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References and historical notes will be added later, maybe.

Many of the statements made here without proof are very difficult to prove! Just because no mention of proof
is made it should not be presumed that it’s ‘just an exercise’ !
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1. Decomposition by central characters

Let Z be the center of a reductive linear group G defined over a number field k. Let Gk denote the k-valued
points of G and let GA denote the adele points of G. Likewise, let Zk be the k-rational points of the center
Z, and let ZA denote the adele points of Z.

Since Gk, GA, Zk and ZA are all unimodular, there exists a right GA-invariant measure on Gk\GA and on
ZAGk\GA, unique up to constant multiples.

A central character is simply a continuous group homomorphism

ω : ZA → C×

Often we will want to assume that such ω is trivial on Zk, so gives rise to

ω : ZA → Zk\ZA → C×

And often we will suppose that ω is unitary, meaning that for all z ∈ ZA we have |ω(z)| = 1.

Let ωbe a central character. Let f be a complex-valued function on GA so that

f(zg) = ω(z) f(g)

for all z ∈ ZA and for all g. In this case, say that f has central character ω.

The space L2(Gk\GA) may be decomposed as a direct integral of Hilbert spaces, according to central
characters, in the sense that L2(Gk\GA) is a direct integral of the Hilbert spaces

L2(ZAGk\GA, ω) = { |f | ∈ L2(ZAGk\GA) and f has central character ω}

2. Square-integrable cuspforms

Let G be a reductive linear group defined over a number field k. Let f be a complex-valued function on GA.

The first hypothesis that we impose upon f is that f is square-integrable with central character ω, in
the sense that

f ∈ L2(ZAGk\GA, ω)

for some character ω on the adele points ZA of the center Z of GA.

Next, for every k-parabolic subgroup P of G with unipotent radical N we suppose that for almost all g ∈ GA

(in a measure-theoretic sense) ∫
Nk\NA

f(ng) dn = 0

where the dn refers to a right NA-invariant measure on the quotient Nk\NA. The space of f ∈
L2(ZAGk\GA, ω) satisfying the latter condition for all k-parabolics P is denoted by

L2
o(ZAGk\GA, ω)

Functions in these spaces are called square-integrable cuspforms with central character ω.

3. Smoothness of cuspforms
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A vector v in a complex-linear representation π of a Lie group H is smooth if the V -valued function

g → π(g)v

on H is infinitely differentiable.

A vector v in a complex-linear representation π of a totally disconnected group H is smooth if the V -valued
function

g → π(g)v

is uniformly locally constant, meaning that there is an open subgroup N so that

f(g) = f(gθ)

for all g ∈ G and for all θ ∈ N .

The adeles A are a product
A = Ainf ×Afin

where Ainf is the product of the archimedean (i.e., infinite) prime completions, and Afin is the finite prime
part of the adeles. Often Afin is called the finite adeles and Ainf is called the infinite adeles.

An adele group GA is a product of a Lie group and a totally disconnected group, namely,

GA = Ginf ×Gfin

where Ginf is the product of the archimedean-prime completions, and where Gfin is the finite-adele points
of G. We need to use coordinates

ginf ∈ Ginf gfin ∈ Gfin

on these two factors of GA. A function on GA is smooth if, as a function of the two variables ginf, gfin the
function is smooth (in the two senses).

A vector ϕ in any complex-linear representation (π, V ) of GA is smooth or a smooth vector if

ginf × gfin → π(ginf × gfin)ϕ

as a function on GA is smooth in the coordinates ginf × gfin.

Due to the existence of approximate identities in the ‘local groups’ Gv for all completions kv, smooth vectors
are dense in unitary representations of GA, whether irreducible or not. Thus, the smooth vectors are dense
in L2

o(ZAGk\GA, ω). Similarly, the smooth vectors are dense in the space of not-necessarily-cuspidal square-
integrable function L2(ZAGk\GA, ω), but this is of little consequence for us.

Thus, without loss of generality, we may suppose that a square-integrable cuspform f is smooth.

4. Eigen-cuspforms and automorphic representations

For a smooth square-integrable cuspform ϕ ∈ L2
o(ZAGk\GA, ω) consider the collection of finite linear

combinations of right translates
g → ϕ(g go)

of ϕ by elements go ∈ GA. The completion in L2
o(ZAGk\GA, ω) of this space is the subrepresentation

generated by ϕ.

One fundamental application of reduction theory to this situation is the fact that, as a representation space
for the adele group GA, each space L2

o(ZAGk\GA, ω) decomposes discretely and with finite multiplicities.
Thus, without loss of generality, we may suppose that a cuspform f generates an irreducible unitary
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representation πf of GA (under right translation). That is, the representation space of πf is the completion
in L2

o(ZAGk\GA, ω) of the collection of all functions

g →
∑

i

ci f(g · gi)

where the sum is finite, where ci ∈ C, and the gi are fixed elements of GA.

An irreducible unitary representation on a reductive adele group GA which occurs as a subrepresentation of
some L2

o(ZAGk\GA, ω) is said to be an automorphic cuspidal representation or cuspidal automorphic
representation. As an extension of classical terminology, we might say that such (square-integrable)
cuspform f is an eigen-cuspform.

Further, as a corollary of the proof of discreteness and finite multiplicities in spaces of square-integrable
cuspforms, we find that a smooth square-integrable cuspform f generating an irreducible representation is of
rapid decay at infinity in any Siegel set in GA.

5. Dirichlet series versus zeta and L-functions

Here we set up and clarify standard terminology, and then describe some desiderata for zeta and L-functions.
As an overview: the class of all Dirichlet series includes and is much larger than the class of all L-functions,
which usually is interpreted to include the class of all zeta functions. And the class of Dirichlet L-functions
is a very tiny subclass of the class of all L-functions.

One kind of fairly general definition of L-function, in terms of so-called ‘local data’, is given in a following
section.

We note the potential for confusion between the phrases Dirichlet series and Dirichlet L-function. These
two phrases are in no way synonymous.

Any series of the form
a1

1s
+

a2

2s
+

a3

3s
+

a4

4s
+

a5

5s
+ . . .

is a Dirichlet series. The an are the coefficients. If for some exponent k we have

an = O(nk)

then by elementary estimates the series is absolutely convergent (and uniformly so on compacta) for
<(s) > k + 1.

For that matter, the numbers n and ns in the denominators can be replaced by

λ1 < λ2 < λ3 . . . → +∞

and corresponding sth powers, giving what are sometimes called generalized Dirichlet series

a1

λs
1

+
a2

λs
2

+
a3

λs
3

+
a4

λs
4

+
a5

λs
5

+ . . .

But usually an object interpretable as a generalized Dirichlet series has a more useful aspect of another sort.

One basic point is that every L-function and zeta function is a Dirichlet series, but not every Dirichlet series
qualifies as an L-function or zeta-function. And, for most purposes, the notion of ‘L-function’ includes all
notions of ‘zeta function’ as special cases.

The potential source of confusion about the terminology is that there is a notion of Dirichlet L-function. Note
that the phrase is ‘Dirichlet L-function’, not the more general ‘Dirichlet series’. These Dirichlet L-functions
are the most elementary of all L-functions, and include the Riemann zeta-function

ζ(s) =
∑
n≥1

1
ns
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as the most special and elementary case. Before giving the general definition of Dirichlet L-function, we need
a little preparation. Fix a positive integer F , and let

χ : Z/F× → C×

be a group homomorphism from the multiplicative group Z/F× of the quotient ring Z/F to non-zero complex
numbers. Extend χ to a function (still denoted by χ) on all of Z/F by defining it to be 0 off Z/F×. By
composing this extended χ with the quotient map

Z → Z/F

we get a map (still denoted by χ)
χ : Z → Z/F → C×

The latter map is what is called a Dirichlet character modulo F . The most general Dirichlet L-function
is of the form

L(s, χ) =
∑
n≥1

χ(n)
ns

for a Dirichlet character χ.

Assume an inequality an = O(nk) so that the function

D(s) =
a1

1s
+

a2

2s
+

a3

3s
+

a4

4s
+

a5

5s
+ . . .

is holomorphic in the right half-plane <(s) > k+1. It is not hard to see that the coefficients an are completely
determined by the holomorphic function D(s). This is useful in what follows.

For convenience, let’s suppose that a1 6= 0, so that we can divide through by it, and have

D(s) = 1 +
a2

2s
+

a3

3s
+ . . .

With this normalization, we might demand an Euler product factorization

D(s) = 1 +
a2

2s
+

a3

3s
+ + . . . =

∏
p

(1 +
ap

ps
+

ap2

p2s
+

ap3

p3s
+ . . .)

where p runs over primes, at least in the region of absolute convergence <(s) > k + 1. The factor

1 +
ap

ps
+

ap2

p2s
+

ap3

p3s
+ . . .

is the pth Euler factor.

It is not hard to see that such factorization is equivalent to a weak multiplicativity property of the
coefficients an, namely

amn = am · an for m,n relatively prime

In practice, in any scenario in which the issue is not trivial, such weak multiplicativity is not verified
directly, but is a corollary of some exogenous considerations. And here we are making implicit use of the
unique factorization in the rational integers Z. In more general situations where Euler factors are indexed
by (finite) primes in a number field, we use the unique factorization into prime ideals rather than prime
numbers.

For example, Riemann’s zeta function has an Euler product

ζ(s) =
∑
n≥1

1
ns

=
∏
p

(1 +
1
ps

+
1

p2s
+

1
p3s

+ . . .) =
∏
p

1
1− p−s

5



Paul Garrett: Automorphic Representations and L-functions (February 19, 2005)

Similarly, because of unique factorization and the multiplicativity of Dirichlet characters χ, Dirichlet L-
functions have Euler products

L(s, χ) =
∑
n≥1

χ(n)
ns

=
∏
p

(1 +
χ(p)
ps

+
χ(p2)
p2s

+
χ(p3)
p3s

+ . . .) =
∏
p

1
1− χ(p)p−s

Assume that a Dirichlet series D(s) has an Euler factorization over primes. Then we would hope further
that for each prime p the pth Euler factor is a rational function of p−s, meaning that

1 +
ap

ps
+

ap2

p2s
+

ap3

p3s
+ . . . =

1 + b1p
−s + . . . + bmp−ms

1 + c1p−s + . . . + cnp−ms

for some complex numbers b1, . . . , bm, c1, . . . , cn of course depending upon p. (For that matter, it may be
that m,n also depend upon p). For brevity, if this property holds, we would say that the Dirichlet series
D(s) has rational Euler factors.

For example, Riemann’s zeta function and Dirichlet L-functions certainly have rational Euler factors, and
the Euler factors have the desirable property of depending upon p in a very systematic way.

Without attempting to give a general description of what an ‘L-function’ or ‘zeta function’ might be, we
can state as a general principle that Euler factorization and rationality of the Euler factors are prerequisites.
Indeed, the modern definitions of most types of L-functions or zeta functions give them as Euler products
from the start. Even the rationality of the Euler factors is sometimes part of the definition, it is just as likely
that in another circumstance the issue of proving rationality may be fundamental.

6. L-functions defined via local data

Many L-functions and zeta functions fit into the following fairly elementary description, even if the
ramifications are unclear.

In particular, this definition does not give any hints as to how to prove that the function so-defined has an
analytic continuation, functional equation, and so on.

Fix a positive integer N , and fix a finite set S of ‘bad’ primes. For a prime p not in the bad set S, let Ψp be
an N -by-N invertible matrix. Then we have an L-function attached to the local data {Ψp} defined by

L(s, {Ψp}) =
∏
p6∈S

1
det(1N − p−sΨp)

where ‘det’ denotes determinant and 1N is the N -by-N identity matrix.

Since Ψp only enters via its determinant, we could be a little coy about things and say just that we have an
assignment of conjugacy classes p → 〈Ψp〉, rather than specific matrices.

Note that in this definition the factorization over primes is certainly built in, and the rationality of the
Euler factors (as functions of p−s) is also built in. But without any further information we cannot even be
confident that this series converges in a half-plane, much less that it has an analytic continuation, etc.

This definition gives no indication where one could expect the ‘local data’ to come from, nor what might
make a prime fall into the collection S of ‘bad’ primes. In the case of Riemann’s zeta, the set S is empty,
and for every prime p, the local data at p is just Ψp = 1. In the case of Dirichlet L-functions for a Dirichlet
character χ modulo F , we take S to be the set of primes dividing F , and the local data at all other primes
is Ψp = χ(p).

An analogous definition of L-function can be given in which rational primes as above are replaced by the
collection of all primes in a number field. However, such ‘generalization’ can be subsumed in the present
set-up.
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An issue of some consequence is that of defining Euler factors for infinite or archimedean primes. That is,
ideally the assignment of gamma factors should proceed in perfect analogy with construction of all the other
Euler factors.

7. Factoring unitary representations of adele groups

To define automorphic L-functions, we want to figure out how to attach local data Ψp (in the above sense)
to an irreducible unitary representation π of a reductive adele group GA. For the definition we will give,
it will not matter whether π is automorphic or not! This section takes the first of two steps in associating
‘local data’ to irreducible representations of these adele groups.

Since the local groups Gv (v running over primes of the global field k over which G is defined) are known
to be Type I, any irreducible unitary representation π of GA factors over primes into a completed restricted
tensor product:

π ≈
⊗̂′

v
πv

where πv is an irreducible unitary representation of Gv uniquely determined up to isomorphism. In
particular, this factorization certainly applies to an irreducible unitary representation πf generated by a
square-integrable cuspform f .

Let Kv be a ‘good’ maximal compact subgroup of Gv. Recall that an irreducible unitary representation of Gv

is a spherical representation if it has a non-zero Kv-fixed vector, in which case there is a one-dimensional
space of Kv-fixed vectors in the representation space.

With this terminology we can note that, further, for all but finitely-many primes v, the ‘local’ representations
πv are spherical. Let the set S of bad primes be at least large-enough to contain the finite set of primes v
for which πv is non-spherical.

Thus, we have turned the problem of acquisition of ‘local data’ into the problem of meaningfully associating
‘local data’ to spherical representations of the ‘local’ groups Gv. That is, we need to attach ‘numerical
invariants’ to spherical representations. This is done in the next section.

8. Spherical representations and Satake parameters

Now we begin to see how to attach ‘local data’ Φv to spherical representations πv of the ‘local’ groups Gv.
To do so, we must introduce the Satake parameters, which arise in the Satake transform.

For simplicity of notation, we will suppress all the subscripts refering to the prime. This ought not create
undue confusion, since all the considerations of this section are local. Also, in this context we do not need
to think of groups as in any way being functors, so we can simplify our way of talking about them: rather
than ‘k-valued points of the k-group-scheme G’, we will just say ‘the group G’. And all subgroups will be
presumed to be defined over whatever the base field is. In any case, in the basic example of GL(n,Qp) these
issues can be minimized.

So, let G be a reductive linear group over an ultrametric local field k. Let P be a minimal parabolic subgroup
of G, with unipotent radical N and choice of Levi component M . When G = GL(n,Qp), we take P to be
upper-triangular matrices, N to be elements of P with 1’s on the diagonal, and M just the diagonal matrices.
Let K be a ‘good’ maximal compact subgroup of G. Let HG,K denote the spherical Hecke algebra defined
as

HG,K = left and right K-invariant complex-valued functions on G

Give G a right Haar measure so that the measure of K is 1. This is also a left Haar measure. Then HG,K is
a convolution algebra with the convolution product

(η ∗ ϕ)(g) =
∫

G

η(gh−1) ϕ(h) dh
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where dh refers to the Haar measure.

A crucial fact from elementary representation theory is that the isomorphism class of a spherical
representation is completely determined by the representation of the spherical Hecke algebra on the one-
dimensional space of spherical vectors in the representation. Since the space of spherical vectors is just
one-dimensional, automorphisms are just complex scalars. Thus, to describe a spherical representation π is
to describe a C-algebra homomorphism

HG,K → C

To give such a description, we first describe the structure of the spherical Hecke algebra itself.

Let δP be the modular function of P , meaning that for a right Haar measure µP on P we have

µP (pE) = µP (pEp−1) = δP (p) · µP (E)

for any p ∈ P and measurable E ⊂ P . The Satake transform Sη of a function η ∈ HG,K is defined by the
integral formula

(Sη)(m) = δP (m)−1/2

∫
N

η(nm) dn = δP (m)1/2

∫
N

η(mn) dn

where dn denotes a Haar measure on N normalized so that

characteristic function of K → characteristic function of K ∩M

Let HM,K∩M be the spherical Hecke algebra of the reductive group M (a fixed Levi component of the
parabolic P ). The Weyl group of M in G is

W = normalizer of M in G/ centralizer of M in G

Satake’s theorem is that the Satake transform S gives an isomorphism from the spherical Hecke algebra
HG,K of G to the Weyl-group-invariant elements HW

M,K∩M of the spherical Hecke algebra HM,K∩M of M .
The isomorphism is called the Satake isomorphism.

Now generally the spherical Hecke algebra HM,K∩M of M is of the form

C[z1, z
−1
1 , z2, z

−1
2 , . . . , zn, z−1

n ]

for indeterminates zi, where n is the split rank of G. For example, for GL(n,Qp) this rank is indeed n.
The crucial point is that the spherical Hecke algebra of the Levi component of a minimal parabolic is a
commutative Noetherian ring.

Next, the Weyl group W acts in such manner that the full spherical Hecke algebra of M is integral over the
W -invariant elements. Therefore, always

HW
M,K∩M = commutative Noetherian

Thus, in particular, the spherical Hecke algebra HG,K is a commutative Noetherian ring.

For example, in the case of GL(n,Qp), the Weyl group W is the group of permutations of the indices
1, 2, . . . , n, so acts upon

HM,K∩M ≈ C[z1, z
−1
1 , z2, z

−1
2 , . . . , zn, z−1

n ]

by permutation of these variables zi (and inverses, correspondingly). Thus, the W -fixed subalgebra is

HW
M,K∩M ≈ C[z1, z

−1
1 , z2, z

−1
2 . . . , zn, z−1

n ]W ≈ C[s1, s2, s3, . . . , sn, s−1
n ]

That is, it is generated by the elementary symmetric polynomials s1, . . . , sn in the zi, together with the single
item s−1

n ..
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Finally, for essentially elementary reasons the integrality assures that any algebra homomorphism

λ : HG,K ≈ HW
M,K∩M → C

extends to an algebra homomorphism
λ̃ : HM,K∩M → C

Thus, if we have an identification

HM,K∩M ≈ C[z1, z
−1
1 , z2, z

−1
2 , . . . , zn, z−1

n ]

then the images
λ̃(z1), λ̃(z2) . . . , λ̃(zn)

are the Satake parameters associated to λ̃.

Thus, in summary, to a spherical representation we attach a one-dimensional representation of the spherical
Hecke algebra of G, to which we associate a one-dimensional representation of the W -invariant spherical
Hecke algebra of M , which we extend to a one-dimensional representation of the whole spherical Hecke
algebra of M , which is completely determined by the images of the generators (denoted by z1, z2, . . . , zn

above).

9. Local data, L-groups, higher L-functions

So far, to any irreducible unitary representation π of a reductive adele group GA, whether or not it arises
from an automorphic form, we associate the list of ‘local’ representations πv of the ‘local’ groups Gv. All
but finitely-many of these local representations are spherical, so are specified by Satake parameters.

For each prime v of the global field we arrange the Satake parameters into a suitable diagonal matrix Φv:
in the case of GL(n,Qp) with Satake parameters λ̃(z1), . . . , λ̃(zn) (in the notation of the previous section)
we simply take

Φp =


λ̃(z1)

λ̃(z2)
. . .

λ̃(zn)


Then the standard L-function attached to the local data Φv coming from the Satake parameters is

L(s, ρ, {Φv}) =
∏
v 6∈S

1
det(1− q−s

v Φv)

where qv is the order of the residue class field for v, where the ‘1’ denotes the identity matrix of appropriate
size, and where S is the finite set of primes where the ‘local representation’ is not spherical. This also omits
archimedean primes.

Further, once we have the ‘local data’ Φv coming from the Satake parameters, we can create higher L-
functions by ‘local date’ as follows. Suppose that we have arranged so that all the Φv lie inside a group LGo

v

of matrices, for all possible spherical representations. Let

ρ :L Go
v → GL(N,C)

be a finite-dimensional representation of LGo
v, not depending upon v. Then as ‘local data’ we might use

Ψv = ρ(Φv)
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and form a higher L-function

L(s, ρ, {Φv}) =
∏
v 6∈S

1
det(1− q−s

v ρ(Φv))

where qv is the order of the residue class field for v, where the ‘1’ denotes the identity matrix of appropriate
size, and where S is the finite set of primes where the ‘local representation’ is not spherical. This omits
archimedean primes.

In the case of GL(n,Qp), the L-group is just GL(n,C), and the auxiliary representation ρ is just a finite-
dimensional representation

ρ : GL(n,C) → GL(N,C)

In even more general situations, there is nevertheless a very systematic general prescription for arranging
the Satake parameters in a diagonal matrix Φv. Further, this is arranged so that all possible local data Φv

lie inside a group LGo
v depending upon the ‘local group’ Gv. The group LGo

v is the (connected component
of the) L-group attached to G. The L-group idea can also be made to incorporate Galois groups and their
representations.

It should be emphasized that the ‘L-group formalism’ is mostly just that, a formalism, and does not really
circumvent fundamental issues, but mostly gives a unifying notation and language helpful in the general
case. Anyway, in summary, the Satake parameters are used to specify a conjugacy class of semi-simple (i.e.,
diagonal) elements in the appropriate ‘L-group’. For GL(n,Qp) there is little to be gained, at the outset at
least, from worrying about fancier definitions.

And, finally, if the local representations πv are the tensor factors in an irreducible unitary representation π
occuring inside a space L2

o(ZAGk\GA, ω) of square-integrable cuspforms (for some ω), then the associated
L-functions constructed as above are called automorphic cuspidal L-functions.
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