Archimedean Zeta Integrals Paul Garrett, garrett@math.umn.edu http://www.math.umn.edu//garrett/

Background

Satake (mid-1960's) considered

$$
G \rightarrow \tilde{G}
$$

where G and \tilde{G} are of hermitian type and the map is of hermitian type insofar as it respects this structure.

Then restriction of holomorphic automorphic forms from \tilde{G} to G yields holomorphic things.

Shimura (mid-1970's) looked at examples

$$
\begin{gathered}
S L(2, \mathbf{Q}) \rightarrow S p(n, \mathbf{Q}) \\
S L(2, \mathbf{Q}) \rightarrow S L(2, F)(F \text { totally real })
\end{gathered}
$$

wherein Fourier coefficients of restrictions are finite sums of Fourier coefficients on \tilde{G}, so a Fourier-coefficient-wise notion of rationality is preserved by restriction.

Shimura combined this with his canonical models results to give initiate the modern arithmetic of (holomorphic) automorphic forms. In particular, he generalized a classical principle:

For holomorphic Hecke eigenfunction f with totally real algebraic Fourier coefficients, and for g another holomorphic automorphic form with algebraic Fourier coefficients, not necessarily a Hecke eigenfunction,

$$
\frac{\langle g, f\rangle}{\langle f, f\rangle} \in \overline{\mathbf{Q}}
$$

and for $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ the Galois equivariance

$$
\left(\frac{\langle g, f\rangle}{\langle f, f\rangle}\right)^{\sigma}=\frac{\left\langle g^{\sigma}, f^{\sigma}\right\rangle}{\left\langle f^{\sigma}, f^{\sigma}\right\rangle}
$$

with Galois acting on Fourier coefficients.

In the simplest application, $g=E \cdot h$ with E a holomorphic Eisenstein series and h a cuspform, and as in Rankin (who credits Ingham) for h a Hecke eigenfunction the integral unwinds giving a special value of an L-function

$$
\langle E \cdot h, f\rangle=L\left(h \otimes f, s_{o}\right)
$$

Combining the unwinding with the comparison of inner products gives

$$
\frac{L\left(h \otimes f, s_{o}\right)}{\langle f, f\rangle} \in \overline{\mathbf{Q}}
$$

and Galois equivariance.
To get all (or nearly all) predicted special values, Shimura took a lower-weight holomorphic Eisenstein series $E_{\text {low }}$ and differentiated it to raise its weight before integrating.

$$
\frac{L\left(h \otimes f, s_{o}-2 m\right)}{\langle f, f\rangle}=\frac{\left\langle D^{m} E_{\mathrm{low}} \cdot h, f\right\rangle}{\langle f, f\rangle} \in \overline{\mathbf{Q}}
$$

Casting about for more examples: Multiplicative imbeddings

$$
O(Q) \times S p(V) \rightarrow S p(Q \otimes V)
$$

are not usually of hermitian type, but additive maps such as

$$
\begin{aligned}
S p\left(V_{1}\right) \times S p\left(V_{2}\right) & \rightarrow S p\left(V_{1} \oplus V_{2}\right) \\
U\left(V_{1}\right) \times U\left(V_{2}\right) & \rightarrow U\left(V_{1} \oplus V_{2}\right)
\end{aligned}
$$

are. In coordinates,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \times\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & a^{\prime} & 0 & b^{\prime} \\
c & 0 & d & 0 \\
0 & c^{\prime} & 0 & d^{\prime}
\end{array}\right)
$$

We want simple automorphic forms (or representations) to restrict and decompose. Not thetas, although they do interesting things under multiplicative imbeddings. Siegel-type (degenerate) Eisenstein series, now widely appreciated, were less popular circa 1980.

With holomorphy a complete decomposition (not just L^{2}) is possible (1980). Decomposing a holomorphic Siegel Eisenstein series along

$$
\begin{gathered}
S p(m, \mathbf{Z}) \times S p(n, \mathbf{Z}) \rightarrow S p(m+n, \mathbf{Z}) \\
\sum_{0 \leq \ell \leq \min (m, n)} \sum_{f \operatorname{cfm} S p(\ell)} L\left(f, s_{o}\right) \frac{E_{f}^{(m)} \otimes E_{f}^{(n)}}{\langle f, f\rangle}
\end{gathered}
$$

where $E_{f}^{(n)}$ is a Klingen-type Eisenstein series made from cuspform f on $S p(\ell)$, and $L\left(f, s_{o}\right)$ is a special value of a standard L-function of f.
(Circa 1981, Böcherer explicated the L-function here, and at about the same time Rallis and Piatetski-Shapiro systematically treated the projection of the restriction of not-necessarily holomorphic degenerate Eisenstein series to cuspforms for classical groups, obtaining meromorphic continutations of standard Lfunctions.)
(The full decomposition also suggested that Klingen-type holomorphic Eisenstein series had an arithmetical nature, which was proven by Harris, 1981, 1982.)

To get as many special values as possible one must differentiate the Eisenstein series transversally before restricting.

Many have played this differentiate-restrict-andintegrate game, and/or restrict-differentiateintegrate.

The archimedean factors of these integrals are nasty to evaluate.

Unitary groups

After the preliminary unwinding and factoring over primes, one is left in situations like the following. Let

$$
\begin{gathered}
G=U(p, q) \quad K=U(p) \times U(q) \\
\mathbf{p}_{+}=\left\{\left(\begin{array}{ll}
0 & * \\
0 & 0
\end{array}\right) \in \mathbf{g}_{\mathbf{C}}\right\} \quad \mathbf{p}_{-}=\left\{\left(\begin{array}{cc}
0 & 0 \\
* & 0
\end{array}\right) \in \mathbf{g}_{\mathbf{C}}\right\}
\end{gathered}
$$

We must evaluate integrals

$$
T f(g)=\int_{G} f(g h) \overline{\eta(h)} d h
$$

η is left-annihilated by \mathbf{p}_{+}, right by \mathbf{p}_{-}, right K-type τ (descended from the Eisenstein series)
(cuspform) f right-annihilated by \mathbf{p}_{-}generating holomorphic discrete series π_{τ} with extreme K-type τ

If $\eta \in L^{1}(G)$ then $f \rightarrow T f$ is an endomorphism of π_{τ} not depending upon the model.

Unfortunately, integrability fails in the critical strip, necessitating a more complicated argument there... But let's suppose we have integrability.

The Harish-Chandra decomposition is

$$
G \subset N_{+} \cdot K_{\mathbf{C}} \cdot N_{-} \subset G_{\mathbf{C}}
$$

with $N_{ \pm}=\exp \mathbf{p}_{ \pm}$. Thus,

$$
f(g)=f_{u, v}(g)=f_{u, v}\left(n_{+} \theta n_{-}\right)=c_{u, v}(\theta)
$$

a matrix coefficient function.
For extreme K-type τ of sufficiently high extreme weight the universal (\mathbf{g}, K)-module generated by a vector v_{τ} of K-type τ and annihilated by \mathbf{p}_{-}is irreducible. Thus, take

$$
\eta_{\mu, \nu}\left(n_{+} \theta n_{-}\right)=c_{\mu, \nu}(\theta)
$$

Theorem:

$$
\begin{gathered}
T f(1)=\int_{G} f_{u, v}(h) \overline{\eta_{\mu, \nu}(h)} d h \\
=\pi^{p q} \cdot\langle u, \mu\rangle \cdot\langle v, \nu\rangle \cdot(\text { rational number })
\end{gathered}
$$

In particular, for example,
$\tau\left(k_{1} \times k_{2}\right)=\left(\operatorname{det} k_{1}\right)^{m}\left(\operatorname{det} k_{2}\right)^{-n} \quad(m \geq p, n \geq q)$
the rational number is

$$
\frac{\prod_{i=0}^{p+q-1} \Gamma(m+n-i)}{\prod_{i=0}^{p-1} \Gamma(m+n-p-i) \cdot \prod_{i=0}^{q-1} \Gamma(m+n-q-i)}
$$

The real point here is not explicit evaluation, but illustration of a qualitative argument for the rationality of integrals.

We have a Cartan decomposition

$$
G=C \cdot K \approx C \times K
$$

where

$$
C=\left\{g \in G=U(p, q): g=g^{*}>0\right\}
$$

Parametrize C by
$z \rightarrow g_{z}=\left(\begin{array}{cc}\left(1_{p}-z z^{*}\right)^{-1 / 2} & z\left(1_{q}-z^{*} z\right)^{-1 / 2} \\ \left(1_{q}-z^{*} z\right)^{-1 / 2} z^{*} & \left(1_{q}-z^{*} z\right)^{-1 / 2}\end{array}\right)$
where

$$
D_{p, q}=\left\{z=p \text {-by- } q \text { complex : } 1_{p}-z z^{*}>0\right\}
$$

$G=U(p, q)$ acts on $G / K \approx D_{p, q}$ with invariant measure

$$
d^{*} z=\frac{d z}{\operatorname{det}\left(1_{q}-z^{*} z\right)^{p+q}}=\frac{d z}{\operatorname{det}\left(1_{p}-z z^{*}\right)^{p+q}}
$$

To compute, use Cartan and Harish-Chandra, $h=h_{z} k$ and $h_{z}=n_{z}^{+} \theta_{z} n_{z}^{-}$, where

$$
\begin{aligned}
& h_{z}=\left(\begin{array}{cc}
\left(1_{p}-z z^{*}\right)^{-1 / 2} & z\left(1_{q}-z^{*} z\right)^{-1 / 2} \\
\left(1_{q}-z^{*} z\right)^{-1 / 2} z^{*} & \left(1_{q}-z^{*} z\right)^{-1 / 2}
\end{array}\right)= \\
& {\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\left(1-z z^{*}\right)^{1 / 2} & 0 \\
0 & \left(1-z^{*} z\right)^{-1 / 2}
\end{array}\right]}_{\theta_{z}}\left[\begin{array}{cc}
1 & 0 \\
z^{*} & 1
\end{array}\right]}
\end{aligned}
$$

The special form of $f_{u, v}$ gives
$f_{u, v}\left(h_{z} k\right)=f_{u, v}\left(n_{z}^{+} \theta_{z} n_{z}^{-} k\right)=f_{u, v}\left(\theta_{z} k \cdot k^{-1} n_{z}^{-} k\right)$
and

$$
f_{u, v}\left(\theta_{z} k\right)=\left\langle\tau\left(\theta_{z} k\right) u, v\right\rangle
$$

and similarly for $\eta_{\mu, \nu}$. Suppressing τ,

$$
\begin{gathered}
T f(1)=\int_{C} \int_{K}\left\langle\theta_{z} k \cdot u, v\right\rangle \overline{\left\langle\theta_{z} k \cdot \mu, \nu\right\rangle} d k d^{*} z \\
=\int_{C} \int_{K}\left\langle k \cdot u, \theta_{z}^{*} \cdot v\right\rangle \overline{\left\langle k \cdot \mu, \theta_{z}^{*} \cdot \nu\right\rangle} d k d^{*} z
\end{gathered}
$$

Schur relations compute the integral over K

$$
\begin{gathered}
T f(1)=\frac{\langle u, \mu\rangle}{\operatorname{dim} \tau} \cdot \int_{C}\left\langle\theta_{z}^{*} \cdot \nu, \theta_{z}^{*} \cdot v\right\rangle d^{*} z \\
=\frac{\langle u, \mu\rangle}{\operatorname{dim} \tau} \cdot\left\langle\nu, \int_{C} \tau\left(\theta_{z}^{2}\right) d^{*} z \cdot v\right\rangle
\end{gathered}
$$

since $\tau\left(g^{*}\right)=\tau(g)^{*}$ for g in $K_{\mathbf{C}}$, and $\theta_{z}^{*}=\theta_{z}$. We compute the endomorphism

$$
S=S(\tau)=\int_{C} \tau\left(\theta_{z}^{2}\right) d^{*} z
$$

where

$$
\theta_{z}^{2}=\left(\begin{array}{cc}
1_{p}-z z^{*} & 0 \\
0 & \left(1_{q}-z^{*} z\right)^{-1}
\end{array}\right)
$$

$\tau \approx \tau_{1} \otimes \tau_{2}$ with irreducibles τ_{1} of $U(p)$ and τ_{2} of $U(q)$, so

$$
S=\int_{D_{p, q}} \tau_{1}\left(1_{p}-z z^{*}\right) \otimes \tau_{2}^{-1}\left(1_{q}-z^{*} z\right) d^{*} z
$$

Mapping $z \rightarrow \alpha z \beta^{*}$ with $\alpha \in U(p), \beta \in U(q)$ in the integral shows that S commutes with $\tau(k)$, so by Schur's lemma S is scalar.

Let $z=\alpha r \beta$ with $\alpha \in U(p), \beta \in U(q)$, and

$$
r=p-\mathrm{by}-q=\left(\begin{array}{ccc}
r_{1} & & \\
& \ddots & \\
& & r_{q} \\
0 & \ldots & 0
\end{array}\right)
$$

with $-1<r_{i}<1$. Let $\Delta(r)=\prod_{i<j}\left(r_{i}^{2}-r_{j}^{2}\right)^{2}$
Up to a constant C (determined subsequently)

$$
\begin{gathered}
\int_{D_{p, q}} h(z) \frac{d z}{\operatorname{det}\left(1_{q}-z^{*} z\right)^{p+q}} \\
=C \cdot \iint_{(-1,1)^{q}} h(\alpha r \beta) d \alpha d \beta \frac{\Delta(r) d r}{\operatorname{det}\left(1_{q}-r^{*} r\right)^{p+q}}
\end{gathered}
$$

Thus, S is

$$
C \cdot \int_{U(p) \times U(q)}(\alpha \otimes \beta) \cdot I \cdot(\alpha \otimes \beta)^{-1} d \alpha d \beta
$$

where the inner integral I is

$$
I=\int_{(-1,1)^{q}}\left(1-r r^{*}\right) \otimes\left(1-r^{*} r\right)^{-1} \frac{\Delta(r) d r}{\operatorname{det}\left(1-r^{*} r\right)^{p+q}}
$$

The inner integral I in S acts on weight spaces by scalars. The identity

$$
\left(t^{2}-u^{2}\right)=\left(t^{2}-1\right)-\left(u^{2}-1\right)
$$

shows that each such scalar is a \mathbf{Q}-linear combination of products of integrals

$$
\begin{gathered}
\int_{-1}^{1}\left(1-t^{2}\right)^{n} \frac{d t}{\left(1-t^{2}\right)^{p+q}} \\
=2^{2 n+1-p-q} \frac{\Gamma(n-p-q+1) \Gamma(n-p-q+1)}{\Gamma(2 n-2 p-2 q+2)} \\
=\text { rational }
\end{gathered}
$$

so the inner integral I acts by rational scalars on all weight spaces. In particular, I so is a rational endomorphism of τ.
(Better give τ a rational structure...)

The outer integration is the projection

$$
\operatorname{End}_{\mathbf{C}}(\tau) \rightarrow \operatorname{End}_{K}(\tau)
$$

where $\operatorname{End}_{\mathbf{C}}(\tau)$ has the K-structure

$$
k \cdot \varphi=\tau(k) \circ \varphi \circ \tau(k)^{-1}
$$

$\operatorname{End}_{\mathbf{C}}(\tau)$ has a rational structure compatible with

$$
\mathbf{g}_{\mathbf{Q}}=\mathbf{g l}(p, \mathbf{Q}) \otimes \mathbf{g} \mathbf{l}(q, \mathbf{Q})
$$

on the complexified Lie algebra

$$
\mathbf{g}_{\mathbf{C}}=\operatorname{gl}(p, \mathbf{C}) \otimes \mathbf{g} \mathbf{l}(q, \mathbf{C})
$$

of $K=U(p) \times U(q)$.
Poincaré-Birkhoff-Witt, the Harish-Chandra homomorphism, and Verma modules still work over \mathbf{Q}.

Highest weights $\lambda-\rho$ for finite-dimensional irreducibles are integral (and dominant), so are rational on a rational Cartan subalgebra. Give a finite-dimensional irreducible complex representation τ a rational structure

$$
\tau=\left(M_{\lambda} / N_{\lambda}\right) \otimes_{\mathbf{Q}} \mathbf{C}
$$

with rational Verma module M_{λ} and (unique) maximal proper submodule N_{λ}.
$Z\left(\mathrm{~g}_{\mathrm{Q}}\right)$ distinguishes finite-dimensional irreducibles: given finite-dimensional irreducibles V and V^{\prime} with highest weights $\lambda-\rho=\lambda^{\prime}-\rho$, there is $z \in Z\left(\mathbf{g}_{\mathbf{Q}}\right)$ such that $z(\lambda) \neq z\left(\lambda^{\prime}\right)$.

Let Λ be the finite collection of λ 's indexing irreducibles in $\operatorname{End}_{\mathbf{C}}(\tau)=\operatorname{End}_{\mathbf{Q}}\left(\tau_{\mathbf{Q}}\right) \otimes_{\mathbf{Q}} \mathbf{C}$. Then

$$
P=\prod_{\lambda \in \Lambda} z_{\lambda} \in Z\left(\mathbf{g}_{\mathbf{Q}}\right)
$$

projects endomorphisms to the K-invariants. Thus, projection to K-endomorphisms preserves rationality.

To determine C compute
$S=S_{\tau}=\int_{D_{p, q}} \operatorname{det}\left(1_{p}-z z^{*}\right)^{m} \operatorname{det}\left(1_{q}-z^{*} z\right)^{-n} d^{*} z$
For $0<\ell \in \mathbf{Z}$, let

$$
C_{\ell}=\{\ell \text {-by- } \ell \text { complex } Y>0\}
$$

For real $s>\ell-1$ define

$$
\begin{gathered}
\Gamma_{\ell}(s)=\int_{C_{\ell}} e^{-\operatorname{tr} x}(\operatorname{det} x)^{s} \frac{d x}{(\operatorname{det} x)^{\ell}} \\
=\pi^{\ell(\ell-1) / 2} \prod_{i=1}^{\ell} \Gamma(s-i+1)
\end{gathered}
$$

Imitating classical computations,

$$
\begin{gathered}
\Gamma_{p}(m+n-p) \Gamma_{q}(m+n-q) \cdot S= \\
\int_{C_{p+q}} e^{-\operatorname{tr} Z}(\operatorname{det} Z)^{m+n} \frac{d Z}{(\operatorname{det} Z)^{p+q}}=\Gamma_{p+q}(m+n) \\
17
\end{gathered}
$$

Thus, for this τ

$$
\begin{gathered}
S=\frac{\Gamma_{p+q}(m+n)}{\Gamma_{p}(m+n-p) \Gamma_{q}(m+n-q)}= \\
\frac{\prod_{i=0}^{p+q-1} \Gamma(m+n-i)}{\prod_{i=0}^{p-1} \Gamma(m+n-p-i) \cdot \prod_{i=0}^{q-1} \Gamma(m+n-q-i)}
\end{gathered}
$$

$$
\begin{gathered}
\times \\
\frac{\pi^{(p+q)(p+q-1) / 2}}{\pi^{p(p-1) / 2} \cdot \pi^{q(q-1) / 2}}
\end{gathered}
$$

The net exponent of π is

$$
(p+q)(p+q-1) / 2-p(p-1) / 2-q(q-1) / 2=p q
$$

as anticipated. Thus,

$$
C=\pi^{p q} \cdot(\text { rational })
$$

and for arbitrary τ

$$
S=\pi^{p q} \cdot(\text { rational scalar endomorphism of } \tau)
$$

