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According to Borel, Harish-Chandra gave the name Maaß-Selberg relation to the formula for the inner product
of truncated Eisenstein series with cuspidal data, though apparently the systematic computation of these
inner products is due to Langlands. A crucial technical issue is the precise notion of truncation of Eisenstein
series.

We give the simplest possible example here, for clarity: spherical Eisenstein series for SL(2,Z), and illustrate
the consequences, namely restrictions on location and order possible poles of Eisenstein series, and square-
integrability of residues of Eisenstein series.

We consider right K = SO(2)-invariant left Γ = SL(2,Z)-invariant functions on G = SL(2,R). We may
identify G/K with the upper half-plane H in the complex plane C if we wish, and use the usual coordinates
z = x + iy on H as coordinates on G/K. As usual, let

P = {
(
∗ ∗
0 ∗

)
∈ G} N = {

(
1 ∗
0 1

)
∈ G} M = {

(
∗ 0
0 ∗

)
∈ G}

be the standard parabolic subgroup, its unipotent radical, and its standard Levi component, respectively.
For a left N -invariant left P ∩ Γ-invariant function ϕ on G form the Eisenstein series E(ϕ)

E(ϕ)(g) =
∑

γ∈PZ\Γ

ϕ(γg)

where PZ = P ∩ Γ. The issue of convergence is non-trivial: this series does not necessarily converge
for arbitrary ϕ. An important standard special case is where ϕ is right K-invariant and, in z = x + iy
coordinates on H ≈ G/K,

ϕ(x + iy) = ys

With this ϕ, the Eisenstein series
Es(g) = E(ϕ)(g)

is convergent for Re(s) > 1. Further, by several different methods Es may be shown to have a meromorphic
continuation in s ∈ C. (The range of possible precise senses of this meromorphic continuation is not the key
question for the moment.)

It is well-known and not too hard to prove that the region

F = {z = x + iy : |x| ≤ 1
2
, |z| ≥ 1}

is a fundamental domain for the action of Γ on H ≈ G/K, meaning that Γ · F = H, and that for γ 6= ±12

the measure of F ∩ γ · F is 0. Define the usual Petersson inner product 〈, 〉 on right K-invariant functions
on H ≈ G/K by

〈f1, f2〉 =
∫

Γ\H
f1(z) f2(z)

dx dy

y2
=

∫
F

f1(z) f2(z)
dx dy

y2

A left Γ-invariant smooth function f on G has a Fourier expansion in the N -coordinate, where we may
identify N with R and NZ = N ∩ Γ with Z ⊂ R:

f(
(

1 x
0 1

)
g) =

∑
n∈Z

cn(g) e2πinx
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The constant term cP f of f along P is its 0th Fourier coefficient

cP f(g) = c0(g) =
∫
R/Z

f(
(

1 x
0 1

)
g) dx

In z = x + iy coordinates for right K-invariant functions, the constant term is a function of y alone, so we
may write cP f(y) rather than cP f(g). Standard (but not trivial) estimates from the theory of the constant
term show that all but the constant term (in the Fourier expansion) of an automorphic form are of rapid
decay in z = x + iy coordinates as y →∞, in the sense that for n 6= 0

for all `, as y → +∞, y` · cn(y) is bounded (with n 6= 0)

The truncation operators ΛT for large positive real T act on an automorphic form f by killing off f ’s
constant term for large y. Thus, for a right K-invariant function, in z = x + iy coordinates on H ≈ G/K,

(naive T -truncation of f)(x + iy) =
{

f(x + iy) for y ≤ T
f(x + iy)− cP f(y) for y > T

But this is not quite right. On a fundamental domain F this definition is acceptable, but it fails to correctly
describe the truncated function on the whole domain H or whole group G, in the sense that the truncation
is not properly described as an automorphic form. We want these truncation operators to yield automorphic
forms, so for sufficiently large T (actually, T ≥

√
3/2 suffices) we can achieve the same effect by first defining

the tail cT
P f of the constant term cP f of f by

cT
P f(y) =

{
0 (if y < T )

CP f(y) (if y ≥ T )

and then defining the truncation operator ΛT

ΛT f = f − E(cT
P f)

The point is that
(on the set F) E(cT

P f) = cT
P f

since the support of any tail cT
P f is contained in the tail FT = {z = x + iy : y ≥ T} of the fundamental

domain F , and the proper translates of FT by γ ∈ Γ do not meet F . In particular, for z = x + iy in a fixed
fundamental domain, for T large, the higher Fourier components are unaffected by truncation. One critical
feature of the trunction procedure is the fact proven in the following proposition.

Proposition: The truncated Eisenstein series ΛT Es is of rapid decay in all Siegel sets.

Proof: From the theory of the constant term, f−cP f is of rapid decay in a standard Siegel set. Thus, f−cT
P f

is of rapid decay in a standard Siegel set. Thus, since on a fixed standard Siegel set E(cT
P Es) = cT

P Es for T
large enough, ΛT Es is of rapid decay on a fixed standard Siegel set. Since ΛT Es is an automorphic form,
this implies rapid decay on all Siegel sets. ///

Let ζ(s) be the usual Euler-Riemann zeta function, and let ξ(s) = π−s/2Γ( s
2 )ζ(s) be the zeta function with

its gamma factor attached. It is standard and relatively elementary that

cP Es = ys +
ξ(2s− 1)

ξ(2s)
· y1−s

Abbreviate c(s) = cs = ξ(2s− 1)/ξ(2s).

Remark: Whether or not one finds the following theorem interesting in its own right, the corollaries just
below and analogous corollaries of the analogous theorem in a more general setting compel attention to the
Maaß-Selberg relations.
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Theorem: (Maaß-Selberg relation)

〈ΛT Es,ΛT Er〉 =
T s+r̄−1

s + r̄ − 1
+ cs

T (1−s)+r̄−1

(1− s) + r̄ − 1
+ cr̄

T s+(1−r̄)−1

s + (1− r̄)− 1
+ cscr̄

T (1−s)+(1−r̄)−1

(1− s) + (1− r̄)− 1

Proof: In this the simplest possible case, the proof is is essentially a direct computation. First,

〈ΛT Es,ΛT Er〉 = 〈ΛT Es, Er〉

because the tail of the constant term of Er is orthogonal to the truncated version ΛT Es of Es. Then

〈ΛT Es,ΛT Er〉 = 〈ΛT Es, Er〉 = 〈Es − E((yr + cry
1−r)T ), Er〉 = 〈E(

{
−csy

1−s (y ≥ T )
ys (y < T ) ), Er〉

The usual unwinding trick applied to the awkward Eisenstein series in the first argument of 〈, 〉 transforms
the last expression into∫

NZ\H
E(

{
−csy

1−s (y ≥ T )
ys (y < T ) ) cP (Er̄)

dx dy

y2
=

∫ ∞

0

{
−csy

1−s (y ≥ T )
ys (y < T ) · (yr̄ + cr̄y

1−r̄) · 1
y

dy

y

=
∫ T

0

ys · (yr̄ + cr̄y
1−r̄) · 1

y

dy

y
−

∫ ∞

T

csy
1−s (yr̄ + cr̄y

1−r̄) · 1
y

dy

y

Now we assume that Re(r) is bounded above and below (so that Re(1− r) is also bounded), and take Re(s)
sufficiently large so that all the integrals converge. The above becomes

=
∫ T

0

ys+r̄−1 dy

y
+ cr̄

∫ T

0

ys+(1−r̄)−1 dy

y
− cs

∫ ∞

T

y(1−s)+r̄−1 dy

y
− cscr̄

∫ ∞

T

y(1−s)+(1−r̄)−1 dy

y

which gives the expression of the theorem. By analytic continuation (in s and in r̄) it is valid everywhere it
makes sense. ///

Remark: The following corollaries certainly can be proven directly by use of explicit details such as the
Fourier expansion of the Eisenstein series. However, the less elementary arguments here are part of an
approach that generalizes.

Corollary: The only poles of Es in the region Re(s) ≥ 1
2 are on the segment ( 1

2 , 1]. Any poles are simple.
Any residues are square-integrable on Γ\H. Specifically,

〈Resσo
Es,Resσo

Es〉 = Resσo
cs̄

Proof: We will only use the special case r = s = σ + it of the theorem. In that case the Maaß-Selberg
relation becomes

〈ET
s , ET

s 〉 =
T 2σ−1

2σ − 1
+ cs

T−2it

−2it
+ cs̄

T 2it

2it
+ cscs̄

T 1−2σ

1− 2σ

Suppose that so = σo + ito were a pole of Es of order ` with to 6= 0 and σo > 1
2 . From the theory of the

constant term applied to this case, this is equivalent to the assertion that c(s) has a pole at so of order `.
Also,

c(s̄) = c(s)

so c(s) has a pole at so as well, of the same order as that at so, with leading Laurent term the complex
conjugate of that at so. Thus, the function s → ET

s also has a pole (as a meromorphic L2(Γ\G/K)-valued
function) exactly at poles of cs, of the same order, and so on. (Truncation alters neither the location nor
the order of the poles.)
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Take s = σo + it in the above. In the real variable t, the left-hand side is asymptotic to a positive constant
multiple of (t− to)−2` as t → to, since the pole is of order ` and inner products are positive. The first term
on the right-hand side is bounded as t → to, and the second and third terms are asymptotic to non-zero
constant multiples of (t− to)−`. Thus, the first three terms on the right can be ignored as t → to. The fourth
term on the right-hand side is asymptotic to a positive constant multiple of (t− to)−2` from cscs̄, multiplied
by T 1−2σo/(1 − 2σo). Note that the denominator is negative, so that, altogether, the fourth term on the
right-hand side is asymptotic to a negative constant multiple of (t − to)−2`. The positivity of the left-hand
side and negativity of the right-hand side (as t → to) give a contradiction to the hypothesized pole. Thus,
no poles can occur off the real axis in the region Re(s) > 1/2.

Next, let so = σo be a pole on ( 1
2 , 1]. (We have convergence of the Eisenstein series for Re(s) > 1, so no

poles can occur in that region.) Take r = s = σo + it, obtaining

〈ET
s , ET

s 〉 =
T 2σo−1

2σo − 1
+ cs

T−2it

−2it
+ cs̄

T 2it

2it
+ cscs̄

T 1−2σo

1− 2σo

Unlike the case where the pole is off the real axis, in which case t → to 6= 0, here t → 0. Thus, the second
and third terms on the right-hand side blow up with order ` + 1 (not merely `, as in the previous case).
Thus, the same argument as just above gives a contradiction unless ` = 1, in which case the second and
third terms’ blow-up is of the same order as the left-hand side and the fourth term on the right-hand side.
This proves that any pole on ( 1

2 , 1] is simple.

For a simple pole σo ∈ ( 1
2 , 1], let s = σo + it. Multiply the Maaß-Selberg relation through by t2

t2 · 〈ET
s , ET

s 〉 = t2 · T 2σo−1

2σo − 1
+ t2 · cs

T−2it

−2it
+ t2 · cs̄

T 2it

2it
+ t2 · cscs̄

T 1−2σo

1− 2σo

Take the limit of this as t → 0. The first term on the right-hand side goes to 0, and everything else compute
by residues, the middle two terms giving the same thing, yielding

〈Resσo
ET

s ,Resσo
ET

s 〉 = Resσo
cs̄ + Resσo

cs Resσo
cs

T 1−2σo

1− 2σo

From this some elementary considerations give the square-integrability of the residue of the Eisenstein series.
(General considerations about meromorphic vector-valued functions assure that taking residues commutes
with taking the limit as T →∞.) Further, as T → +∞, since 1− 2σo < 0 we obtain

〈Resσo
Es,Resσo

Es〉 = Resσo
cs̄

which gives the computation of the L2-norm as desired. ///

Remark: In fact, in this simplest example, by properties of the zeta function we know that the only pole
of c(s) on ( 1

2 , 1] is at s = 1, and that the residue is a constant.

Corollary: The volume V of the fundamental domain for SL(2,Z) acting on the upper half-plane H has
inverse

V −1 = Ress=1 c(s) = Ress=1
ξ(2s− 1)

ξ(2s)
=

1/2
π−s/sΓ(2/2) ζ(2)

=
3
π

Thus, the volume is

V =
1

Ress=1 c(s)
= π/3

Proof: Use the auxiliary fact that the residue of Es at s = 1 is a constant function, which is necessarily
ρ = Ress=1 c(s). By the Maaß-Selberg relation the L2 norm squared of this constant is ρ = Ress=1c(s).
Thus,

ρ = ρ2 · volume of F
so the volume is 1/ρ, computed explicitly via standard facts about ζ(s). ///
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