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Representations of reductive real Lie groups on Banach spaces, and on the smooth vectors in Banach space
representations, are of moderate growth in a natural sense (below). Among other applications, this allows
integrals of the form

∫

G

f(g) g · v dg

for v ∈ V with functions f on G in a wider class than merely compactly supported and continuous. For
f in the restricted class of compactly supported and continuous, it is relatively elementary to verify that
such integrals exist when V is merely (locally convex and) quasi-complete (also called locally complete).
However, in applications to analytic vectors and other things it is necessary to allow integrals which are not
compactly supported. An adelic version of this notion of norm also arises in reduction theory, and is useful in
discussion of Arthur’s truncation operators. We more-or-less follow [Wallach 1982], with some amplification
and additions.

The proof that Banach representations are of moderate growth is merely a simpler form of the argument
for Fréchet spaces, but is worth giving for clarity. Similarly, the argument that all norms are inessentially
different resembles the Banach-space argument for moderate growth.

• Constructing norms on groups
• Banach representations are of moderate growth
• Essential equivalence of norms on reductive groups
• Smooth vectors
• Moderate growth of smooth vectors
• Polynomial growth of reductive groups

1. Constructing norms on groups

Let G be a linear reductive group, a closed subgroup of GL(n,R), with maximal compact subgroup K.

Definition: A norm [
�
] g → |g| on G is a continuous non-negative real-valued function such that

• |g| ≥ 1
• |g−1| = |g|
• |gh| ≤ |g||h|
• Given a bound r > 0, {g ∈ G : |g| ≤ r} is compact.
• For g ∈ G, k ∈ K

|k · g| = |g · k| = |g|

• For X ∈ p, for t ≥ 0,

|etX | = |eX |t

We construct one such norm now, and later show that any other norm differs in inessential ways from the
one constructed.

[
�
] This norm is not a norm in the Banach-space sense, since it will not be positive-homogeneous in g ∈ G.
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Suppose we have an involution [ � ] σ on G so that K is the fixed-point set of σ on G. We can alter either the
choice of K or the choice of imbedding so that σ is the restriction to (the image of) G of transpose-inverse
g → (g>)−1 on GL(n,R). Thus, K ⊂ O(n) with the standard orthogonal group O(n) ⊂ GL(n,R). The Lie
algebra k of K is also the (+1)-eigenspace of the induced action γ → −γ> of σ on the Lie algebra g of G,
and let p be the (+1)-eigenspace of σ on g.

Imbed G in GL(2n,R) by

g →

(

g 0
0 (g>)−1

)

Give R2n a Hilbert space structure 〈, 〉, which we can assume to be K-invariant in the sense

〈k · u, k · v〉 = 〈u, v〉

for all u, v ∈ R2n and k ∈ K acting via the previous imbedding of G in GL(2n,R). Let

|x| = 〈x, x〉1/2

be the norm attached to the inner product. On any real or complex Banach space V there is the uniform
operator norm

|h|V,op = sup
x∈V, |x|≤1

|hx|

Definition: The norm [ � ] on G ⊂ GL(n,R) is

|g| =

∣

∣

∣

∣

(

g 0
0 (g>)−1

)∣

∣

∣

∣

R2n,op

= max(|g|Rn,op, |(g>)−1|Rn,op) = max(|g|Rn,op, |g−1|Rn,op)

where any Rn is given the usual Hilbert-space structure.

Proposition: The function g → |g| explicitly defined just above is a norm in the sense axiomatized earlier.

Proof: This is straightforward, and it certainly suffices to think of G = GL(n,R) for all these assertions,
since we have aligned the involution on G to match transpose-inverse. For G acting on any Banach space V
we have

1 = |1V |V,op = |g ◦ g−1|V,op ≤ |g|V,op · |g−1|V,op

From this, either g or g−1 has operator norm at least 1. Thus, |g| ≥ 1. Likewise, by definition, |g−1| = |g|.

The K-invariance follows from our arranging K to be inside O(n), which preserves the usual Hilbert space
structure on Rn.

For the submultiplicativity, let || ∗ || = | ∗ |Rn,op and note that

|gh| = max(||gh||, ||(gh)−1||) ≤ max(||g|| · ||h||, ||h−1|| · ||g−1||) ≤ max(||g||, ||g−1||) · max(||h||, ||h−1)) = |g| · |h|

Since G is a closed subgroup of GL(n,R), to prove compactness of the subset Br of G on which |g| ≤ r it
suffices to prove this closedness for G = GL(n,R). One should prove the auxiliary result that

g →

(

g 0
0 (g>)−1

)

[ � ] For us an involution will be an automorphism whose square is the identity map. Thus, (gh)σ = gσ hσ, rather than

application of σ reversing the order.

[ � ] This apparently depends upon the imbedding of G in GL(n, R).
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imbeds GL(n,R) as a closed subset of the space of 2n-by-2n real matrices. For S, T in that space of matrices,
it is a standard result that the operator norm |S − T |R2n,op is a (complete) metric.

Finally, let X be a symmetric n-by-n real matrix. By the spectral theorem for finite-dimensional symmetric
operators, X = kδk−1 = kδk> for some real diagonal δ and k ∈ O(n). Since the norm is O(n)-invariant, it
suffices to treat X = δ. Let δi be the diagonal entries of δ. Since the operator norm of a matrix is the sup
of the absolute values of its entries, for t > 0

|etX | = sup
i

max(etδi , e−tδi) = sup
i

et|δi| = (sup
i

e|δi|)t

This proves the last property. ///

2. Banach representations are of moderate growth

As usual, a representation of G on a topological vectorspace V is assumed continuous in the sense that the
map

G × V → V

by (g, v) → g · v is a continuous V -valued function on G × V .

Definition: A representation of G on a Banach space V is of moderate growth if, given a norm g → |g|
on G, there is a constant C and an exponent M such that for all g ∈ G and for all v ∈ V

|g · v|V ≤ |v|V · |g|M

where | ∗ |V is the norm on V .

Theorem: A Banach-space representation V of a linear reductive real Lie group G is of moderate growth.
[ � ]

Proof: For brevity, let
||g|| = |g|V,op

Claim that the operator norm ||g|| is bounded on the compact set

Br = {g ∈ G : |g| ≤ r} ⊂ G

for any bound r where |g| is the norm on G. Indeed, Br is compact and g → g · v is continuous for each v,
so the Uniform Boundedness Theorem [ � ] gives the claim.

Let C > 0 be a bound for ||g|| on B3. We claim that

1

C
||g|| ≤ ||kg|| ≤ C||g||

[ � ] For G × V → V a representation on a general topological vector space V whose topology is given by seminorms µ,

if G acts continuously on each completion (in a generalized sense) Vµ of V with respect to µ, then the same proof

shows that the action of G on V is of moderate growth in an obvious sense. However, not all continuous actions on

topological vector spaces meet this criterion. The important case of smooth vectors in a representation already know

to be of moderate growth, treated below, allows a special argument.

[ � ] Uniform Boundedness Theorem often refers to a simple Banach-space instance of the more general Banach-Steinhaus

theorem. A sufficient and relatively simple version for Banach spaces is the following. Let X and Y be Banach spaces,

and Φ a set of continuous linear maps X → Y . If for each ϕ ∈ Φ the set {|ϕ(x)| : |x| ≤ 1} is bounded, then there is a

single uniform bound for all ϕ ∈ Φ. That is, there is B < ∞ such that |ϕ(x)| ≤ B for all |x| ≤ 1 and ϕ ∈ Φ.
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for all g ∈ G, k ∈ K. Since K ⊂ Br for r > 1, we have ||k|| ≤ C for k ∈ K. Then the submultiplicativity of
|| ∗ || gives one part of the inequality. On the other hand,

||g|| = ||k−1kg|| ≤ ||k−1|| · ||kg|| ≤ C |kg||

which yields the other inequality upon replacing g by k−1g and k by k−1. This gives the claim.

Next, claim that for X ∈ p

||eX || ≤ C · |eX |C

where C is the sup of ||g|| for |g| ≤ 3. To verify this, let ` be the least positive integer such that

|eX | ≤ e`

Then by the property |etX | = |eX |t for t > 0, proven earlier, taking t = `−1 gives

|e`−1X | = |eX |`
−1

≤ (e`)`−1

≤ e < 3

Therefore, since ||g|| ≤ C for |g| ≤ 3,

||e`−1X || ≤ C

and
||eX || = ||e`·`−1X || ≤ ||e`−1X ||` ≤ C` ≤ C1+log |eX | = C · |eX |C

Now we give the main estimate. For k ∈ K (again noting |k| = 1 < 3)

||k eX || ≤ ||k|| · ||eX || ≤ C · (C · |eX |C) = C2 · (1 · |eX |C) = C2 · |keX |C

since |kg| = |g|. By the Cartan decomposition G = K · (expp), we obtain the inequality ||g|| ≤ C2 |g|C of
the theorem for all elements of the group. ///

3. Essential equivalence of norms on reductive groups

An argument very similar to that for the moderate growth of Banach space representations will prove that
any two norms differ in inessential ways. Thus, the notion of moderate growth is intrinsic.

Proposition: Let | ∗ | and || ∗ || be norms on G. Then

||g|| ≤ C · |g|M

for all g ∈ G, for some constants C and M .

Proof: Claim that ||g|| is bounded on the compact set

Br = {g ∈ G : |g| ≤ r} ⊂ G

for any bound r where |g| is the norm on G. Indeed, Br is compact and g → ||g|| is continuous.

Let C > 0 be a bound for ||g|| on B3. We claim that

1

C
||g|| ≤ ||kg|| ≤ C||g||
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for all g ∈ G, k ∈ K. Since K ⊂ Br for r > 1, we have ||k|| ≤ C for k ∈ K. Then the submultiplicativity of
the norm || ∗ || gives one part of the inequality. On the other hand,

||g|| = ||k−1kg|| ≤ ||k−1|| · ||kg|| ≤ C |kg||

which yields the other inequality upon replacing g by k−1g and k by k−1. This gives the claim.

Next, claim that for X ∈ p

||eX || ≤ C · |eX |C

where C is the sup of ||g|| for |g| ≤ 3. To verify this, let ` be the least positive integer such that

|eX | ≤ e`

Then by the property |etX | = |eX |t for t > 0, proven earlier, taking t = `−1 gives

|e`−1X | = |eX |`
−1

≤ (e`)`−1

≤ e < 3

Therefore, since ||g|| ≤ C for |g| ≤ 3,

||e`−1X || ≤ C

and
||eX || = ||e`·`−1X || ≤ ||e`−1X ||` ≤ C` ≤ C1+log |eX | = C · |eX |C

Now the main estimate. For k ∈ K

||k eX || ≤ ||k|| · ||eX || ≤ C · (C · |eX |C) = C2 · (1 · |eX |C) = C2 · |keX |C

since |kg| = |g|. By G = K · (expp), we obtain the inequality ||g|| ≤ C2 |g|C of the theorem for all elements
of the group. ///

4. Smooth vectors

Let G × V → V be a representation of G on a locally convex topological vector space V . As usual, a vector
v ∈ V is smooth if

g → g · v

is a smooth V -valued function on G. The subspace of smooth vectors in V is denoted V ∞. Often, the space
of smooth vectors in a representation is of as great interest as the original representation. [ � ] For X in the
universal enveloping algebra U(g) of the Lie algebra g of G, and for a seminorm µ on V , define another
seminorm on v ∈ V ∞ by

µX(v) = µ(X · v)

where the action of the universal enveloping algebra is defined on smooth vectors as usual by taking the
extension of the natural action

Xf(g) =
d

dt
|t=0

(

etX · v
)

(for X ∈ g)

[ � ] For V locally convex and quasi-complete (bounded Cauchy nets converge) one has a good theory of Gelfand-Pettis

(weak) integrals ϕ · v =
∫

G
ϕ(g) g · v dg for compactly supported smooth ϕ on G. Such vectors are unsurprisingly

demonstrably smooth, and consideration of ϕ in an approximate identity yields the density of the smooth vectors V ∞

in such V .
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Proposition: For G × V → V a (continuous) representation of G with locally convex V then so is
the associated G × V ∞ → V ∞, with the locally convex topology just described, is also a (continuous)
representation. [ � ]

Proof: Continuity is the issue. Let U≤n(g) be the part of U(g) consisting of images of tensors of degrees
≤ n. [ � ] The topology given by the seminorms µX by design makes all the maps

v → X · v

continuous, for fixed X ∈ U(g). Since each U≤ng) is finite-dimensional, all the maps

X → X · v

for fixed v ∈ V ∞ are inevitably continuous. That is, the bilinear map

U≤n(g) × V ∞ → V ∞

is separately continuous. We need to prove that it is jointly continuous.

Since U≤ng) is finite-dimensional it is locally compact, so the image of the closed unit ball B (with any
Banach space structure) in V ∞ under any map X → Xv is compact. Thus, by Banach-Steinhaus [ � ] the
collection of operators on V ∞ coming from X ∈ B is equicontinuous. Thus, the bilinear map

U≤n(g) × V ∞ → V ∞

is jointly continuous. And, since the Adjoint action of G on U(g) preserves the degree filtration on U(g),
and since U≤n(g) is finite-dimensional, this action of G on U(g) is necessarily continuous.

For fixed X ∈ U≤ n(g), and for seminorm µ on V , let v, w ∈ V and g, h ∈ G, and consider

µX (g · v − h · w) = µ(X · gv − X · hw) = µ(g · (Adg−1)(X) · v − h · (Adh−1)(X) · w)

For h close to g, (Adg−1)X is close to (Adh−1)X , so (by the joint continuity of U≤n(g) × V ∞ → V ∞) for
v close to w in the V ∞ topology, (Adg−1)(X) · v is close to h · (Adh−1)(X) · w in the V ∞ topology. The
(joint) continuity of G × V → V with the original topology on V then shows that

µ(g · (Adg−1)(X) · vh · (Adh−1)(X) · w)

is small for h close to g and w close to v. This proves that G × V ∞ → V ∞ is continuous. ///

[ � ] Further, though we don’t need it here, it is true that for locally convex quasi-complete V , the smooth vectors V ∞ are

also quasi-complete. (As usual, quasi-completeness means that bounded (in the topological vector space sense) Cauchy

nets converge. This implies sequential completeness. Many dual spaces with weak ∗-topologies are quasi-complete,

but rarely complete in the strongest sense that all Cauchy nets are convergent.)

[ � ] Since U(g) is a quotient of the tensor algebra of g by an ideal which is not homogeneous, we do not have a grading

of U(g), but only a filtration.

[ � ] A more general version of Banach-Steinhaus is the following. Recall that a subset E of a topological vector space

Y is bounded if, for any neighborhood U of 0 in Y , there is sufficiently large real to such that for all t ≥ to we have

tN ⊃ E. In any topological vector space Y , compact sets are bounded. A set of linear maps Φ from one topological

vector space X to another Y is equicontinuous if given a neighborhood U of 0 in Y there is a neighborhood N of 0 in

X such that ϕ(N) ⊂ U for all ϕ ∈ Φ. Let Φ be a collection of continuous linear maps X → Y from a Fréchet space

X to a topological vector space Y , such that for every x ∈ X the image {ϕ(x) : ϕ ∈ Φ} is bounded in Y . Then the

Banach-Steinhaus theorem asserts that Φ is equicontinuous.

6



Paul Garrett: Representations of moderate growth (December 31, 2004)

5. Moderate growth of smooth vectors

Here we show that in a moderate-growth representation the smooth vectors are also of moderate growth.
We extend the definition of moderate growth representations:

Definition: A representation of G on a locally convex topological vectorspace V is of moderate growth

if, given a norm g → |g| on G, for every continuous seminorm µ on V there is a seminorm ν on V and an
exponent M such that for all g ∈ G and for all v ∈ V

µ(g · v) ≤ ν(v) · |g|M

Theorem: Let G × V → V be a moderate-growth representation of a reductive real Lie group G on a
locally convex space V . Then the subrepresentation V ∞ of smooth vectors, with the topology given above,
is also of moderate growth.

Proof: Fix v ∈ V ∞ and X ∈ U(g). By the moderate growth of the original representation, for some
seminorm ν on V , and for some exponent M ,

µX(g · v) = µ(g · (Adg−1)X · v) ≤ ν((Adg−1)X · v) · |g|M

Let n be an integer such that X lies in the degree ≤ n filtered part U≤n(g) of U(g), and give this filtered
part a norm [

���
] || ∗ ||. The moderate growth of the Adjoint action of G on U≤n(g) gives

||(Adg−1)X || ≤ ||X || · C |g−1|N = ||X || · C |g−1|N

for some constant C and exponent N . The joint continuity U≤n(g) proven in the course of the proof in the
last section asserts, in terms of seminorms, that given a seminorm p on V ∞ there exists a seminorm q on
V ∞ such that, for Y ∈ U≤n(g),

p(Y · v) ≤ ||Y || · q(v)

Thus, for some seminorm q on V ∞,

ν((Adg−1)X · v) ≤ ||(Adg−1)X || · q(v) ≤ C · |g|N · ||X || · q(v)

Putting this together,

µX (g · v) = µ(g · (Adg−1)X · v) ≤ ν((Adg−1)X · v) · |g|M ≤ C · |g|M+N · ||X || · q(v)

The constant C · ||X || can be absorbed into the seminorm q on v ∈ V ∞, so we have proven the moderate
growth of V ∞. ///

6. Polynomial growth of reductive groups

Next, we show that modifying Haar measure on G by any sufficiently negative power of a norm gives G finite
total mass. [

� �
]

[
���

] Since U≤n(g) is finite-dimensional, all choices of norm give idential topologies.

[
� �

] It is enough that G be reductive, not necessarily semi-simple, since the center of a reductive G acts non-trivially

in the standard representation associated to the imbedding of G in GL(n, R). This is indeed in contrast to the Ad

action of a reductive G on its own Lie algebra, under which the center of G does nothing.
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Let Φ+ be the collection of positive roots in g, with respect to a fixed maximal R-split torus A in G, and
let gα be the αth root space. Let A+ be the connected component of the identity in A. For a character λ
on A+, it is convenient to let

a → aλ

denote the value of λ on a ∈ A+.

Lemma: With the norm constructed above, given a character λ on A+, there is a constant C such that

aλ ≤ |a|C

Proof: Let Φ be the collection of weights of the Lie algebra a of A+ on R2n on which G ⊂ GL(2n,R) is
made to act via the imbedding g → g ⊕ (g>)−1. Let || ∗ || = | ∗ |R2n,op. By the nature of the imbedding Φ
spans the dual of a. For any a ∈ A

|a| = ||a|| + ||(a>)−1|| = ||a|| + ||a−1|| = max
α∈Φ

aα

since, by the nature of the imbedding, if a → aα is in Φ, then a → a−α is also in Φ. Since Φ spans the dual
space of a and is closed under −1, any weight λ of a is a linear combination λ =

∑

α∈Φ cα α of elements of
Φ with coefficients cα ≥ 0. Let C =

∑

α cα. Then

aλ = aΣcα α =
∏

α

(aα)cα ≤
∏

α

|a|cα = |a|C

as claimed. ///

Define as usual, for a ∈ A+,

D(a) =
∏

α∈Φ+

|sinh(aα)|
dimgα

The (Weyl) integration formula is standard:

Lemma:
∫

G

f(g) dg =

∫

K

∫

K

∫

A+

f(k1ak2) D(a) dk1 dk2 da

for compactly supported continuous f . ///

Proposition: With the norm | ∗ | on G as constructed above, for sufficiently large positive exponent M

∫

G

|g|−M dg < ∞

Proof: For each α ∈ Φ+, let Cα be the exponent (from the next to last lemma) such that aα ≤ |a|Cα . Then
certainly

∣

∣

∣

∣

aα − a−α

2

∣

∣

∣

∣

≤ |a|max(Cα,C
−α)

Let S =
∑

α∈Φ+ max(Cα, C−α). Thus,

D(a) ≤
∏

α∈Φ+

|a|max(Cα,C
−α) = |a|S
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Thus, the issue is reduced to showing that

∫

A+

|a|−t da < +∞

for sufficiently large positive t. This itself reduces to noting the convergence of

∫ +∞

0

max(a, a−1)−t da

a

for large positive t, which is elementary. ///

[Wallach 1982], N. Wallach, Asymptotic expansions of generalized matrix entries of representations of real
reductive groups, in ‘Lie Group Rpepresentations I, Proceedings, Maryland, 1982-3’, SLN 1024, pp. 287-369.

9


