Linear independence of roots

$$
\text { Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ } \text { garrett/ }
$$

It is natural to believe that $\sqrt{7} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})=\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5})$, and natural to hope for a simple causal mechanism behind such facts. Small versions of such questions permit direct manipulative resolution, but the best context for larger versions of such questions is not immediately clear.
[Robinson 2011] gives a straightforward argument, and suggests extensions to higher-order roots, which is the point of the present discussion. It is not surprising that such questions were addressed many decades ago, and, indeed, [Dubuque 2011] quotes reviews of sources dating to at least [Hasse 1933].

Fix $2 \leq \ell \in \mathbb{Z}$, and let k be a field of characteristic not dividing ℓ, with k containing a primitive $\ell^{t h}$ root of unity. Let $a_{1}, \ldots, a_{n} \in k^{\times}$, and $\alpha_{j}=\sqrt[\ell]{a_{j}}$ in a finite Galois extension K of k.

Suppose that, for any pair of indices $i \neq j$, there is $\sigma \in \operatorname{Gal}(K / k)$ such that $\sigma\left(\alpha_{i}\right) / \alpha_{i} \neq \sigma\left(\alpha_{j}\right) / \alpha_{j}$.
Since $\sigma\left(\alpha_{i}\right)=\omega_{i} \cdot \alpha_{i}$ for some $\ell^{\text {th }}$ root of unity ω_{i} (depending on σ), the hypothesis is equivalent to a_{i} / a_{j} not being an $n^{t h}$ power in k. That is, the hypothesis is that the one-dimensional representations of $\mathrm{Gal}(K / k)$ on the lines $k \cdot \alpha_{j}$ are pairwise non-isomorphic, although the discussion need not be carried out in such terms.
[0.0.1] Claim: The α_{j} 's are linearly independent over k.
Proof: Suppose $\sum_{j} c_{j} \cdot \alpha_{j}=0$ is a shortest non-trivial linear relation with $c_{j} \in k$. For indices $i \neq j$ appearing in this relation, take $\sigma \in \operatorname{Gal}(K / k)$ such that $\sigma\left(\alpha_{i}\right) / \alpha_{i} \neq \sigma\left(\alpha_{j}\right) / \alpha_{j}$. Then

$$
0=\frac{\sigma\left(\alpha_{i}\right)}{\alpha_{i}} \cdot 0-\sigma(0)=\frac{\sigma\left(\alpha_{i}\right)}{\alpha_{i}} \sum_{t} c_{t} \cdot \alpha_{t}-\sigma\left(\sum_{t} c_{t} \cdot \alpha_{t}\right)=\sum_{t} c_{t} \cdot \alpha_{t} \cdot\left(\frac{\sigma\left(\alpha_{i}\right)}{\alpha_{i}}-\frac{\sigma\left(\alpha_{t}\right)}{\alpha_{t}}\right)
$$

The coefficient of α_{i} is 0 , while the coefficient of α_{j} is non-zero, by arrangement. This would contradict the assumption that the relation is shortest. Thus, there is no non-trivial relation.
[0.0.2] Remark: The argument reproves the impossibility of mapping a sum of mutually non-isomorphic irreducibles of $\operatorname{Gal}(K / k)$ non-trivially to the trivial representation. The argument resembles the argument for linear independence of characters.
[0.0.3] Corollary: For relatively prime integers a_{1}, \ldots, a_{n}, the 2^{n} algebraic numbers $\sqrt{a_{i_{1}} \ldots a_{i_{k}}}$ with $i_{1}<\ldots<i_{k}$ and $0 \leq k \leq n$ are linearly independent over \mathbb{Q}, so are a \mathbb{Q}-basis for $\mathbb{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$. In particular, the degree of that field over \mathbb{Q} is the maximum possible, 2^{n}.

Bibliographic notes: Specific bibliographic pointers were gleaned from [Dubuque 2011], in which [Bergstrom 1953] is quoted refering to the text [Hasse 1933].
[Bergstrom 1953] H. Bergstrom, review of [Mordell 1953], Math. Reviews MR0058649.
[Besicovitch 1940] A.S. Besicovitch, On the linear independence of fractional powers of integers, J. London Math. Soc. 15 (1940), 3-6.
[Dubuque 2011] W. Dubuque's answer to math.stackexchange.com/questions/30687, retrieved 22 Dec 2011.
[Hasse 1933] H. Hasse, Klassenkorpertheorie, Marburg, 1933, 187-195.
[Mordell 1953] L.J. Mordell, On the linear independence of algebraic numbers, Pacific J. Math. 3 (1953), 625-630.
[Robinson 2011] G. Robinson's answer to math.stackexchange.com/questions/93453, retrieved 22 Dec 2011.

