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According to Borel, Harish-Chandra gave the name Maaß-Selberg relation to the formula for the inner
product of truncated Eisenstein series with cuspidal data. Apparently the systematic computation of these
inner products is due to Langlands. A crucial technical issue is the precise notion of truncation of Eisenstein
series.

We give simple but non-trivial examples, with illustrative examples of consequences: possible poles of
Eisenstein series, square-integrability of certain residues of Eisenstein series.

This bears upon the construction of non-trivial residual square-integrable automorphic forms coming from
cuspforms on smaller groups, anticipating that such automorphic forms occur as residues of Eisenstein series.
For example, we can see why there is no interesting (i.e., non-constant) non-cuspidal discrete spectrum for
GL(2) nor for GL(3), but only for GL(4) and larger groups. Namely, the Eisenstein series of interest on
GL(3) have no poles at all in the right half-plane. This follows immediately from the Maaß-Selberg relations.

Ideas of Zagier and Casselman regarding non-classical extensions of integrals (à la Hadamard and M. Riesz)
give alternative proofs of Maaß-Selberg relations which are perhaps more conceptual, but the issue of
appropriate truncation operators does not disappear.

1. Maximal proper parabolics, cuspidal data, for GL(n,Z)

The simplest non-trivial examples of Maaß-Selberg relations and corollaries concern spherical Eisenstein
series on GL(n) associated to cuspidal data on the Levi component of maximal (proper) parabolics. We will
assume standard facts about the constant terms of such Eisenstein series.

Let G = GL(n,R), Γ = GL(n,Z), and K = O(n,R). For n1, n2 positive integers so that n1 +n2 = n, define
the corresponding standard maximal proper parabolic

P = Pn1,n2 = {
(
n1 × n1 ∗

0 n2 × n2

)
}

with unipotent radical

NP = {
(

1n1 ∗
0 1n2

)
}

and standard Levi component

MP = {
(
n1 × n1 0

0 n2 × n2

)
} ≈ GL(n1)×GL(n2)

Fix a standard parabolic P and N its unipotent radical. For f an NZ = N ∩ Γ-invariant function, the
constant term cP (f) of f along P is defined as usual to be

cP f(g) =
∫
NZ\N

f(ng) dn

We consider only left Γ-invariant, right K-invariant cuspforms on G with trivial central character. In
the present discussion, cuspforms will be spherical Hecke algebra eigenfunctions at all finite primes, will
be square-integrable, and will generate irreducible unitary representations of G = GL(n,R). (The latter
condition is stricter than merely requiring that cuspforms are eigenvectors for the center of the universal
enveloping algebra.)
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Fix integers n1, n2. For i = 1, 2 let fi be cuspforms on GL(ni,R). Let P = Pn1,n2 , and put

ϕ(nmk) = ϕs,f (nmk) = |detm1|n2s |detm2|−n1s f1(m1) f2(m2)

where

m =
(
m1 0
0 m2

)
with mi ∈ GL(ni), so that m is in the standard Levi component M of the parabolic subgroup P , n ∈ N its
unipotent radical, and k in K. Let PZ = Γ ∩ P . Define the associated Eisenstein series EP (ϕ) = EPϕ by

EPϕ (g) = EP (ϕ)(g) ==
∑

γ∈PZ\Γ

ϕ(γg)

For Re(s) sufficiently positive, this series converges absolutely and uniformly on compacta. It is a left
GL(n1 + n2,Z)-invariant right O(n1 + n2)-invariant function with trivial central character. More generally,
for any left PZ-invariant function η on G, define Eisenstein series

EP (η)(g) =
∑

γ∈ΓP \Γ

η(γg)

To describe the meromorphic continuation and functional equation of these Eisenstein series, we recall the
form of their constant terms (after Selberg, Langlands, et alia). The results asserted here are the result
of non-trivial computations. For maximal proper P = Pn1,n2 with n1 = n2 (that is, self-associate), the
Eisenstein series EPϕ as above, attached to cuspidal data f on the Levi component of P has constant term
with values on M = MP given by (via a non-trivial computation, using the cuspidality of the data)

cPE
P
ϕ = ϕ+ cs · ϕw

where cs is a ratio of L-functions attached to f whose precise nature does not immediately concern us, and

ϕw(nmk) = |detm1|n2(1−s) |detm2|−n1(1−s) f2(m1) f2(m2) = ϕ(wmw−1) · δ−1
P (m)

where δP (m) = |detm1|n2 · |detm2|−n1 is the modular function of P , m ∈ M is as above, n ∈ N , and
k ∈ K. For all other standard parabolics the constant term is 0. For n1 6= n2 (the non-self-associate case),
let Q = Pn2,n1 be the associate of P . Then (via a non-trivial computation, using the cuspidality of the data)

cPE
P
ϕ (m) = ϕ(m)

cQE
P
ϕ (m) = cs · ϕw(m)

and where again cs is a ratio of L-functions depending on the data ϕ. All other constant terms are 0.

Theorem: (Selberg, Langlands, Bernstein, et alia) Eisenstein series EPϕ have meromorphic continuations
in s, with functional equation

c−1
s EPϕ = EP

w

ϕw

where Pw is the associate parabolic to P (whether or not P is self-associate).

Now define the truncation operators. For a standard maximal proper parabolic P = Pn1,n2 as above, for
g = nmk with m ∈MP as above, n ∈ NP , and k ∈ O(n), define

hP (g) =
|detm1|n2

|detm2|n1
= δP (nm) = δP (m)
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where δP is the modular function on P . (The exponents make this function invariant under the center Z of
G.) For fixed large real T , the T -tail of the P -constant term of a left NP

Z -invariant function F

cTPF (g) =
{
cPF (g) (for hP (g) ≥ T )

0 (for hP (g) < T )

If n1 6= n2, P is not self-associate, and has associate Q = Pn2,n1 . Similarly, define the T -tail of the Q-constant
term of left NQ

Z -invariant F by

cTQF (g) =
{
cQF (g) (for hQ(g) ≥ T )

0 (for hQ(g) < T )

We want the truncations of the Eisenstein series under consideration to be square integrable (which could
be accomplished a number of ways), and also so that their inner products are calculable in explicit and
straightforward terms. Further, there should be no obstacle to meromorphic continuation of the tail in the
truncation. These requirements are somewhat at odds with each other. Define

ΛTEPϕ =
{
EPϕ − EP (cTPE

P
ϕ ) (for n1 = n2, i.e., for P self-associate)

EPϕ − EP (cTPE
P
ϕ )− EQ(cTQE

P
ϕ ) (for n1 6= n2, i.e., for P not self-associate)

Proposition: The truncated Eisenstein series ΛTEPϕ is of rapid decay in Siegel sets.

Proof: As usual, for a root γ, let g → aγ be the function which sends g to the value of γ on a, where
g = nak is an Iwasawa decomposition, with n in the unipotent radical of a minimal parabolic, a in the Levi
component, and k in the maximal compact.

The argument is simpler in the self-associate case, which we carry out first. For any simple (positive) root α,
let cα be the constant term along the unipotent radical of the maximal proper parabolic attached to α. Then
one basic result from the theory of the constant term is that on a standard Siegel set for any automorphic
form (K-finite, Z-finite, of moderate growth) f − cαf is of rapid decay as aα → +∞. Also, from the theory
of constant terms of Eisenstein series with cuspidal data, for self-associate maximal proper P in GL(n) (and
in classical groups) all such constant terms are 0 except that along P itself. That is, on standard Siegel sets
EPϕ − cPE

P
ϕ is of rapid decay. Thus, EPϕ − cTPE

P
ϕ is of rapid decay on standard Siegel sets, and then the

automorphic form
ΛTEPϕ = EPϕ − EP (cTPE

P
ϕ )

is of rapid decay on all Siegel sets.

In the non-self-associate case, let Q 6= P be the other associate of P , and let α, β be the simple positive
roots corresponding to P and Q, respectively. Because f is a cuspform and P is not self-associate only a
single Bruhat cell (corresponding to the trivial Weyl element) contributes to the constant term cPE

P
ϕ and

cPE
P
ϕ (m) = ϕ(m)

which is rapidly decreasing on standard Siegel sets as aλ → +∞ for any simple (positive) root λ 6= α, because
f is a cuspform. Similarly, only a single Bruhat cell (corresponding to the longest Weyl element) contributes
to the constant term cQE

P
ϕ , which is rapidly decreasing on standard Siegel sets as aλ → +∞ for any simple

(positive) root λ 6= β, because f is a cuspform. Thus, the truncation

ΛTEPϕ = EPϕ − EP (cTPE
P
ϕ )− EQ(cTQE

P
ϕ )

has decay properties as follows. If aγ → +∞ for γ other than α, β, then all three terms on the right-hand
side are of rapid decay. If α→ +∞, then each of the two expressions EPϕ −EP (cTPE

P
ϕ ) and EQ(cTQE

P
ϕ ) is of

rapid decay. And if β → +∞, then each of the two expressions EPϕ −EQ(cTQE
P
ϕ ) and EP (cTPE

P
ϕ ) is of rapid
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decay. Thus, as the value of any simple positive root goes to +∞ in a standard Siegel set, the truncation
goes rapidly to zero. ///

Proposition: Given a compact subset C of G, there are only finitely-many γ ∈ PZ\Γ such that for g ∈ C

cTPE
P
ϕ (γg) 6= 0

Thus, the series expression for EP (cTPE
P
ϕ ) is uniformly locally finite, and therefore has a meromorphic

continuation in s.

Proof: This follows from the fact that there are only finitely-many γ ∈ PZ\Γ such that

γ · C ∩ (support of cTPE
P
ϕ ) 6= φ

The latter follows from the fact that for any maximal proper parabolic Q

hQ(wnw−1 ·m) ≤ hQ(m)

with m ∈MQ, n ∈ NQ, with w the longest Weyl element. ///

For two left Γ-invariant functions Φ and Ψ with the property that Φ ·Ψ is Z-invariant, define

〈Φ,Ψ〉 =
∫
Z·Γ\G

Φ(g)Ψ(g) dg

Let h = h1 ⊗ h2 be a another cuspform on the Levi component M of P , let r ∈ C, and define

ψ(nmk) = ψr,h(nmk) = |detm1|n2r |detm2|−n1r h1(m1)h2(m2)

where

m =
(
m1 0
0 m2

)
with mi ∈ GL(ni), so that m is in M , n ∈ NP , and k in K. Let 〈f, h〉 be the inner product on
GL(n1)×GL(n2) modulo its center and

fw(m) = f(wmw−1) = f1(m2) f2(m1)

(without the renormalization by the modular function).

Theorem: (Maaß-Selberg relations) The inner product 〈ΛTEPϕ ,ΛTEPψ 〉 of truncations ΛTEPϕ and ΛTEPψ of
two Eisenstein series EPϕ and EPψ attached to cuspidal data ϕ,ψ on a maximal proper parabolic P is given
as follows. For P self-associate (i.e., for n1 = n2)

〈ΛTEPϕ,ΛTEPψ 〉=〈f,h〉T
s+r̄−1

s+r̄−1
+〈f,hw〉cψr

T s+(1−r̄)−1

s+(1−r̄)−1
+〈fw,h〉cϕs

T (1−s)+r̄−1

(1−s)+r̄−1
+〈fw,hw〉cϕs c

ψ
r
T (1−s)+(1−r̄)−1

(1−s)+(1−r̄)−1

For P not self-associate (i.e., for n1 6= n2)

〈ΛTEPϕ ,ΛTEPψ 〉 = 〈f, h〉 T
s+r̄−1

s+ r̄ − 1
+ 〈fw, hw〉cϕs c

ψ
r

T (1−s)+(1−r̄)−1

(1− s) + (1− r̄)− 1

Remark: That is, the expression for the not-self-associate case is identical to that for the self-associate
case but with the middle two terms missing. In the non-self-associate case the inner products 〈fw, h〉 and
〈f, hw〉 would not make sense, in any case, because in that case wMw−1 6= M , so the two functions live on
different groups.
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Corollary: For maximal proper parabolics P in GL(n), on the half-plane Re(s) ≥ 1/2 an Eisenstein series
EPϕ has no poles whatsoever if P is not self-associate. If P is self-associate, the only possible poles are on the
real line, and only occur if 〈f, fw〉 6= 0. In that case, any pole is simple, and the residue is square-integrable.
In particular, taking f = fo ⊗ fo

〈Resso E
P
ϕ ,Resso E

P
ϕ 〉 = 〈fo, fo〉2 · Resso c

ϕ
s

Proof: (of theorem).The self-associate case admits a simple argument, which we give, despite the fact that
this simplicity is misleading about what happens more generally. The point is that because of the self-
associate-ness the truncated Eisenstein series ΛTEPϕ is itself an Eisenstein series

ΛTEPϕ = EP (ϕ)− EP (cTPE
P
ϕ ) = EP (ϕ− cTPE

P
ϕ )

As may be intuitively plausible, the Eisenstein series made from the tail of the constant term integrates to
zero against the truncated Eisenstein series, that is,

〈ΛTEPϕ , EP (cTPE
P
ϕ )〉 = 0

This is essentially a computation, though not completely trivial, and uses the cuspidality of the data ϕ. Use
this fact, and then unwind the truncated Eisenstein series to obtain

〈ΛTEPϕ ,ΛTEψ〉 = 〈ΛTEPϕ , Eψ〉 =
∫
Z·PZ)\G

{
−csϕw(g) (for hP ≥ T )
ϕ(g) (for hP < T ) · Eψ(g) dg

where Z is the center of G. This is∫
Z·(N ·PZ)\G

{
−csϕw(g) (for hP ≥ T )
ϕ(g) (for hP < T ) · cPEψ(g) dg

=
∫
Z·(N ·PZ)\G

{
−csϕw(g) (for hP ≥ T )
ϕ(g) (for hP < T ) · (ϕψ(g) + crϕ1−r,hw(g)) dg

Since the integrand is now left N = NP -invariant and right K-invariant, this integral may be computed as
an integral over the Levi component MP of P , using the Iwasawa decomposition G = NP ·MP · K. Of
course, in these coordinates the Haar integral on G is∫

G

f(g) dg =
∫
N

∫
M

∫
K

f(nmk) δ−1
P (m) dn dmdk

Then

〈ΛTEPϕ ,ΛTEPψ 〉 =
∫
Z·MP

Z
\MP

{
−csϕw(m) (for hP ≥ T )
ϕ(m) (for hP < T ) · (ϕψ(g) + crϕ1−r,hw(g)) δP (m)−1 dm

This gives rise to the four terms of the theorem for the self-associate case.

In the non-self-associate case, the truncated Eisenstein series ΛTEPϕ is not itself an Eisenstein series, and
more serious attention is required to evaluate the inner product of truncated Eisenstein series. One computes
(using the cuspidality of the data ϕ and ψ) that

〈EPϕ − EP (cTPE
P
ϕ ), EP (cTPE

P
ϕ )〉 = 0

〈EPϕ − EQ(cTQE
P
ϕ ), EQ(cTQE

P
ϕ )〉 = 0

〈EP (cTPE
P
ϕ ), EQ(cTQE

P
ϕ )〉 = 0
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Then the inner product of the truncated Eisenstein series is

〈ΛTEPϕ ,ΛTEPψ 〉 = 〈EPϕ − EP (cTPE
P
ϕ ), EPψ 〉+ 〈EQ(cTQE

P
ϕ ), EQ(cTQE

P
ψ )〉

Now the pairings unwind. First,

〈EPϕ − EP (cTPE
P
ϕ ), EPψ 〉 = 〈EP (cPEPϕ − cTPE

P
ϕ ), EPψ 〉 =

∫
Z·PZ\G

{
0 (for hP ≥ T )

ϕ(g) (for hP < T ) · Eψ(g) dg

where Z is the center of G. This is∫
Z·(N ·PZ)\G

{
0 (for hP ≥ T )

ϕ(g) (for hP < T ) · cPEψ(g) dg =
∫
Z·(N ·PZ)\G

{
0 (for hP ≥ T )

ϕ(g) (for hP < T ) · ψ(g) dg

Since the integrand is now left N = NP -invariant and right K-invariant, this integral may be computed as
an integral over the Levi component MP of P , using the Iwasawa decomposition G = NP ·MP ·K. Then

〈ΛTEPϕ ,ΛTEPψ 〉 =
∫
Z·MP

Z
\MP

{
0 (for hP ≥ T )

ϕ(m) (for hP < T ) · ψ(g) δP (m)−1 dm

This gives one term for the not self-associate case.

Let cϕs and cψr be the ratios of L-functions occurring as

cQE
P
ϕ = cϕs · ϕw

cQE
P
ψ = cψr · ψw

Then the other pairing is unwound in similar fashion

〈EQ(cTQE
P
ϕ ), EQ(cTQE

P
ψ )〉 =

∫
Z·QZ\G

{
cϕs ϕ

w(g) (for hP ≥ T )
0 (for hP < T ) · Eψ(g) dg

where Z is the center of G. This is∫
Z·(N ·QZ)\G

{
cϕs ϕ

w(g) (for hQ ≥ T )
0 (for hQ < T ) · cQEψ(g) dg =

∫
Z·(N ·QZ)\G

{
cϕs ϕ

w(g) (for hQ ≥ T )
0 (for hQ < T ) · cψr ψw(g) dg

Since the integrand is now left NQ-invariant and right K-invariant, this integral may be computed as an
integral over the Levi component MQ of Q, using the Iwasawa decomposition G = NQ ·MQ ·K. Then

〈EQ(cTQE
P
ϕ ), EQ(cTQE

P
ψ )〉 =

∫
Z·MQ

Z
\MQ

{
0 (for hQ ≥ T )

cϕs ϕ(m) (for hQ < T ) · cψr ψw(g) δQ(m)−1 dm

This gives the second term of the theorem for the not self-associate case. ///

Proof: (of corollary). From the theory of the constant term, the only possible poles of the Eisenstein series
are at poles of the constant terms, which in this case means a pole of cs. Invoke the Maaß-Selberg relation
with r = s and h = f . In the non-self-associate case this is

〈ΛTEPϕ ,ΛTEPϕ 〉 = 〈f, f〉 T
2σ−1

2σ − 1
+ 〈fw, hw〉|cs|2

T 1−2σ

1− 2σ

where σ = Re(s). The non-self-associate case is slightly unlike the simple case of GL(2), in that the inner
product of truncated Eisenstein series is missing the two middle terms which made it possible (in effect) for
there to be a pole. Specifically, in the non-self-associate case, let so = σo + ito be an alleged pole so of cs
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of order ` in that half-plane. Letting s = σo + it approach so vertically the left-hand side of the relation is
asymptotic to a positive multiple of t−2`, while on right-hand side only the second of the two terms blows
up at all. In particular, that expression

|cs|2 · 〈fw, fw〉 ·
T 1−2σ

1− 2σ

is asymptotic to a negative multiple of t−2`, since σ = Re(s) > 1
2 . Thus, there is no pole in that half-plane.

Similarly, in the self-associate case, for there to be any pole at all the two middle terms on the right-hand
side of the relation must not vanish, or the same contradiction occurs, so 〈f, fw〉 must be non-zero, and the
alleged pole must be on the real axis, and must be simple. (If any of these conditions fail, the middle terms
cannot keep up with the negative value of the fourth term). For f = fo ⊗ fo, fw = f and

〈f, f〉 = 〈fo, fo〉 · 〈fo, fo〉

Letting s = σ + it, and cs = cϕs , in the self-associate case the Maaß-Selberg relation becomes

〈ΛTEPϕ ,ΛTEPϕ 〉 = 〈fo, fo〉2
T 2σ−1

2σ − 1
+ 〈fo, fo〉2 cs

T 2it

2it
+ 〈fo, fo〉2 cs

T−2it

−2it
+ 〈fo, fo〉2 |cs|2

T 1−2σ

1− 2σ

Multiplying through by t2 = (it)(−it) and taking the limit as t→ 0 gives

〈ResσΛTEPϕ ,ResσΛTEPϕ 〉 = 〈fo, fo〉2 Resσcs ·
1
2

+ 〈fo, fo〉2 Resσcs ·
1
2

+ 〈fo, fo〉2 |Resσcs|2
T 1−2σ

1− 2σ

Letting T → +∞ causes the last term to go to zero, and yields the indicated finite limit in the self-associate
case, since cs̄ = cs and the supposed pole is on the real axis. ///
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