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The solvability of such equations on R™ is the Malgrange-Ehrenpreis theorem. The one-dimensional case
admits a simpler approach, due to the simpler nature of the polynomial ring in a single variable. Consider
a one-dimensional constant-coefficient differential equation
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with polynomial P(z) € C[z]. The inserted normalizing constant simplifies Fourier transform computations:
normalize Fourier transform so that this set-up gives

The extreme case where P(z) has no real zeros is easy, but not interesting, since (integration against) 1/P(z)
is a tempered distribution.

The nearly opposite extreme case where P(z) has distinct, real zeros {z1,...,z,} is more interesting. The
essential feature is the possibility of a simple partial fractions decomposition with explicit coefficients:
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Due to the failure of local integrability, it is not legitimate to say that & = 1/P(z), nor that u is equal to
the partial fraction expansion. However, the distribution p such that zp = 1 is the principal value integral
PV% attached to 1/x. This strongly suggests that
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As tempered distributions, (z — z;) - _13: = 1. Thus, since polynomial multiplication is commutative,
J

the j** factor  — x; can act first on the j** principal-valued distributions PV ——, and
J T—x;
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We want to prove that this is identically 1, as an identity of polynomials. Indeed, evaluating at x = z, all
but the ¢*" product vanishes, and the ¢** gives P’(x,). Thus, the expression is 1 at all the zeros z; of P(x).
The expression is a polynomial of degree n — 1, so it is completely determined by its value at n distinct
points. Thus, indeed, as tempered distributions,

1 1
Plw)- zj: P’(xj)va -z !

Next, the Fourier transform of PV% is a constant multiple of sgn(z), from homogeneity and parity
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considerations. The constant is determined by application to xe™™® | whose Fourier transform is —i times

itself: on one hand,
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On the other hand,
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Thus,
(PV%)A = —mi-sgn(z)
" (PV ! ) = e 2T L (i) - sgn(x)
T —x;

Having obtained the constant,

solves the differential equation P(%m.%)u = 0 when P(z) has real, distinct roots z;. ///
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