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Background

Satake (mid-1960’s) considered

G → G̃

where G and G̃ are of hermitian type and the
map is of hermitian type insofar as it respects
this structure.

Then restriction of holomorphic automorphic
forms from G̃ to G yields holomorphic things.

Shimura (mid-1970’s) looked at examples

SL(2,Q) → Sp(n,Q)

SL(2,Q) → SL(2, F ) (F totally real)

wherein Fourier coefficients of restrictions are
finite sums of Fourier coefficients on G̃, so a
Fourier-coefficient-wise notion of rationality is
preserved by restriction.
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Shimura combined this with his canonical
models results to give initiate the modern
arithmetic of (holomorphic) automorphic
forms. In particular, he generalized a classical
principle:

For holomorphic Hecke eigenfunction f with
totally real algebraic Fourier coefficients, and for
g another holomorphic automorphic form with
algebraic Fourier coefficients, not necessarily a
Hecke eigenfunction,

〈g, f〉
〈f, f〉

∈ Q

and for σ ∈ Gal(Q/Q) the Galois equivariance(
〈g, f〉
〈f, f〉

)σ

=
〈gσ, fσ〉
〈fσ, fσ〉

with Galois acting on Fourier coefficients.
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In the simplest application, g = E · h with E a
holomorphic Eisenstein series and h a cuspform,
and as in Rankin (who credits Ingham) for h a
Hecke eigenfunction the integral unwinds giving
a special value of an L-function

〈E · h, f〉 = L(h⊗ f, so)

Combining the unwinding with the comparison
of inner products gives

L(h⊗ f, so)
〈f, f〉

∈ Q

and Galois equivariance.

To get all (or nearly all) predicted special
values, Shimura took a lower-weight
holomorphic Eisenstein series Elow and
differentiated it to raise its weight before
integrating.

L(h⊗ f, so−2m)
〈f, f〉

=
〈DmElow · h, f〉

〈f, f〉
∈ Q
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Casting about for more examples: Multiplicative
imbeddings

O(Q)× Sp(V ) → Sp(Q⊗ V )

are not usually of hermitian type, but additive
maps such as

Sp(V1)× Sp(V2) → Sp(V1 ⊕ V2)

U(V1)× U(V2) → U(V1 ⊕ V2)

are. In coordinates,

(
a b
c d

)
×

(
a′ b′

c′ d′

)
→


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′


We want simple automorphic forms (or
representations) to restrict and decompose.
Not thetas, although they do interesting things
under multiplicative imbeddings. Siegel-type
(degenerate) Eisenstein series, now widely
appreciated, were less popular circa 1980.
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With holomorphy a complete decomposition
(not just L2) is possible (1980). Decomposing a
holomorphic Siegel Eisenstein series along

Sp(m,Z)× Sp(n,Z) → Sp(m + n,Z)∑
0≤`≤min (m,n)

∑
f cfm Sp(`)

L(f, so)
E

(m)
f ⊗ E

(n)
f

〈f, f〉

where E
(n)
f is a Klingen-type Eisenstein series

made from cuspform f on Sp(`), and L(f, so) is
a special value of a standard L-function of f .

(Circa 1981, Böcherer explicated the L-function
here, and at about the same time Rallis and
Piatetski-Shapiro systematically treated the
projection of the restriction of not-necessarily
holomorphic degenerate Eisenstein series
to cuspforms for classical groups, obtaining
meromorphic continutations of standard L-
functions.)

(The full decomposition also suggested that
Klingen-type holomorphic Eisenstein series had
an arithmetical nature, which was proven by
Harris, 1981, 1982.)
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To get as many special values as possible
one must differentiate the Eisenstein series
transversally before restricting.

Many have played this differentiate-restrict-and-
integrate game, and/or restrict-differentiate-
integrate.

The archimedean factors of these integrals are
nasty to evaluate.
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Unitary groups

After the preliminary unwinding and factoring
over primes, one is left in situations like the
following. Let

G = U(p, q) K = U(p)× U(q)

p+ = {
(

0 ∗
0 0

)
∈ gC} p− = {

(
0 0
∗ 0

)
∈ gC}

We must evaluate integrals

Tf(g) =
∫

G

f(gh) η(h) dh

η is left-annihilated by p+, right by p−, right
K-type τ (descended from the Eisenstein series)

(cuspform) f right-annihilated by p− generating
holomorphic discrete series πτ with extreme
K-type τ
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If η ∈ L1(G) then f → Tf is an endomorphism
of πτ not depending upon the model.

Unfortunately, integrability fails in the critical
strip, necessitating a more complicated
argument there... But let’s suppose we have
integrability.

The Harish-Chandra decomposition is

G ⊂ N+ ·KC ·N− ⊂ GC

with N± = expp±. Thus,

f(g) = fu,v(g) = fu,v(n+θn−) = cu,v(θ)

a matrix coefficient function.

For extreme K-type τ of sufficiently high
extreme weight the universal (g,K)-module
generated by a vector vτ of K-type τ and
annihilated by p− is irreducible. Thus, take

ηµ,ν(n+θn−) = cµ,ν(θ)
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Theorem:

Tf(1) =
∫

G

fu,v(h) ηµ,ν(h) dh

= πpq · 〈u, µ〉 · 〈v, ν〉 · (rational number)

In particular, for example,

τ(k1×k2) = (det k1)m (det k2)−n (m ≥ p, n ≥ q)

the rational number is∏p+q−1
i=0 Γ(m + n− i)∏p−1

i=0 Γ(m + n− p− i) ·
∏q−1

i=0 Γ(m + n− q − i)

The real point here is not explicit evaluation,
but illustration of a qualitative argument for the
rationality of integrals.
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We have a Cartan decomposition

G = C ·K ≈ C ×K

where

C = {g ∈ G = U(p, q) : g = g∗ > 0}

Parametrize C by

z → gz =
(

(1p − zz∗)−1/2 z(1q − z∗z)−1/2

(1q − z∗z)−1/2z∗ (1q − z∗z)−1/2

)
where

Dp,q = {z = p-by-q complex : 1p − zz∗ > 0}

G = U(p, q) acts on G/K ≈ Dp,q with invariant
measure

d∗z =
dz

det(1q − z∗z)p+q
=

dz

det(1p − zz∗)p+q
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To compute, use Cartan and Harish-Chandra,
h = hzk and hz = n+

z θzn
−
z , where

hz =
(

(1p − zz∗)−1/2 z(1q − z∗z)−1/2

(1q − z∗z)−1/2z∗ (1q − z∗z)−1/2

)
=

[
1 z
0 1

] [
(1− zz∗)1/2 0

0 (1− z∗z)−1/2

]
︸ ︷︷ ︸

θz

[
1 0
z∗ 1

]

The special form of fu,v gives

fu,v(hzk) = fu,v(n+
z θzn

−
z k) = fu,v(θzk · k−1n−z k)

and
fu,v(θzk) = 〈τ(θzk)u, v〉

and similarly for ηµ,ν . Suppressing τ ,

Tf(1) =
∫

C

∫
K

〈θzk · u, v〉 〈θzk · µ, ν〉 dk d∗z

=
∫

C

∫
K

〈k · u, θ∗z · v〉 〈k · µ, θ∗z · ν〉 dk d∗z

Schur relations compute the integral over K
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Tf(1) =
〈u, µ〉
dim τ

·
∫

C

〈θ∗z · ν, θ∗z · v〉 d∗z

=
〈u, µ〉
dim τ

· 〈ν,

∫
C

τ(θ2
z) d∗z · v〉

since τ(g∗) = τ(g)∗ for g in KC, and θ∗z = θz.
We compute the endomorphism

S = S(τ) =
∫

C

τ(θ2
z) d∗z

where

θ2
z =

(
1p − zz∗ 0

0 (1q − z∗z)−1

)
τ ≈ τ1 ⊗ τ2 with irreducibles τ1 of U(p) and τ2

of U(q), so

S =
∫

Dp,q

τ1(1p − zz∗)⊗ τ−1
2 (1q − z∗z) d∗z

Mapping z → αzβ∗ with α ∈ U(p), β ∈ U(q) in
the integral shows that S commutes with τ(k),
so by Schur’s lemma S is scalar.
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Let z = αrβ with α ∈ U(p), β ∈ U(q), and

r = p-by-q =


r1

. . .
rq

0 . . . 0


with −1 < ri < 1. Let ∆(r) =

∏
i<j

(
r2
i − r2

j

)2

Up to a constant C (determined subsequently)∫
Dp,q

h(z)
dz

det(1q − z∗z)p+q

= C ·
∫ ∫

(−1,1)q

h(αrβ) dα dβ
∆(r) dr

det(1q − r∗r)p+q

Thus, S is

C ·
∫

U(p)×U(q)

(α⊗ β) · I · (α⊗ β)−1dα dβ

where the inner integral I is

I =
∫

(−1,1)q

(1−rr∗)⊗(1−r∗r)−1 ∆(r) dr

det(1− r∗r)p+q
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The inner integral I in S acts on weight spaces
by scalars. The identity

(t2 − u2) = (t2 − 1)− (u2 − 1)

shows that each such scalar is a Q-linear
combination of products of integrals∫ 1

−1

(1− t2)n dt

(1− t2)p+q

= 22n+1−p−q Γ(n− p− q + 1)Γ(n− p− q + 1)
Γ(2n− 2p− 2q + 2)

= rational

so the inner integral I acts by rational scalars
on all weight spaces. In particular, I so is a
rational endomorphism of τ .

(Better give τ a rational structure...)
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The outer integration is the projection

EndC(τ) → EndK(τ)

where EndC(τ) has the K-structure

k · ϕ = τ(k) ◦ ϕ ◦ τ(k)−1

EndC(τ) has a rational structure compatible
with

gQ = gl(p,Q)⊗ gl(q,Q)

on the complexified Lie algebra

gC = gl(p,C)⊗ gl(q,C)

of K = U(p)× U(q).

Poincaré-Birkhoff-Witt, the Harish-Chandra
homomorphism, and Verma modules still work
over Q.
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Highest weights λ − ρ for finite-dimensional
irreducibles are integral (and dominant), so
are rational on a rational Cartan subalgebra.
Give a finite-dimensional irreducible complex
representation τ a rational structure

τ = (Mλ/Nλ)⊗Q C

with rational Verma module Mλ and (unique)
maximal proper submodule Nλ.

Z(gQ) distinguishes finite-dimensional
irreducibles: given finite-dimensional
irreducibles V and V ′ with highest weights
λ − ρ = λ′ − ρ, there is z ∈ Z(gQ) such that
z(λ) 6= z(λ′).

Let Λ be the finite collection of λ’s indexing
irreducibles in EndC(τ) = EndQ(τQ) ⊗Q C.
Then

P =
∏

λ∈Λ zλ ∈ Z(gQ)

projects endomorphisms to the K-invariants.
Thus, projection to K-endomorphisms preserves
rationality.
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To determine C compute

S = Sτ =
∫

Dp,q

det(1p−zz∗)m det(1q−z∗z)−nd∗z

For 0 < ` ∈ Z, let

C` = {`-by-` complex Y > 0}

For real s > `− 1 define

Γ`(s) =
∫

C`

e−tr x (detx)s dx

(detx)`

= π`(`−1)/2
∏̀
i=1

Γ(s− i + 1)

Imitating classical computations,

Γp(m + n− p)Γq(m + n− q) · S =∫
Cp+q

e−tr Z(detZ)m+n dZ

(detZ)p+q
= Γp+q(m+n)
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Thus, for this τ

S =
Γp+q(m + n)

Γp(m + n− p) Γq(m + n− q)
=

∏p+q−1
i=0 Γ(m + n− i)∏p−1

i=0 Γ(m + n− p− i) ·
∏q−1

i=0 Γ(m + n− q − i)

×
π(p+q)(p+q−1)/2

πp(p−1)/2 · πq(q−1)/2

The net exponent of π is

(p+ q)(p+ q−1)/2−p(p−1)/2− q(q−1)/2 = pq

as anticipated. Thus,

C = πpq · (rational)

and for arbitrary τ

S = πpq · (rational scalar endomorphism of τ)
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