BB

BB
BB

X

f
��~~

~~
~~

~~

Y

commute. This universal mapping property characterization proves the uniqueness up to unique
isomorphism. Existence of the colimit is a little boring here, because the maps among the Xn are so
simple. That is, take the quotient of the coproduct (disjoint union)

⊔
n Xn by identifying xm ∈ Xm with

its image in Xn for m < n, via Xm ⊂ Xn. It is not so hard to verify that this gives a coproduct whose
underlying set is the ascending union (which is itself a set-coproduct).

A very special kind of CW-complex construction which is still much more flexible than simplicial complex
constructions is what [Hatcher 2002] calls ∆-complexes, which are used to construct K(G, 1)’s functorially
in a fashion which incidentally creates the bar resolution for group homology.

As usual, a (geometric) n-simplex is (a topological space σ homeomorphic to) the convex hull in some
Euclidean space RN of n + 1 affinely-independent[ � ] points v0, . . . , vn. [ � ] The vertices of σ are the points
xi of which σ is the convex hull. An orientation of σ is a choice of ordering of its vertices. We will often
name an n-simplex by listing its vertices vi in the ordering given by the orientation, in the notation

σ = [v0, v1, . . . , vn]

The ith-codimension-one face of σ is the convex hull of

x0, x1, . . . , xi−1, xi+1, xn

That is, the ith codimension-one face of σ = [x0, . . . , xn] is

[x0, . . . , xi−1, xi+1, . . . , xn] = [x0, . . . , x̂i, . . . , xn]

where as usual the hat denotes omission. More generally, given a subset I = {i0.i1, . . . , id} of {0, 1, . . . , n}
with

i0 < . . . < id

the Ith face of σ = [x0, x1, . . . , xn] is
[xi0 , xi1 , . . . , xid

]

In particular, the faces of a simplex σ inherit an orientation from σ.

Unlike the more restrictive rules for constructing simplicial complexes, we construct ∆-complexes as follows.
Starting with a disjoint union of simplices, we are allowed to identify two faces F and F ′ (of the same

[ � ] That is, there is no relation
∑

i
tivi = 0 for real numbers t0, . . . , tn with

∑
i
ti = 1.

[ � ] The dimension N of the ambient Euclidean is allowed to be much larger than the number n + 1 of points. If one

resists identifying simplices σ with subsets of Euclidean spaces, then one needs to specify homeomorphisms ϕσ from

the convex hulls to σ, and so on.
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dimension d) of simplices σ and σ′ in a restricted fashion. We view F and F ′ as sitting in different ambient
Euclidean spaces, and let

L : (affine span of x0, . . . , xd) −→ (affine span of y0, . . . , yd)

be the unique (thus, canonical) linear map (on the linear span of the xi) such that

L(xi) = yi

for all i. Then we are allowed to identify F and F ′ via L. This does make the orientations of F and F ′

match, and gives compatible identifications of the faces of the simplices F and F ′ by continuity (indeed, by
linearity). [ � ]

We have the expected

Proposition: A ∆-complex X is a CW-complex.

Proof: We follow the appendix of [Hatcher 2002]. This argument amounts to nearly trivial modifications to
match the formal description of CW-complexes. The fact itself is quite believable at the outset.

The interior σo of the convex hull σ of n + 1 points in Rn is an open n-ball en
σ. The boundary of σ is

homeomorphic to an n− 1 sphere Sn−1, and the induced map of Sn−1 to the (n− 1)-skeleton Xn−1 of X is
plausibly continuous. With a little modification for formalities, any ∆-complex is a CW-complex made from
these cells and the obvious attaching maps.

The modifications are as follows. Given a ∆-complex X , enlarge the set of simplices and identifications
by including copies of all the lower-dimensional faces of the simplices σ in X , with identifications (linear
maps rigidly constrained as above, in the definitions) to the corresponding faces of σ. (If necessary, remove
duplicates of simplices which are entirely identified in X .) Then the given ∆-complex X is the (disjoint
union of) cells en

σ modulo implied attaching maps. [ � ]

We prove by induction that this presents X as a CW-complex, while explicating the attaching maps. Let
Xn be the union of all the m-cells with m ≤ n, glued together by the corresponding attaching maps, and
assume that the (n − 1)-skeleton Xn−1 is a CW-complex (with implied attaching maps). This is true for
n − 1 = 0, since a 0-dimensional CW-complex has no attaching maps, being a disjoint union of points. By
induction, for each cell em

σ = σo with m ≤ n − 1, the restriction

σo = em
σ −→ Xn−1

of the continuous map σ −→ X to the interior σo of σ is continuous. The boundary of σ is homeomorphic
to Sn−1, and the lower-dimensional faces of σ have already been assembled in Xn−1 into an image of this
sphere. Thus, for each n-cell σ, we have a genuine attaching map

ϕσ : Sn−1 −→ Xn−1 ⊂ Xn

Thus, Xn is also a CW-complex.

By definition, a colimit (with inclusions) of CW-complexes (with the inclusions arranged as attaching maps,
as we have) is a CW-complex. ///

[ � ] Thus, in a ∆-complex, unlike in a simplicial complex, it is not true that the vertices of a simplex determine the simplex

uniquely. Tolerating this allows constructions using far fewer simplices than would be required by simplicial complexes.

This is an advantage enjoyed more broadly by CW-complexes. At the same time, the ∆-complex construction is far

more rigid (and completely combinatorial) than the general CW-complex.

[ � ] It is not completely proper to call these attaching maps before we know that the whole is a proper CW-complex, but

we do anticipate that they are.
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2. A functorial construction of K(G, 1)

The usual definition of a K(G, n) is that it is a (connected) topological space X with prescribed nth homotopy
group πn(X) ≈ G, and all other homotopy groups trivial. The K(G, 1)’s are also called classifying spaces,
and often denoted as BG.

The construction of K(G, 1)’s here is the bar construction or bar resolution. These While this
construction creates large spaces (demonstrably larger than necessary in some simple cases), it has the
virtue of functoriality.

Further, with some hindsight (which we’ll acquire just below) it will be seen that the algebra of this
construction gives a free resolution of the trivial G-module, if one simply ignores the geometry. That is, an
idiosyncratic geometrically motivated construction, when the geometry is removed, yields group cohomology.
This peculiar causal relationship will be clarified below.

In the standard notation, given a group G, let EG be the ∆-complex (as above) whose n-simplices are all
ordered (n + 1)-tuples

σ = [g0, . . . , gn]

of elements of G, with natural identifications of faces

[g0, . . . , ĝi, . . . gn]

A critical observation is that EG is contractible. [
���

] Indeed, let h be the homotopy that slides each point
x in [g0, . . . , gn] along the line segment in the (n + 1)-simplex [e, g0, . . . , gn] (with e the identity in G) from
x to the 0-simplex (vertex) [e]. Since there are many implied identifications in EG, one should stop to be
sure that this homotopy h is well-defined. Specifically, the homotopy of [g0, . . . , gn] inside [e, g0, . . . , gn] does
restrict to the corresponding homotopy in [e, g0, . . . , ĝi, . . . , gn] on a face [g0, . . . , ĝi, . . . , gn]. [

� �
]

The group G acts on EG on the left by ∆-complex maps[
� � ] by affine maps, specified on the vertices in the

natural fashion
g · [g0, . . . , gn] = [gg0, . . . , ggn]

and extending to the convex hull by requiring affine-ness. We claim that the map EG −→ G\EG to the
quotient BG = G\EG of EG by the G-action is a covering space. Since EG is contractible, this map
EG −→ BG exhibits EG as a universal covering space of BG, with covering group G. Thus, π1(BG) ≈ G,
by covering-space theory (as in the appendix). ///

Remark: Since G acts properly [
� � ] on EG by permuting simplices, the quotient BG inherits a natural

∆-complex structure, in which there is a single vertex. Writing a simplex in EG in the style

[g0, g0g1, g0g1g2, . . . , g0g1 . . . gn] = g0[e, g1, g1g2, . . . , g1 . . . gn]

[
���

] Recall that contractibility implies that the identity is homotopic to a constant map. This should not be misconstrued

as reliably suggesting that the space has a retraction to a point.

[
� �

] As [Hatcher 2002] notes, this homotopy is not a retraction to [e]. Indeed, the 1-simplex (edge) [e, e] has two faces, [e]

and [e], which are the same point. Since this is a ∆-complex and not a simplicial complex, this is permissible, and

we find that [e, e] is homeomorphic to a circle. The same is true of any [g, g] with g ∈ G. Thus, the homotopy moves

[e] along the loop [e, e].

[
� � ] The precise definition of ∆-complex map is left as an exercise.

[
� � ] The properness of the action is the visible property that no element of G other than the identity fixes any point of

EG.
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we finally introduce the bar notation

[g1| . . . |gn] = image in G\EG of [e, g1, g1g2, . . . , g1 . . . gn]

Then in BG the topological boundary of [g1| . . . |gn] is union of simplices

[g1| . . . |gigi+1| . . . |gn] (for 1 ≤ i ≤ n)

and also the end cases, two more simplices,

[g2| . . . |gn] and [g1| . . . |gn−1]

3. Homotopy type of K(G, 1)’s

Examples can show that there is a considerable variety of constructions of spaces as K(G, 1)s, but,
nevertheless,

Theorem: The homotopy type of a connected CW-complex K(G, 1) is completely determined by G.

Corollary: Any homotopy-invariant functor F on topological spaces yields a functor on groups G by
G −→ K(G, 1) −→ FK(G, 1). ///

Proof: Grant for the moment that for a CW-complex X and a CW-complex Y = K(G, 1) that every group
homomorphism

π1(X, x0) −→ π1(Y, y0) (with x0 ∈ X , y0 ∈ Y )

is induced by a map X −→ Y sending x0 −→ y0 that is unique up to a homotopy fixing x0. Then for X
another K(G, 1), an isomorphism

π1(X, x0) ≈ G ≈ π(Y, y0)

yields maps f : X −→ Y and g : Y −→ X sending x0 ↔ y0, and unique up to homotopy. Thus, f ◦ g and
g ◦ f induce the identity maps on the π1s, and such maps are unique up to homotopy. The identity maps on
X and Y also induce the identity maps on the π1s, so, by the uniqueness up to homotopy, f ◦ g and g ◦ f
are homotopic to the identity.

Now we prove that every group homomorphism π1(X, x0) −→ π1(Y, y0) with x0 ∈ X , y0 ∈ Y is induced
by a map X −→ Y sending x0 −→ y0, unique up to a homotopy fixing x0. To this end, first consider
the simple case that X is a CW-complex with a single vertex x0.

[
� � ] Let f : π1(X, x0) −→ π1(Y, y0) be a

homomorphism. We will create a continuous map F : (X, x0) −→ (Y, y0) so that the induced map F∗ on π1

is F∗ = f . First, of course, define F (x0) = y0. Second, each 1-cell e1 of X has closure e1 ∪ x0 ≈ S1, which
gives a class we’ll denote [e1] in the 1-skeleton’s π1(X

1, x0). Define F on the closure e1 ∪ x0 ⊂ X1 so that
F∗[e

1] = f [e1]. This gives an extension of F to the 1-skeleton X1 of X .

Given an attaching map α : S1 −→ X1 ⊂ X in the CW-complex structure of X , to extend F to the 2-cell
e2 attached along α, it suffices that F ◦α is nullhomotopic in Y : given a nullhomotopy ht : S1 × [0, 1] −→ Y
with h0(S

1) a fixed point h0(S
1) = s0, observe that h0 factors through the cone on S1, which is a disc. Thus,

this e2 is attached along F ◦ α by a nullhomotopy in Y of F ◦ α : S1 −→ Y , as claimed.

To find a nullhomotopy in Y , let j : X1 −→ X be the inclusion, let s0 be a basepoint on S1, and fix a path
in X1 from α(s0) to x0 (using the fact that X1 has a single vertex). With the choices of base point and

[
� � ] Since the bar construction produces CW-complexes with a single vertex, this part of the argument would already

suffice.
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path from x0 to it, α specifies a class we’ll denote [α] in π1(X
1, x0). Existence of a homotopy of F ◦ α to

a constant map in Y is (of course) equivalent to F∗ ◦ j∗([α]) being 1 in π1(Y, y0). Already j∗([α]) is 1 in
π1(X, x0), so its image under the group homomorphism f is certainly 1 in π1(Y, y0).

To extend F to cells of dimensions n > 2 in X , we again use the fact that a nullhomotopy of a map of Sn−1

to a space factors through the cone of Sn−1, which is a closed n-ball. Thus, we claim that every attaching
map α : en −→ Xn−1 give F ◦ α : Sn−1 −→ Y which is nullhomotopic. Indeed, since n > 2, the map
F ◦ α lifts to a map Φ to the universal covering of Y [

� � ] This universal covering is simply-connected, so
Φ is nullhomotopic, and the nullhomotopy descends to a nullhomotopy in Y . By its definition, the colimit
topology on X gives a continuous F : (X, x0) −→ (Y, y0) inducing the given group homomorphism f on π1.

For uniqueness (up to homotopy) of F , let Φ be another map inducing the same homomorphism on π1.
Restricted to the 1-dimensional CW-complex X1 (with a single vertex!), the fact that Φ∗ = F∗ says that for
any attaching map α : {0, 1} −→ {x0} and corresponding attachment of an e1 to make e1 ∪ {x0} ≈ S1, the
images F (e1 ∪ {x0} and Φ(e1 ∪ {x0}) are homotopic in Y , by homotopies fixing y0 = F (x0) = Φ(x0). All
these separate homotopies can be assembled to give a homotopy h between the restrictions to X 1 of F and
Φ.

To extend the homotopy

h : X1 × [0, 1] −→ Y

(from F to Φ on X1) we first extend h to

H : X1 × (0, 1) ∪ X × ∂[0, 1] −→ Y

where on X × {0} h′ is F , while on X × {1} h′ is Φ. Note that the remaining cells en × (0, 1) of the
CW-complex X × [0, 1] have dimension n + 1 > 1 + 1 = 2. Thus, the extension argument above that proved
existence proves the extendability of H to a homotopy of F to Φ. This proves existence and uniqueness in
the case that X has a single vertex.

The case that X has more than a single vertex is a version of the ideas of the single-vertex case but with a
slightly more complicated beginning, as follows. Let T be a maximal tree[

� � ] in X1. To construct the desired
F , first set F (T ) = y0. Next, by the maximality of T , an edge e1 in X − T gives a homotopy class we’ll
denote [e1]. Define F on the closure of e1 to be any map giving f [e1] in homotopy. The construction of F
on higher-dimensional cells is as before, proving existence.

To prove uniqueness (up to homotopy) in the general case, again let T be a maximal tree in X1, and begin
with a deformation retraction r of T to x0, which exists since T is contractible to x0. We claim first that r
extends to a homotopy h from the identity X1 −→ X1 to some other map on X1. The extension of r will
not move vertices e0 not in T , and will not move edges e1 attached to two vertices both not in T . Thus, to
define the extension we need only consider edges e1 attached to at least one vertex in T , and attached to
another vertex which may or may not be in T . We can treat both cases simultaneously by deciding in either
case to keep (in effect) the midpoint of e1 fixed. The half of e1 attached to a vertex not in T (if any) will not
move at all. Meanwhile, any half of e1 attached to a vertex e0 in T should stretch to follow e0 as it moves
toward x0 under the retraction r.

Given a homotopy h on X1 which restricts to the retraction of T to x0, and given two maps F and Φ inducing
the given homomorphism on π1, a homotopy from F on X1 to Φ on X1 can be constructed by composing
F and Φ (restricted to X1) with h. This reduces to the single-vertex case for X1 with these modifed F and
Φ. Then the remainder of the earlier argument proceeds in the same fashion, once we have the homotopy
on X1. ///

[
� � ] See the two appendices, one on contractibility of spheres, the other on the homotopy criterion for lifting of maps.

[
� � ] As usual, a tree is a connected 1-dimensional simplicial complex with no cycles, that is, with trivial π1.
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4. Homotopy of contractible universal covers

As reviewed in [Rosenberg 1994], among other results [Dold 1963] includes a very useful result on the
homotopy type of quotients Γ\X where X is contractible and Γ acts nicely. We reproduce the result and
Dold’s argument below. This result will allow us to apply results on CW-complex K(G, 1)’s to quotients
of symmetric spaces X [

� � ] by arithmetic subgroups Γ, and then convert (co-) homological questions about
these quotients Γ\X to questions about the group (co-) homology of Γ itself.

Let p : E −→ B be a continuous map. [
� � ] As usual, a continuous map s : B −→ E is a section for p if it is

a one-sided inverse, namely, if

p ◦ s = 1S

In Dold’s terminology, for A ⊂ B, a halo around A is a set H with A ⊂ H ⊂ B with a continuous [0, 1]-
valued function f (a halo function) on all of B such that f = 1 on A and f = 0 off H . For a subset A of B,
let EA = p−1A and

pA : EA −→ A

be the corresponding restriction of p : E −→ B. The map p : E −→ B has the section extension property
if, for all A ⊂ B and for all sections s of pA extending to a section of pH for some halo H of A,[

� � ] s extends
to a section σ : B −→ E. [ � � ] Here s is called a local section and σ a global section.

Lemma: A map p : E −→ B has the section extension property for E = B ×X for a contractible space X
and p the projection to B.

Proof: Let h : X × [0, 1] −→ X be a contraction, that is, a continuous map such that h(x, 0) = x and
h(x, 1) = x0 for some x0, for all x ∈ X . Let H be a halo around A ⊂ B, with halo function f . Let s be a
section of pA extending to a section s′ of pH . Let q : E = B × X −→ X be the projection to the second
factor. Define a section σ of p by[ � �

]

σ(b) =

{
b × x0 (for b 6∈ H)
b × h(q ◦ s′(b), f(b)) (for b ∈ H)

This extends the section s. [ � � ] ///

Lemma: Let p : E −→ B have the section extension property. For continuous ϕ : B −→ [0, 1], the
restriction pU : EU −→ U to the inverse image under p of the open set

U = ϕ−1(0, 1] ⊂ B

[
� � ] For present purposes, we are only interested in symmetric spaces which happen to be contractible. Typically these

would be called symmetric spaces of non-compact type, although this terminology does not reveal that they are

contractible. The complex upper half-plan, complex n-balls, real n-balls, and Siegel upper half-planes are popular

examples of non-compact type symmetric spaces.

[
� � ] Soon p : E −→ B will be a covering map, with p for projection and B for base.

[
� � ] The extendability of the section to some halo of A is an adroit general means to exclude several pathologies.

[ � � ] There is no claim that the extension of the section to the halo extends to a section on all of B.

[ � �
] The trick is that this section uses the halo function as the [0, 1]-parameter in the contraction homotopy.

[ � � ] Note that the section extension makes use of the extension to the halo, but does not extend this extension itself.
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also has the section extension property.

Proof: (Dold) Let f : U −→ [0, 1] be continuous, put A = f−1(1), and let s be a section of p over f−1(0, 1].
[ � � ] The latter is open in U , and, thus, open in B. To prove the section extension property, we need a section
σ of pU agreeing with s restricted to A. Dold inductively constructs sections sn of p on ϕ−1( 1

n
, 1] (agreeing

on overlaps) converging to σ. The convergence to σ is assured by requiring at each step that

sn = s on ϕ−1(
1

n + 1
, 1] ∩ f−1(

n − 1

n
, 1]

which implies that eventually sn(b) = s(b) for b ∈ U ∩ f−1(1). To start, we want a section agreeing with s
on the set S where ϕ > 1

3 and f > 1
2 . To this end, note that the product fϕ extends to be continuous on all

of B by defining it to be 0 off U . Then s extends from S to the corresponding halo

H = {b ∈ B : (fϕ)(b) > 0}

Thus, s has a global extension s2 by the section extension property for p. Now assume we have s2, . . . , sn,
and construct sn+1 agreeing with sn on ϕ−1( 1

n
, 1] and agreeing with s on

ϕ−1(
1

n + 2
, 1] ∩ f−1(

n

n + 1
, 1]

To this end, let

kn : [0, 1] −→ [
1

n + 2
,
1

n
]

be continuous and decreasing, requiring further that

kn(t) =

{
1
n

(for t ≤ n−1
n

)
1

n+2 (for t ≥ n
n+1 )

Let
An = {b ∈ U : ϕ(b) > kn(f(b))}

Since sn and s agree on the set

f >
1

n + 1
and g >

n − 1

n

we can define a section σ of p over An by

σ(b) =

{
sn(b) (for f(b) > 1

n+1 )

s(b) (for g(b) > n−1
n

)

At least one of these conditions holds at every point of An. We must extend this section to a section on a
halo of An and then invoke the section extension property for p. We claim that

Hn = {b ∈ U : ϕ(b) >
n

n + 1
· kn(f(b))}

is a halo of An. Indeed, we can define a halo function for Hn by

hn(b) =





0 (for b 6∈ Hn)
1 (for b ∈ An)

(n+1)ϕ(b)−nkn(f(b))
kn(f(b)) (for b ∈ Hn − An)

[ � � ] We try to suppress parentheses when possible. As usual, we claim that context does disambiguate the varying usage.
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This function hn is continuous, exhibits Hn as a halo of An, so a global section sn+1 exists, by the section
extension property of p. ///

Theorem: (Dold) Let B be paracompact, [ � � ] E and X Hausdorff, and p : E −→ B an open continuous
map such that each b ∈ B has a neighborhood Ub such that there is a homeomorphism

ϕb : p−1(Ub)
'
−→Ub × X

with
p|p−1(Ub) = prUb

◦ ϕb

where prUb
: Ub×X −→ Ub is the projection on the first factor. Let X be contractible. Then p is a homotopy

equivalence. Further, there is a section s of p such that there is a vertical homotopy from 1E to s◦p, meaning
that the homotopy commutes with p. [ � � ]

Proof: It suffices to show that p has the section extension property and then take the set A to be the empty
set. Since B is paracompact, the covering {Ub : b ∈ B} admits a locally finite refinement {Vi : i ∈ I} for
some index set I . Let {fi : i ∈ I} be a partition of unity subordinate to this locally finite refinement. [ � � ] By
the first lemma, each pVi

has the section extension property, and by the second lemma this will still be the
case upon replacing Vi by f−1

i (0, 1]. Let A ⊂ B and A = f−1(1) for a continuous [0, 1]-valued function f on
B. Let s be a section of pV , where V = f−1(0, 1]. We must show that s|A has a an extension to a global
section of p.

Now comes a surprising part. For a subset J of the index set I , let

VJ =
⋃

i∈J

Vi

Let S be the set of pairs (J, sJ) where J is a subset of the index set I and sJ is a section of pV ∪VJ
extending

s|A. Order S by
(J, sJ) ≤ (J ′, sJ′) if J ⊂ J ′ and sJ′ extends sJ

Since it contains (φ, s), the set S is non-empty. Every chain in S visibly has an upper bound, so by Zorn’s
Lemma S has a maximal element (K, sK). It is natural to claim that V ∪ VK = B. If this were not so, there
would be an index j with Vj not entirely contained in V ∪ VK . For this index j, define

h(b) = min (1,
f(b) +

∑
i∈K fi(b)

fj(b)
)

Then h > 0 on Vj ∩ (V ∪ VK), where sK is defined. By the section restriction property for Vj , there is a
section s′ of pVj

extending
sK |h−1(1) ⊃ A ∩ Vj

[ � � ] As usual, a topological space is paracompact if every open cover admits a locally finite refinement. That is, some

subset of the original covering opens can be made smaller, still covering the whole space (this is a refinement), and

with the property that any compact subset meets only finitely many opens in the refined cover. It is a standard

result that a second-countable locally compact Hausdorff space is paracompact. A moment’s reflection shows that

all CW-complexes are paracompact. It is more immediate that all compact Hausdorff spaces are paracompact.

[ � � ] The terminology vertical is meant to suggest that it commutes with the map p.

[ � � ] As usual, a partition of unity is a set of continuous functions taking values in [0, 1] and which sum to 1 at all points.

The partition of unity {fi} is subordinate to a given cover {Vi : i ∈ I} if they have the same indexing set and if the

support of fi is contained in Vi.
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Then define a section s” of p over V ∪ VK ∪ Vj by

s”(b) =





sK(b) (off Vj)
sK(b) (on Vj ∩ {h(b) = 1})
s′(b) (on Vj ∩ {h(b) < 1})

This gives (K ∪ {j}, s”) ∈ S, contradicting the maximality of S. That is, sK is a global section extending
s|A, and B has the section extension property.

Now show that there is a vertical homotopy from 1E to s ◦ p. Already p ◦ s = 1B , so it is surely homotopic
to the identity on 1B , so this will prove that p is a homotopy equivalence. Let

E ×B E = {(x, y) ∈ E × E : p(x) = p(y)}

denote the usual fiber product. The argument so far shows that

q : E ×B E × [0, 1] −→ E × [0, 1]

by
q(x, y, t) = (x, t)

has the section extension property. It is not claimed that E is paracompact. However, luckily, the covering
of B used in the previous argument pulls back to a covering of E × [0, 1] with a subordinate partition of
unity. Let

A = E × {0, 1} ⊂ H = E ×

(
[0,

1

4
] ∪ [

3

4
, 1]

)
⊂ E × [0, 1]

This H is a halo around A, and a section of q is given by

s′(x, t) =

{
(x, x, t) (for t < 1

4 )
(x, s ◦ p(x), t) (for t > 3

4 )

By the section extension property, the restriction of s′ to A has a global extension. Composing this with
projection onto the second copy of E, we obtain the desired (vertical) homotopy. ///

Theorem: (Dold) Let X, Y be contractible Hausdorff spaces on which a group Γ acts freely and properly
discontinuously. [ � � ] Suppose that both Γ\X and Γ\Y are paracompact. Then

Γ\X ' Γ\Y

that is, Γ\X and Γ\Y are homotopy equivalent.

Proof: For X Hausdorff and Γ acting freely and properly discontinuously, the map X −→ Γ\X is a
local homeomorphism, is a covering map with Γ as covering group, and Γ\X is Hausdorff. For X locally
contractible (for example), Γ\X is locally contractible with X as simply-connected covering space. Thus, X
is the universal covering space of Γ\X , with Γ as fundamental group.

Let p : X −→ Γ\X and q : Y −→ Γ\Y be the two covering maps. Let Z = X × Y with the diagonal action
of Γ, namely

γ · (x, y) = (γx, γy)

[ � � ] In the requirement that G act freely and properly discontinuously on X, the terminology properly discontinuously

is unfortunate terminology, but is standard. First, this assumes that the action of G is continuous, in the sense

that the map G × X −→ X is continuous. The proper discontinuous requirement is that, for any x ∈ X, there is a

small-enough neighborhood U of x such that γ ∈ Γ with C ∩ γC 6= φ implies γ = 1.
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This product is Hausdorff and contractible, and the action of Γ is free and properly discontinuous. If we show
that the projection pX : Z −→ X induces a homotopy equivalence p′

XΓ\Z −→ Γ\X , then, symmetrically,
pY : Z −→ Y induces a homotopy equivalence Γ\Z −→ Γ\Y , giving the desired conclusion, by transitivity.
Indeed, the induced map p′XΓ\Z −→ Γ\X meets the hypotheses of the previous theorem, with the X of the
previous theorem taken to be the Y of the present, since Y is contractible, Γ\X is paracompact, and Γ\Z is
locally a product. Thus, by the previous theorem, p′

X is a homotopy equivalence, and we’re done. ///

5. Spaces Γ\X

We want to consider spaces X homeomorphic to open balls, nicely acted upon by groups Γ, and show that
quotients Γ\X are K(Γ, 1)’s. We need only some mild hypotheses on Γ. Dold’s theorem recalled in the
previous section extends results on K(G, 1)’s to quite general topological spaces, removing the need to make
comparisons to CW-complexes. [ � � ]

Even though Dold’s theorem gives us great lee-way, in fact we are mostly interested in the following type of
example. Let G be a semi-simple real Lie group, with no compact factors, such as SL(n,R), U(p, q) (with
neither p nor q equal to 0), Sp(n,R), or O(p, q) (again with neither p nor q equal to 0). Let K be a maximal
compact subgroup of G. There is an involution θ on G (the Cartan involution) such that K is the fixed-point
set. [ � � ] Let X = G/K, with the quotient topology. [ � � ] Certainly G acts continuously on X . Let Γ be a
torsion-free[ � �

] discrete subgroup of G. [ � � ]

Proposition: The subgroup Γ acts freely and properly discontinuously on X .

Proof:

EDIT: iou: but standard ///

Corollary: All homotopy invariants, including homology and cohomology of Γ\X , depend functorially
upon Γ alone.

Proof: Since X is contractible, and since Γ acts (continuously and) properly discontinuously, the natural
map p : X −→ Γ\X presents X as a universal covering space of Γ\X . Since X is second-countable, it
and Γ\X are paracompact. We have also recalled the functorial construction of a simply-connected CW-
complex EΓ with quotient the classifying space BΓ = Γ\EΓ. Then Dold’s theorem says that the Γ\X is
homotopy-equivalent to BΓ. In particular, the homotopy-equivalence type only depends upon Γ. ///

[ � � ] For example, we need not try to prove that Γ\X has a structure of CW-complex. And we need to worry about

showing that spaces are approximable by CW-complexes, in the sense that their homotopy groups coincide. It is

fortunate that we can avoid this, as this approximability is strictly weaker than homotopy equivalence, and, thus,

proving that all homotopy invariants coincide would require yet more work.

[ � � ] For all the classical groups mentioned explicitly, this and other properties are easy to prove directly. The

general intrinsic (meaning not using classification) arguments require much more preparation regarding material

not immediately helpful in other regards.

[ � � ] For example, with G = U(n, 1) the maximal compact is K = U(n) × U(1), and G/K ≈ complex n-ball.

[ � �
] Torsion-free-ness is sufficient for our purposes, although in other contexts stronger hypotheses are needed. This is

especially true in trying to compactify non-compact quotients Γ\X.

[ � � ] At least for arithmetic subgroups such as SL(n, Z) in SL(n, R), various elementary conditions can guarantee the

torsion-free property. For example, in SL(n, Z), if Γ is contained in the subgroup of integer matrices congruent to 1n

modulo N for large-enough N , then no element of Γ other than 1n has any eigenvalue a root of unity other than 1.
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Remark: Still need to show that the geometric physical homology is exactly group homology. To this end,
perhaps a discussion of universal δ-functors will be appropriate.

6. Appendix: contractibility of spheres

For dimension n > 1, the homotopy group π1(S
n) of the n-sphere is trivial. This is not trivial to prove,

but, as we recall here, is easier than might be feared. By this time, the argument is standard, e.g., from
[Hatcher 2002].

Theorem: For n > 1, π1(S
n) = {1}.

Proof: If a map f : S1 −→ Sn misses any point x0 of Sn, then a homeomorphism of Sn − x0 to the
contractible Rn shows that f(S1) is nullhomotopic. Thus, is suffices to alter a given f by a homotopy to
arrange so that f is not a surjection. [ � � ] Let f : [0, 1] −→ Sn be a continuous map with f(0 = f(1) = x0.
Let U be an open ball on the sphere centered at a given point x 6= x0, small enough such that B does not
contain x0. The inverse image f−1(U) is open in the open interval (0, 1), so is expressible as a (possibly
infinite) union of disjoint open intervals (a, b). The inverse image f−1(x) is closed in [0, 1], hence is compact,
since [0, 1] is Hausdorff. Since f−1(x) cannot include the endpoints 0, 1, it is a compact subset of (0, 1), so
is covered by finitely-many of the (ai, bi). Let (a, b) be one such interval meeting f−1(x). The little path
f |[a,b] lies in the closure of B, the endpoints f(a) and f(b) are on the boundary of B, and f(a, b) is in the

interior. For n > 1, the closed ball B contains a path g from f(a) to f(b) that miss x. (The boundary of
B itself, homeomorphic to Sn−1, is path-connected for n > 1.) The closure B is easily homeomorphic to a
convex subset of Rn, so f |[a,b] is homotopic to g. Performing this procedure for each of the finitely-many
intervals (ai, bi) deforms f so that it misses x, then allowing a retraction to x0. ///

7. Appendix: homotopy criterion for map lifting

For the reader’s convenience, we recall the standard criteria for lifting of continuous maps via coverings.

As usual a continuous map f : Z −→ Y is a covering if, for every y ∈ Y , there is a small-enough
neighborhood U of y in Y such that f−1(U) is a disjoint union of opens Vα such that on each Vα the
map f : Vα −→ U is a homeomorphism. Let I = [0, 1] be the closed interval with the usual topology.
Our topological spaces will be Hausdorff unless otherwise mentioned. For example, points are closed. The
following proposition is the homotopy lifting property.

Proposition: Let f× : (X, x0) −→ (Y, y0) be a continuous map, with Y locally connected, and
p : (Z, z0) −→ (Y, y0) a covering. Let F : X × {0} −→ Z be continuous such that

p ◦ F = f |X×{0}

Then there is a unique map F : X × I −→ Z extending the given F on X × {0}.

Proof: By continuity, every point x×t in X×I has a neighborhood V ×(a, b) such that the image f(V ×(a, b))
lies inside small-enough open U in Y such that p−1(U) meets the defining property of a covering, namely,
p−1(U) is a disjoint union of opens on each of which p is a homeomorphism to U . For fixed x ∈ X , the set
{x} × I is compact, so is covered by finitely-many of the products U × (a, b). Thus, we can choose a single
neighborhood V of x and 0 < t1 < . . . < tn < 1 such that every f(V × (t1, ti+1)) is contained inside a single
small-enough open Ui in Y . Suppose that we have constructed a lifting on V × [0, ti]. Since V × [ti, ti+1] lies

[ � � ] It would be foolish to presume that there is no continuous surjection of S1 to Sn, although temporarily forgivable if

one hasn’t seen Peano’s space filling curves.
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inside a small-enough Ui, let W be an open subset of p−1(Ui) containing F (x × ti) such that p : Wi −→ Ui

is a homeomorphism. Shrinking the neighborhood V of x if necessary, we can assume that F (V × ti) ⊂ Wi.
Then define F on V × [ti, ti+1] as the composition

F |V ×[ti,ti+1] = p−1|Ui
◦ f |V ×[ti,ti+1]

By a finite induction we obtain a lifting to F : V × I −→ Z for some open neighborhood V of a given point
x ∈ X .

Next, prove uniqueness of these liftings to {x}× I , that is, in the case that X is the single point {x}. Thus,
in effect, let F and Φ be two continuous maps I −→ Z such that

p ◦ F = p ◦ Φ

As in the previous paragraph, choose a fine-enough partition 0 < t1 < . . . < tn < 1 such that each [ti, ti+1] is
contained in a small-enough open Ui in Y . We can assume that Ui is connected, by the local-connectedness
of Y . Suppose F agrees with Φ on [0, ti]. The connectedness of [ti, ti+1] implies that of F ([ti, ti+1]), so
must lie in a single Wi of the connected components of p−1(Ui). Since F (ti) = Φ(ti), both F ([ti, ti+1]) and
Φ([ti, ti+1]) lie in the same connected Wi. Since p is injective on Wi, the fact that p ◦ F = p ◦Φ on [ti, ti+1]
implies that F = Φ on [ti, ti+1]. Thus, a finite induction gives the uniqueness of the extension.

Returning to the main argument, the little uniqueness result just established says that the functions
constructed above on sets V × I are unique when restricted to sets {x} × I . Thus, they agree on any
overlaps of two of the sets V × I , so piece together to give a well-defined (unique, continuous) lift on the
whole X × I . ///

The path lifting property for a covering space p : (Z, z0) −→ (Y, y0) is obtained by taking X = {x} in the
previous:

Corollary: Each path in Y starting at y0 lifts uniquely to a path in Z starting at z0. ///

Theorem: Let f : (X, x0) −→ (Y, y0) be a basepoint-preserving continuous map, with X path-connected
and locally path-connected. Let p : (Z, z0) −→ (Y, y0) be a covering. Then f factors through p if and only if

f∗ π1(X, x0) ⊂ p∗ π1(Z, z0)

Proof: If there exists a lifting F then p ◦ F = f , and the induced map p∗ ◦ F∗ = f∗ yields the indicated
containment.

On the other hand, suppose that the indicated containment holds. Let γ be a path from x0 to another point
x in X . The path f ◦ γ from y0 to y = f(x) has a unique lifting δx : I −→ Z starting at z0, by the path
lifting property. We try to define a lifting

F : (X, x0) −→ (Z, z0)

of f by setting
F (x) = δx(1)

To see that this is well-defined, let γ ′ be another path from x0 to x and make a loop λ at x0 by following γ
from x0 to x and following the inverse of γ ′ from x back to x0. Then f ◦ λ gives an element f∗([λ]), which
by hypothesis is inside p∗(π1(Z, z0)). That is, there is a homotopy h in Y (fixing y0) of f ◦λ to another loop
µ at y0 which is of the form p ◦ ν for a loop ν in Z at z0. The covering homotopy property (above) lifts the
homotopy, yielding a loop ν ′ in Z at z0 such that p ◦ ν′ = f ◦ λ.

By the uniqueness of the lifting, ν ′ is composed of δx followed by the inverse of δ′x. That is,

δx(1) = δ′x(1)
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is well-defined.

For the continuity of the map x −→ δx(1), let U be a small-enough neighborhood of f(x) so that p−1(U)
contains an open V containing F (x) = δx(1) with p : V −→ U a homeomorphism. Let W be a path-
connected neighborhood of x such that f(W ) ⊂ U . For other points x′ ∈ W we can take a fixed path γ from
x0 to x and then paths δ from x to x′ within W . The paths (f ◦ γ) · (f ◦ δ) lift to paths in Z, where the lift
of f ◦ δ is

p−1 ◦ f ◦ δ

with p−1 : U −→ V the inverse of the restriction of p to V . Then F (W ) ⊂ V , which allows us to write
F |W = p−1 ◦ f , which shows the continuity of F . ///
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[Hopf 1945] H. Hopf, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören, Comment. Math.
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