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Background

Satake (mid-1960’s) considered

~

G—G

where G and G are of hermitian type and the
map is of hermitian type insofar as it respects
this structure.

Then restriction of holomorphic automorphic
forms from G to GG yields holomorphic things.

Shimura (mid-1970’s) looked at examples

SL(2,Q) — Sp(n, Q)
SL(2,Q) — SL(2,F) (F totally real)

wherein Fourier coefficients of restrictions are
finite sums of Fourier coefficients on G, so a
Fourier-coeflicient-wise notion of rationality is
preserved by restriction.



Shimura combined this with his canonical
models results to give initiate the modern
arithmetic of (holomorphic) automorphic
forms. In particular, he generalized a classical
principle:

For holomorphic Hecke eigenfunction f with
totally real algebraic Fourier coeflicients, and for
g another holomorphic automorphic form with
algebraic Fourier coefficients, not necessarily a
Hecke eigenfunction,

N eq

(9,
(f. f)

and for 0 € Gal(Q/Q) the Galois equivariance

(¢:5) =G

with Galois acting on Fourier coefficients.




In the simplest application, g = E - h with F a
holomorphic Eisenstein series and h a cuspform,
and as in Rankin (who credits Ingham) for h a

Hecke eigenfunction the integral unwinds giving
a special value of an L-function

(E-h,f)=Lh [,5)

Combining the unwinding with the comparison
of inner products gives

L(h® [, so)
(5 f)

and Galois equivariance.

€Q

To get all (or nearly all) predicted special
values, Shimura took a lower-weight
holomorphic Eisenstein series Fj., and
differentiated it to raise its weight before
integrating.

L(h® f, so—2m) (D™FEow-h, f) =
Y




Casting about for more examples: Multiplicative
imbeddings

0(Q) x Sp(V) — Sp(Q & V)

are not usually of hermitian type, but additive
maps such as

Sp(Vl) X Sp(VQ) — Sp(V1 D Vg)

U(Vl) X U(Vg) — U(Vl D Vz)

are. In coordinates,

a 0 b 0

(a b)x<a’ b’)_> 0 & 0 ¥V
c d ¢ d c 0 d O
0 ¢ 0 d

We want simple automorphic forms (or
representations) to restrict and decompose.
Not thetas, although they do interesting things
under multiplicative imbeddings. Siegel-type
(degenerate) Eisenstein series, now widely
appreciated, were less popular circa 1980.
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With holomorphy a complete decomposition
(not just L?) is possible (1980). Decomposing a
holomorphic Siegel Eisenstein series along

Sp(m,Z) x Sp(n,Z) — Sp(m +n,Z)
(m) (n)
E,®E;

2 2 s =

0<{/<min (m,n) f cfm Sp(¥)

where Ej(cn) is a Klingen-type Eisenstein series
made from cuspform f on Sp(¢), and L(f,s,) is
a special value of a standard L-function of f.

(Circa 1981, Bocherer explicated the L-function
here, and at about the same time Rallis and
Piatetski-Shapiro systematically treated the
projection of the restriction of not-necessarily
holomorphic degenerate Eisenstein series

to cuspforms for classical groups, obtaining
meromorphic continutations of standard L-
functions.)

(The full decomposition also suggested that
Klingen-type holomorphic Eisenstein series had

an arithmetical nature, which was proven by
Harris, 1981, 1982.)



To get as many special values as possible
one must differentiate the Eisenstein series
transversally before restricting.

Many have played this differentiate-restrict-and-
integrate game, and/or restrict-differentiate-
integrate.

The archimedean factors of these integrals are
nasty to evaluate.




Unitary groups

After the preliminary unwinding and factoring
over primes, one is left in situations like the
following. Let

G=U(p,q K=U(p) xUl(q)

p+={<8 S)Egc} p—z{(g 8)6%0}

We must evaluate integrals

Tf(g) = /G 7(gh) n(h) dh

n is left-annihilated by p., right by p_, right
K-type 7 (descended from the Eisenstein series)

(cuspform) f right-annihilated by p_ generating
holomorphic discrete series 7w, with extreme
K-type 1



If n e L'(G) then f — Tf is an endomorphism
of m, not depending upon the model.

Unfortunately, integrability fails in the critical
strip, necessitating a more complicated
argument there... But let’s suppose we have
integrability.

The Harish-Chandra decomposition is
GCNy -Kc-N_CGg

with Ny = expp+. Thus,

f(g) — fu,’u(g) — fu,v (n_|_¢97?,_) — Cu,v (9)

a matrix coeflicient function.

For extreme K-type 7 of sufficiently high
extreme weight the universal (g, K)-module
generated by a vector v, of K-type 7 and
annihilated by p_ is irreducible. Thus, take

Uu,u(n+‘9n—) = CM,V(H)



Theorem:

TfUJ:=/;fLmUOHMVUOdh

= 7% . (u, ) - (v,v) - (rational number)

In particular, for example,

T(k1 X kg) = (det k1)™ (det ko)™ (m >p, n > q)

the rational number is

Hf;rg_l I'(m+n—1)
P T(m+n—p—i) [\ Dim+n—q— 1)

The real point here is not explicit evaluation,
but illustration of a qualitative argument for the
rationality of integrals.



We have a Cartan decomposition
G=C-K~CxK
where
C={9eG=U(p,q) :9=g" >0}
Parametrize C by

_ (1p — zZ*)_l/Q 2(1g — Z*z)_l/z
<7 Yz = ((1q B z*z)_1/2z* (1, — z*z)_1/2

where
D, , = {z = p-by-q complex : 1,, — zz* > 0}

G = U(p,q) acts on G/K =~ D, , with invariant
measure

dz dz

d* — p—
© det(1l, — z*z)P*te  det(1l, — zz*)PT4
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To compute, use Cartan and Harish-Chandra,
h = h,k and h, = n}6,n_, where

() a1, — )Y
P\ (1, — 2% )"V 2 (1, —2*2)7 Y2 ) T

B l(l_zoz*w (1_2*2)1/2”21* !

N~

0

The special form of f, , gives

fu,v(hzk) — fu,v(njeznz_k) — fu,v(ezk . k_lnz_k)

and

fuw(0:k) = (1(0,k)u,v)

and similarly for n, ,. Suppressing T,

= / / 0,k - u,v) (0,k - p,v)dkd 2
CJK
// (k-u,0. vy (k- -p, 0% vydkd*z

Schur relations compute the integral over K
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Tf(1) = et ./ij;.u,e;.md*z

~ dimT
_twn) / r(62)d*z - o)
dim 7 ’ C ?

since 7(g*) = 7(g)* for g in K¢, and 07 = 0,.
We compute the endomorphism

S = S(r) = /C -(02) d* 2

92 _ 1, — zz" 0
z 0 (1, — 2%2)7 !

T &~ 11 ® To with irreducibles 7 of U(p) and 7

of U(q), so

where

S = / (1, —22") @715 (1 — 2*2) d* 2
D

p,q

Mapping z — az(* with a € U(p), 8 € U(q) in
the integral shows that S commutes with 7(k),
so by Schur’s lemma S is scalar.
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Let z = arf with a € U(p), 6 € U(q), and

1
r= p-by-q =

T'q

0O ... O

with —1 < r; < 1. Let A(r) = HK]- (7“@'2 —"“32'>2

Up to a constant C' (determined subsequently)

dz
/ n{z) det(1, — z*z)PT4

A(r)dr
— d
C //( 1 1)q Oé/rﬁ adﬂ (]. — T T)p‘|‘q
Thus, S is

o-/ (@®B) I (a®pf)‘dads
U(p)xU(q)

where the inner integral I is

A(r)dr

I= 1—rr*)@(1—r*r)~"
/(—1,1)q( el det(1 —r*r)pta
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The inner integral I in S acts on weight spaces
by scalars. The identity

(t* —u?) = (t* = 1) — (uv* = 1)

shows that each such scalar is a Q-linear
combination of products of integrals

' 2\n at
[0

_ o2ntlpq L —p—g+t HIn—p—g+1)

['(2n — 2p — 2q + 2)
— rational

so the inner integral I acts by rational scalars
on all weight spaces. In particular, I so is a
rational endomorphism of 7.

(Better give 7 a rational structure...)
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The outer integration is the projection
Endc(7) — Endg (7)
where Endc(7) has the K-structure

k-p=r(k)opor(k)

Endc(7) has a rational structure compatible
with
gq = gl(p, Q) ® gl(¢, Q)

on the complexified Lie algebra

of K =U(p) x U(q).

Poincaré-Birkhoft-Witt, the Harish-Chandra
homomorphism, and Verma modules still work
over Q).
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Highest weights A — p for finite-dimensional
irreducibles are integral (and dominant), so
are rational on a rational Cartan subalgebra.
Give a finite-dimensional irreducible complex
representation 7 a rational structure

7= (Mx/Ny) ®q C

with rational Verma module M) and (unique)
maximal proper submodule N).

Z(gq) distinguishes finite-dimensional
irreducibles: given finite-dimensional
irreducibles V' and V' with highest weights
A—p = XN —p, there is z € Z(gq) such that

z2(A) # z(XN).
Let A be the finite collection of \’s indexing

irreducibles in Endc(7) = Endq(7q) ®q C.
Then

P=]lxer?r € Z(gq)

projects endomorphisms to the K-invariants.
Thus, projection to K-endomorphisms preserves
rationality.
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To determine C' compute

S=5,= / det(1,—z2")" det(1,—2"2) "d" 2
D

p,q

For 0 < ¢ € Z, let
Cy = {¢-by-¢ complex Y > 0}

For real s > ¢ — 1 define

—irx S daj
[y(s) :L e " (det ) Aot 2)!
12

14
=g U2 T(s—i+1)
1=1

Imitating classical computations,
Fyim+n—ply,(m+n—gq)-S=

—1ir m-r-n dZ
/C e " (det Z)™* et Z)7 =I')1qs(m+n)

r+gq
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Thus, for this 7

g — L'ptq(m +n) _
Lp(m+n—p)Ly(m+n—q)

Hfig_l I'(m+n—1)
f:_olF(m—Fn—p—i)- g:_olF(m—l—n—q—i)
X
1(P+a)(p+q—1)/2

apr(r—1)/2 . ga(qg—1)/2

The net exponent of 7 is

P+a)(p+q—1)/2—p(p—1)/2—q(q—1)/2 =pq
as anticipated. Thus,

C' = 7P? . (rational)
and for arbitrary T

S = wP? . (rational scalar endomorphism of 7)
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