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Abstract. It is shown that a large class of multiple Dirichlet series which arise naturally in the

study of moments of L–functions have natural boundaries. As a remedy we consider a new class of
multiple Dirichlet series whose elements have nice properties: a functional equation and meromorphic

continuation. This class suggests the correct notion of integral moments of L–functions.

§1. Introduction

The problem of obtaining asymptotic formulae (as T →∞) for the integral moments

(1.1)
∫ T

0

|ζ( 1
2 + it)|2r dt (for r = 1, 2, 3, . . . )

is approximately 100 years old and very well known.. See [CFKRS] for a good exposition of this
problem and its history. Following [Be-Bu], it was proved by Carlson that for σ > 1− 1

r∫ T

0

|ζ(σ + it)|2r dt ∼

[ ∞∑
n=1

dr(n)2n−2σ

]
· T, (T →∞).

Furthermore
∞∑
n=1

dr(n)2n−s = ζ(s)r
2 ∏

p

Pr
(
p−s
)
,

where

Pr(x) = (1− x)2r−1
r−1∑
n=0

(
r − 1
n

)2

xr.

Now Estermann [E] showed that the Euler product
∏
p Pr(s) is absolutely convergent for <(s) > 1

2 ,
and that it has meromorphic continuation to <(s) > 0. He also proved the disconcerting theorem
that for r ≥ 3 the Euler product

∏
p Pr(s) has the line <(s) = 0 as natural boundary. Estermann’s

result was generalized by Kurokowa (see [K1, K2]) to a much larger class of Euler products.
This situation, where an innocuous looking L–function has a natural boundary, is now called the
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Estermann phenomenon. A very interesting instance of the Estermann phenomenon is for L–
functions formed with the arithmetic Fourier coefficients a(n), n = 1, 2, 3, . . . of an automorphic
form on GL(2), say. The L–functions

∞∑
n=1

a(n)n−s,
∞∑
n=1

|a(n)|2n−s,

both have good properties: meromorphic continuation and functional equation, but for r ≥ 3 the
Dirichlet series

(1.2)
∞∑
n=1

|a(n)|rn−s

has a natural boundary. Thus the L–function defined in (1.2) does not have the correct structure
when r ≥ 3. It is now generally believed that the correct notion of (1.2) is the rth symmetric power
L–function as in [S].

Another approach to obtain asymptotics for (1.1) is to study the meromorphic continuation in
the complex variable w of the zeta integral

(1.3) Zr(w) =
∫ ∞

1

|ζ( 1
2 + it)|2r t−w dt,

for r a positive rational integer. This integral is easily shown to be absolutely convergent for <(w)
sufficiently large. Such an approach was pioneered by Ivić, Jutila and Motohashi [I, J, IJM, M3]
and somewhat later in [DGH].

One aim of this paper is to give evidence that for r ≥ 3 the function Zr(w) has a natural
boundary along <(w) = 1

2 . For simplicity of exposition, we shall consider (1.3) only in the special
case r = 3. There is an infinite class of other examples of this phenomenon to which this method
should generalize. For instance,∫ ∞

1

|ζQ(i)( 1
2 + it)|4 t−w dt =

∫ ∞

1

|ζ( 1
2 + it)L( 1

2 + it, χ−4)|4 t−w dt,

which is compatible with Z4(w), should also have a natural boundary.
The fact that the Estermann phenomenon occurs for the integrals (1.1), (1.3) suggests that for

r ≥ 3 the classical 2r-th integral moment of zeta

(1.4)
∫ T

0

|ζ( 1
2 + it)|2r dt

does not have the correct structure. It is therefore doubtful that substantial advances in the theory
of the Riemann zeta-function will come from further investigations of (1.4).

The final goal of this paper is to provide an alternative to (1.4) in the same spirit that the
symmetric power L–function is an alternative to (1.2). Accordingly, in §3, we introduce what we
believe to be the correct notion of higher integral moment of L–functions.
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§2. Multiple Dirichlet series with natural boundaries

For s1, . . . , sr, and w ∈ C with sufficiently large real parts, let

(2.1) Z(s1, . . . , sr, w) =
∫ ∞

1

ζ(s1 + it)ζ(s1 − it) · · · ζ(sr + it)ζ(sr − it) t−w dt.

This multiple Dirichlet series was considered in [DGH], and is more convenient than Zr(w).
Specializing r = 3, we can write

Z(s1, s2, s3, w) =
∑
m,n

1
(mn)<(s1)

∫ ∞

1

(m
n

)it
ζ(s2 + it)ζ(s2 − it)ζ(s3 + it)ζ(s3 − it) t−w dt.

The reason Z3(w) should have a natural boundary is simple. The inner integral admits
meromorphic continuation to C3. For s2 = s3 = 1

2 , this function should have infinitely many
poles on the line <(w) = 1

2 , the positions depending on m,n. As m,n→∞ the number of poles in
any fixed interval will tend to infinity. Summing over m, n all these poles form a natural boundary.
Accordingly, the main difficulty is to meromorphically continue the integral

(2.2)
∫ ∞

1

(m
n

)it
ζ(s2 + it)ζ(s2 − it)ζ(s3 + it)ζ(s3 − it) t−w dt,

as a function of s2, s3, w to C3 (see also Motohashi [M2] and [M3], where in the integral (2.2) t−w

is replaced by a Gaussian weight). When m = n = 1, the meromorphic continuation of (2.2) was
already established by Motohashi in [M1]. Although this integral can certainly be studied by his
method, the approach we follow is based on the more general ideas developed in [G], [Di-Go1],
[Di-Go2], [Di-Ga1] and [Di-Ga-Go]. Using our techniques, it is possible to study in a unified way
very general integrals attached to integral moments.

One can establish the meromorphic continuation of the slightly more general integral

(2.3)
∫ ∞

1

(m
n

)it
L(s1 + it, f)L(s2 − it, f) t−w dt,

where f is an automorphic form on GL2(Q) and L(s, f) is the L–function attached to f. This
implies the meromorphic continuation of an integral of type

∫ ∞

1

L(s1 + it, f)L(s2 − it, f)

∣∣∣∣∣∣
∑
n≤N

ann
it

∣∣∣∣∣∣
2

t−w dt (with an ∈ C for 1 ≤ n ≤ N).

In fact, it is technically easier to study the integral (2.3) when f is a cuspform on SL2(Z) than the
corresponding analysis of (2.2). Accordingly, to illustrate our point, for simplicity we shall discuss
the case when f is a holomorphic cuspform of even weight κ for SL2(Z). Then f has a Fourier
expansion

f(z) =
∞∑
`=1

a`e
2πi`z, (z = x+ iy, y > 0).

For m, n two coprime positive integers, consider the congruence subgroup

Γm,n =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 (mod m), c ≡ 0 (mod n)
}
.
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Then, the function F n
m

(z) := yκ f
(
n
mz
)
f(z) is Γm,n–invariant. For v ∈ C, let ϕ(z) be a function

satisfying
ϕ(ρz) = ρvϕ(z) (for ρ > 0 and z = x+ iy, y > 0),

and (formally) define the Poincaré series

(2.4) P (z;ϕ) =
∑

γ∈Z\Γm,n

ϕ(γz),

where Z is the center of Γm,n. To ensure convergence, one can choose for instance

(2.5) ϕ(z) = yv

(
y√

x2 + y2

)w
where v, w ∈ C with sufficiently large real parts. These Poincaré series were introduced by Anton
Good in [G].

Let 〈 , 〉 denote the Petersson scalar product for automorphic forms for the group Γm,n. As in
[Di-Go1], we have the following.

Proposition 2.6. Let m and n be two coprime positive integers, and let P (z;ϕ), F n
m

and Γm,n
be as defined above. For σ > 0 sufficiently large and ϕ defined by (2.5), we have〈

P (·, ϕ), F n
m

〉
=

π(2π)−(v+κ+1)Γ(w + v + κ− 1)
2w+v+κ−2

·
(m
n

)σ
·
∫ ∞

−∞

(m
n

)it
L(σ + it, f)L(v + κ− σ − it, f) · Γ(σ + it)Γ(v + κ− σ − it)

Γ
(
w
2 + σ + it

)
Γ
(
w
2 + v + κ− σ − it

) dt.
As we already pointed out, the above proposition (with appropriate modifications) remains valid

if the cuspform f is replaced by a truncation of the usual Eisenstein series E(z, s) (for instance,
on the line <(s) = 1

2 ), or a Maass form. On the other hand, using Stirling’s formula, it can be
shown that the kernel in the above integral is (essentially) asymptotic to t−w, as t→∞. This fact
holds whether f is holomorphic or not. It follows that the meromorphic continuation of (2.3) can
be obtained from the meromorphic continuation (in w ∈ C) of the Poincaré series (2.4).

The meromorphic continuation of the Poincaré series (2.4) can be obtained by spectral theory1,
as in [Di-Go1]. To describe the contribution from the discrete part of the spectrum, let

η(z) = y
1
2

∑
` 6=0

ρ(`)Kiµ(2π|`|y) e2πi`x

(Kµ(y) is the K–Bessel function) be a Maass cuspform (for the group Γm,n) which is an
eigenfunction of the Laplacian with eigenvalue 1

4 + µ2. We shall need the well known transforms

∞∫
−∞

(x2 + 1)−we−2πi`xy dx =
2πw

Γ(w)
(|`|y)w−

1
2 K 1

2−w
(2π|`|y),

(
<(w) >

1
2

)
,

1The Poincaré series P (z, ϕ) is not square-integrable. Just after an obvious Eisenstein series is subtracted, the

remaining part is not only in L2 but also has sufficient decay so that its integrals against Eisenstein series converge
absolutely (see [Di-Go1], [Di-Go2] and [Di-Ga1]).
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and

∞∫
0

yvKiµ(y)K 1
2−w

(y)
dy

y
=

2v−3 Γ
( 1

2−iµ+v−w
2

)
Γ
( 1

2+iµ+v−w
2

)
Γ
(
− 1

2−iµ+v+w

2

)
Γ
(
− 1

2+iµ+v+w

2

)
Γ(v)

,

which is valid provided <(v + w) > 1
2 , <(w − v) < 1

2 , and µ is real, i.e., we assume the Selberg
1
4–conjecture. Unfolding the integral, and applying the above transforms, one obtains

〈P (·, ϕ), η〉
〈η, η〉

=
1

〈η, η〉

∞∫
0

∞∫
−∞

yv+
1
2

(
y√

x2 + y2

)w∑
` 6=0

ρ(`)Kiµ(2π|`|y) e−2πi`x dxdy

y2

(2.7)

=
1

〈η, η〉
∑
` 6=0

ρ(`)

∞∫
0

∞∫
−∞

yv+
1
2 (1 + x2)−

w
2 Kiµ(2π|`|y) e−2πi`xy dxdy

y

=
2π

w
2

〈η, η〉 · Γ(w2 )

∑
` 6=0

ρ(`) |`|
w−1

2

∞∫
0

yv+
w
2 Kiµ(2π|`|y)K 1−w

2
(2π|`|y) dy

y

=
π−v

2〈η, η〉
L(v + 1

2 , η̄) ·
Γ
( 1

2−iµ+v

2

)
Γ
( 1

2+iµ+v

2

)
Γ
(
− 1

2−iµ+v+w

2

)
Γ
(
− 1

2+iµ+v+w

2

)
Γ(v + w

2 )Γ(w2 )
.

Here L(s, η) is the L–function associated to η. Note that the above computation is valid (all
integrals and infinite sums converge absolutely) provided v, w have large real parts. The identity
(2.7) then extends by analytic continuation. The ratio of products of gamma functions in the right
hand side of (2.7) has simple poles at v + w = 1

2 ± iµ with corresponding residues

π−v

〈η, η〉
·
Γ(±iµ)Γ

( 1
2∓iµ+v

2

)
Γ
( 1

2±iµ−v
2

) · L(v + 1
2 , η̄).

For v = 0, and <(w) ≥ 1
2 , it is expected that the above residues are almost always non-zero and

that 〈η, F n
m
〉 6= 0 for almost all η ranging over a basis of Maass cuspforms for Γm,n. It also follows

from Weyl’s law that the number of such poles with imaginary part in the interval [−T, T ] is ≈ T 2

as T →∞. Summing over m, n, we see from the above argument that the function∑
m,n

m−2<(s1)
〈
P (·, ϕ), F n

m

〉
,

with the choices σ = κ/2 and v = 0 is expected to have a natural boundary at <(w) = 1
2 . In

a similar manner one may show that the function Z(s1, 1/2, 1/2, w), in particular, should have
meromorphic continuation to at most <(s1) ≥ 1

2 and <(w) > 1
2 .

§3. The correct notion of integral moment

In [Di-Ga-Go], we propose a mechanism to obtain asymptotics for integral moments of GLr (r ≥ 2)
automorphic L–functions over an arbitrary number field. In particular, it reveals what we believe
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should be the correct notion of integral moments. Our treatment follows the viewpoint of [Di-
Ga1], where second integral moments for GL2 are presented in a form enabling application of the
structure of adele groups and their representation theory. We establish relations of the form

moment expansion =
∫
ZAGLr(k)\GLr(A)

Pé · |f |2 = spectral expansion,

where Pé is a Poincaré series on GLr over number field k, for cuspform f on GLr(A). Roughly, the
moment expansion is a sum of weighted moments of convolution L–functions L(s, f ⊗F ), where F
runs over a basis of cuspforms on GLr−1, as well as further continuous-spectrum terms. Indeed,
the moment-expansion side itself does involve a spectral decomposition on GLr−1. The spectral
expansion side follows immediately from the spectral decomposition of the Poincaré series, and
(surprisingly) consists of only three parts: a leading term, a sum arising from cuspforms on GL2,
and a continuous part from GL2. That is, no cuspforms on GL` with 2 < ` ≤ r contribute.

In the case of GL2 over Q, the above expression gives (for f spherical) the spectral decomposition
of the classical integral moment ∫ ∞

−∞
|L( 1

2 + it, f)|2g(t) dt

for suitable smooth weights g(t).
In the simplest case beyond GL2, take f a spherical cuspform on GL3 over Q. We construct a

weight function Γ(s, v, w, f∞, F∞) depending upon complex parameters s, v, and w, and upon the
archimedean data for both f and cuspforms F on GL2, such that Γ(s, v, w, f∞, F∞) has explicit
asymptotic behavior, and such that the moment expansion arises as an integral∫

ZAGL3(Q)\GL3(A)

Pé(g) |f(g)|2 dg =
∑

F on GL2

1
2πi

∫
<(s)= 1

2

|L(s, f ⊗ F )|2 · Γ(s, 0, w, f∞, F∞) ds

+
1

4πi
1

2πi

∑
k∈Z

∫
<(s1)=

1
2

∫
<(s2)=

1
2

|L(s1, f ⊗ E
(k)
1−s2)|

2 · Γ(s1, 0, w, f∞, E
(k)
1−s2,∞) ds2 ds1.

Here, for <(s2) = 1/2, write 1− s2 in place of s̄2, to maintain holomorphy in complex-conjugated
parameters. In this vein, over Q, it is reasonable to put

L(s1, f ⊗ Ē(k)
s2 ) = L(s1, f ⊗ E

(k)
1−s2) =

L(s1 − s2 + 1
2 , f) · L(s1 + s2 − 1

2 , f)
ζ(2− 2s2)

(finite-prime part)

since the natural normalization of the Eisenstein series E(k)
s2 on GL2 contributes the denominator

ζ(2s2). In the above expression, F runs over an orthonormal basis for all level-one cuspforms on
GL2, with no restriction on the right K∞–type. The Eisenstein series E(k)

s run over all level-
one Eisenstein series for GL2(Q) with no restriction on K∞–type denoted here by k. The weight
function Γ(s, v, w, f∞, F∞) can be described as follows. Let U(R) denote the subgroup of GL3(R)

of matrices of the form
(
I2 ∗

1

)
. For w ∈ C, define ϕ on U(R) by

ϕ

(
I2 x

1

)
=
(
1 + ||x||2

)−w
2
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and set

ψ

 1 x1 x3

1 x2

1

 = e2πi(x1+x2)

Then, the weight function is (essentially)

Γ(s, v, w, f∞, F∞) = |ρF (1)|2 ·
∞∫
0

∞∫
0

∫
O2(R)

∞∫
0

∞∫
0

∫
O2(R)

(t2y)v−s+
1
2 · (t′ 2y′)s− 1

2 K(h, m)

·W
f, R

 ty
t

1

W
F, R

((
y

1

)
· k
)

·W
f, R

 t′y′

t′

1

W
F, R

((
y′

1

)
· k′
)

· dk dy
y2

dt

t
dk′

dy′

y′2
dt′

t′
,

where: ρF (1) is the first Fourier coefficient of F,

h =

 ty
t

1

( k
1

)
, m =

 t′y′

t′

1

( k′
1

)
,

and
K(h, m) =

∫
U(R)

ϕ(u)ψ
(
huh−1

)
ψ(mum−1) du.

Here W
f, R and W

F, R denote the Whittaker functions at ∞ attached to f and F, respectively.
To obtain higher moments of automorphic L–functions such as ζ, we replace the cuspform f

by a truncated Eisenstein series or wavepacket of Eisenstein series. For example, for GL3, the
continuous part of the above moment expansion gives the following natural integral∫

<(s)= 1
2

∫ ∞

−∞

∣∣∣∣ζ(s+ it)3 · ζ(s− it)3

ζ(1− 2it)

∣∣∣∣2M(s, t, w) dt ds

where M is the smooth weight obtained by summing over the K∞–types k the function Γ above.
For applications to Analytic Number Theory, one finds it useful to present, in classical language,

the derivation of the explicit moment identity, when r = 3 over Q. To do so, let G = GL3(R), and
define the standard subgroups:

P =
{(

2× 2 ∗
1× 1

)}
, U =

{(
I2 ∗

1

)}
, H =

{(
2× 2

1

)}
, Z = center of G.

Let N be the unipotent radical of standard minimal parabolic in H, that is, the subgroup of
upper-triangular unipotent elements in H, and set K = O3(R).



8 ADRIAN DIACONU, PAUL GARRETT AND DORIAN GOLDFELD

For w ∈ C, define ϕ on U by

ϕ

(
I2 x

1

)
=
(
1 + ||x||2

)−w
2 .

We extend ϕ to G by requiring right K–invariance and left equivariance

ϕ(mg) =
∣∣∣∣detA
d2

∣∣∣∣v · ϕ(g)
(
v ∈ C, g ∈ G, m =

(
A

d

)
∈ ZH

)
.

More generally, we can take suitable functions (see [Di-Ga1], [Di-Ga2]) ϕ on U, and extend them
to G by right K–invariance and the same left equivariance.

For <(v) and <(w) sufficiently large, define the Poincaré series

(3.1) Pé(g) = Pé(g; v, w) =
∑

γ∈H(Z)\SL3(Z)

ϕ(γg) (g ∈ G)

where H(Z) is the subgroup of SL3(Z) whose elements belong to H. Note that H(Z) ≈ SL2(Z).
To see that the series defining Pé(g) converges absolutely and uniformly on compact subsets of
G/ZK, one can use the Iwasawa decomposition to make a simple comparison with the maximal
parabolic Eisenstein series.

For a cuspform f of type µ = (µ1, µ2) on SL3(Z) (right ZK–invariant), consider the integral

(3.2) I = I(v, w) =
∫

ZSL3(Z)\G

Pé(g) |f(g)|2 dg.

Unwinding the Poincaré series, we write

I =
∫

ZH(Z)\G

ϕ(g) |f(g)|2 dg.

Next, we will use the Fourier expansion (see [Go])

(3.3) f(g) =
∑

γ∈N(Z)\H(Z)

∞∑
`1=1

∑
`2 6=0

a(`1, `2)
|`1`2|

·Wµ(Lγg) (with a(`1, `2) = a(`1,−`2))

where N(Z) is the subgroup of upper-triangular unipotent elements in H(Z), L = diag(`1`2, `1, 1),
and Wµ is the Whittaker function. Then the integral I further unwinds to

(3.4) I =
∑
`1, `2

a(`1, `2)
|`1`2|

∫
ZN(Z)\G

ϕ(g)Wµ(Lg)f̄(g) dg.

Now, let P1 be the (minimal) parabolic subgroup of G of upper-triangular matrices, and let K1

be the subgroup of K fixing the row vector (0, 0, 1). Using the Iwasawa decomposition

G = P1 ·K, P = (HZ) · U = P1 ·K1,
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we can write (up to a constant) the right hand side of (3.4) as

(3.5) I =
∑
`1, `2

a(`1, `2)
|`1`2|

∫
(N(Z)\H)×U

ϕ(hu)Wµ(Lhu)f̄(hu) dh du.

The constant involved is
(∫

K1
1 dk

)−1

.

One of the key ideas is to decompose the left H(Z)–invariant function f̄(hu) along H(Z)\H.
Accordingly, we have the spectral decomposition

f̄(hu) =
∫
(η)

η(h)
∫

H(Z)\H

η(m)f̄(mu) dmdη

=
∑
`′1, `

′
2

a(`′1, `
′
2)

|`′1`′2|

∫
(η)

η(h)
∫

N(Z)\H

η(m)Wµ(L′mu) dmdη.(3.6)

Plugging (3.6) into (3.5), we can decompose

(3.7) I =
∑
`1, `2

∑
`′1, `

′
2

a(`1, `2)
|`1`2|

a(`′1, `
′
2)

|`′1`′2|
I`1, `2, `′1, `′2 ,

where, for fixed `1, `2, `′1, `
′
2,

(3.8) I`1, `2, `′1, `′2 =
∫
(η)

∫
(N(Z)\H)×U

∫
N(Z)\H

ϕ(hu)Wµ(Lhu) η(h)Wµ(L′mu) η(m) dh dmdu dη.

The integral over U in (3.8) is∫
U

ϕ(u)Wµ(Lhu)Wµ(L′mu) du

= Wµ(Lh)Wµ(L′m)
∫
U

ϕ(u)ψ
(
Lhuh−1L−1

)
ψ(L′mum−1L′ −1) du

= Wµ(Lh)Wµ(L′m)

∞∫
−∞

∞∫
−∞

· · · dx2 dx3

= Wµ(Lh)Wµ(L′m)K(Lh, L′m),

where

ψ

 1 x1 x2

1 x3

1

 = e2πi(x1+x3).

Therefore,

(3.9) I`1, `2, `′1, `′2 =
∫
(η)

∫
N(Z)\H

∫
N(Z)\H

ϕ(h)K(Lh, L′m)Wµ(Lh) η(h)Wµ(L′m) η(m) dh dmdη.
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For n ∈ N and h ∈ H, we have:

ϕ(nh) = ϕ(h),

K(Lnh, L′m) = K(Lh, L′m),

Wµ(Lnh) = ψ
(
LnL−1

)
Wµ(Lh).

Hence, ∫
N(Z)\H

∫
N(Z)\H

ϕ(h)K(Lh, L′m)Wµ(Lh) η(h)Wµ(L′m) η(m) dh dm

=
∫

N\H

∫
N\H

ϕ(h)K(Lh, L′m)Wµ(Lh)Wµ(L′m)

(3.10)

·
∫

N(Z)\N

ψ
(
LnL−1

)
η(nh) dn ·

∫
N(Z)\N

ψ
(
L′n′L′ −1

)
η(n′m) dn′ dh dm.

To simplify (3.10), let

h =

 ty
t

1

( k
1

)
, m =

 t′y′

t′

1

( k′
1

)
, (k, k′ ∈ O2(R)).

The functions η above are of the form |det|−s ⊗ F with s ∈ iR. In what follows, for convergence
purposes, the real part of the parameter s will necessarily be shifted to a fixed (large) σ = <(s).
The shifting occurs in (3.6) (there is a hidden vertical integral in the integral over η).

Remark. For every K–type κ, we choose F in an orthonormal basis consisting of common
eigenfunctions for all Hecke operators Tn. Furthermore, this basis is normalized as in Corollary 4.4
and (4.69) [DFI] with respect to Maass operators.

Note that

(3.11)
∫

N(Z)\N

ψ
(
LnL−1

)
F (nh) dn =

ρ
F
(−`2)√
|`2|

W±
F, R

((
|`2| y

1

)
· k
)
,

(3.12)
∫

N(Z)\N

ψ
(
L′n′L′ −1

)
F̄ (n′m) dn′ =

ρ
F
(−`′2)√
|`′2|

W±
F, R

((
|`′2| y′

1

)
· k′
)
,

where W±
F, R

are the GL2 Whittaker functions attached to F. These functions can be expressed in
terms of the classical Whittaker function

Wα, β(y) =
yα e−

y
2

2πi

i∞∫
−i∞

Γ(u) Γ(−u− α− β + 1
2 ) Γ(−u− α+ β + 1

2 )
Γ(−α− β + 1

2 ) Γ(−α+ β + 1
2 )

yu du,
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where the contour has loops, if necessary, so that the poles of Γ(u) and the poles of the function

Γ(−u−α−β+ 1
2 )Γ(−u−α+β+ 1

2 ) are on opposite sides of it. For k =
(

cos θ − sin θ
sin θ cos θ

)
∈ SO2(R),

we have (see [DFI])

W±
F, R

((
y

1

)
· k
)

= eiκθW±
F, R

(
y

1

)
= eiκθW±κ

2 , iµF
(4πy) (y > 0)

if F is an eigenfunction of

∆κ = y2
( ∂2

∂x2
+

∂2

∂y2

)
− iκy

∂

∂x

with eigenvalue 1
4 + µ2

F
. In (3.11) and (3.12), the Whittaker functions are determined by the signs

of −`2 and −`′2, respectively. If F corresponds to a holomorphic, or anti-holomorphic, cuspform,
there are no negative, or positive, respectively, terms in its Fourier expansion. We have

W+
F, R

((
y

1

)
· k
)

= eiκθW+
F, R

(
y

1

)
= eiκθWκ

2 ,
κ0−1

2
(4πy) (for κ ≥ κ0 ≥ 12, y > 0)

for F corresponding to a holomorphic cuspform of weight κ0 .
Then, making the substitutions

t→ t

`1
, y → y

|`2|
, t′ → t′

`′1
, y′ → y′

|`′2|
,

we can write (3.10) as

√
|`2| ρF

(−`2)
(`21|`2|)v−s

√
|`′2| ρF

(−`′2)
(`′21 |`′2|)s

∞∫
0

∞∫
0

∫
H∩K

∞∫
0

∞∫
0

∫
H∩K

(t2y)v−s · (t′ 2y′)sK(h, m)

·Wµ

 ty
t

1

W±
F, R

((
y

1

)
· k
)

(3.13)

·Wµ

 t′y′

t′

1

W
±
F, R

((
y′

1

)
· k′
)

· dk dy
y2

dt

t
dk′

dy′

y′2
dt′

t′
,

where
K(h, m) =

∫
U

ϕ(u)ψ
(
huh−1

)
ψ(mum−1) du.

Recall that the Rankin-Selberg convolution L(s, f ⊗ F ) is given by

L(s, f ⊗ F ) = L(s, f ⊗ F0) =
∞∑

`1, `2=1

a(`1, `2)λF0
(`2)

(`21 `2)s
,
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where F0 is the basic ancestor of F, and λF0
(`) is the corresponding eigenvalue of the Hecke operator

T`. Since a(`1, `2) = a(`1,−`2), it follows from (3.7), (3.9) and (3.13) that

I =
∫

ZSL3(Z)\G

Pé(g) |f(g)|2 dg

=
∑

F in GL2

1
2πi

∫
<(s)=σ

L(v + 1− s, f ⊗ F )L(s, f̄ ⊗ F̄ ) Γϕ(s) ds,

where

Γϕ(s) = Γϕ(s, v, w, f, F )
(3.14)

=
∑
±

ρ
F
(±1)ρ

F
(±1) ·

∞∫
0

∞∫
0

∫
H∩K

∞∫
0

∞∫
0

∫
H∩K

(t2y)v−s+
1
2 · (t′ 2y′)s− 1

2 K(h, m)

·Wµ

 ty
t

1

W±
F, R

((
y

1

)
· k
)

·Wµ

 t′y′

t′

1

W
±
F, R

((
y′

1

)
· k′
)

· dk dy
y2

dt

t
dk′

dy′

y′2
dt′

t′
,

with all four possible sign choices in the sum. Note that we have also replaced s by s− 1
2 .

The kernel Γϕ(s) can be expressed as a Barnes type (multiple) integral. To see this, note that

ψ
(
huh−1

)
= e2πit(u1 sin θ+u2 cos θ), ψ(mum−1) = e−2πit′(u1 sin θ′+u2 cos θ′),

with 0 ≤ θ, θ′ ≤ 2π. Changing the variables u1 = r cosφ, u2 = r sinφ (r ≥ 0 and 0 ≤ φ ≤ 2π), one
can write

(3.15) K(h, m) =

∞∫
0

2π∫
0

r2ϕ(r) e2πirt sin(θ+φ) e−2πirt′sin(θ′+φ) dφ
dr

r
.

In (3.15), express the two exponentials using the Fourier expansion

eiu sin θ =
∞∑

`=−∞

J`(u) ei`θ.

Recalling that

W±
F, R

((
y

1

)
· k
)

= eiκθW±
F, R

(
y

1

)
,
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it follows that, up to a positive constant, Γϕ(s) is represented by

∑
±

ρ
F
(±1)ρ

F
(±1) ·

∞∫
0

∞∫
0

∞∫
0

∞∫
0

(t2y)v−s+
1
2 (t′ 2y′)s−

1
2 ·

∞∫
0

r2ϕ(r) Jκ(2πrt) Jκ(2πrt′)
dr

r

(3.16)

·Wµ

 ty
t

1

W±
F, R

(
y

1

)
Wµ

 t′y′

t′

1

W
±
F, R

(
y′

1

)
dy

y2

dt

t

dy′

y′2
dt′

t′
.

Here we have also used the well-known identity J−κ(z) = (−1)κJκ(z).
To continue the computation, express both GL3(R) Whittaker functions in (3.16) as (see [Bu])

Wµ

 ty
t

1

 =
1

(2πi)2

∫
(δ1)

∫
(δ2)

π−ξ1−ξ2 V (ξ1, ξ2) t1−ξ1y1−ξ2 dξ1 dξ2,

where

V (ξ1, ξ2) =
1
4

Γ
(
ξ1+α

2

)
Γ
(
ξ1+β

2

)
Γ
(
ξ1+γ

2

)
Γ
(
ξ2−α

2

)
Γ
(
ξ2−β

2

)
Γ
(
ξ2−γ

2

)
Γ
(
ξ1+ξ2

2

) ,

the vertical lines of integration being taken to the right of all poles of the integrand. We shall
consider only the (+,+) part of (3.16), assuming κ ≥ 0 and

W+
F, R

(
y

1

)
= Wκ

2 , iµF0
(4πy).

Interchanging the order of integration and applying standard integral formulas (see [GR]), we write
the integrals of the (+,+) part of (3.16) corresponding to the above choice of W+

F, R
as

π−3(1+v)

128
1

(2πi)4

∫
(δ1)

∫
(δ2)

∫
(δ′1)

∫
(δ′2)

V (ξ1, ξ2)V (ξ′1, ξ
′
2)

Γ
(
1 + κ

2 − s− ξ1
2 + v

)
Γ
(
κ
2 + s− ξ′1

2

)
Γ
(
κ
2 + s+ ξ1

2 − v
)
Γ
(
κ
2 + 1− s+ ξ′1

2

)
· Γ
(1− s− ξ2 + v − iµ

F0

2

)
Γ
(1− s− ξ2 + v + iµ

F0

2

)

· Γ
(s− ξ′2 − iµ

F0

2

)
Γ
(s− ξ′2 + iµ

F0

2

)(3.17)

·
Γ
( ξ1+ξ′1−2v

2

)
Γ
(−ξ1−ξ′1+2v+w

2

)
Γ
(
w
2

) dξ′2 dξ
′
1 dξ2 dξ1.

This representation holds provided

δ1, δ2, δ
′
1, δ

′
2 > 0;

<(v)−<(s)− δ2 > −1; <(s)− δ′2 > 0;
3
2
> 2<(s)− δ′1 > 0; −1

2
> 2<(v)− 2<(s)− δ1 > −2;

<(w) > δ1 + δ′1 − 2<(v) > 0.
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We remark that for all the other choices of W±
F, R
, one obtains similar expressions.

For fixed F0 a Maass cuspform of weight zero, or a classical holomorphic (or anti-holomorphic)
cuspform of weight κ0 , the corresponding archimedean sum over the K–types κ in the moment
expansion can be evaluated using the effect of the Maass operators on F0 given explicitly in [DFI]
(see especially (4.70), (4.77), (4.78) and (4.83)).

We summarize the main result of this section in the following

Theorem 3.18. Let Pé(g) defined in (3.1) be the Poincaré series associated to ϕ. Then, for
s, v, w ∈ C with sufficiently large real parts, and f a cuspform on SL3(Z), we have∫

ZSL3(Z)\G

Pé(g) |f(g)|2 dg =
∑

F inGL2

1
2πi

∫
<(s)=σ

L(v + 1− s, f ⊗ F )L(s, f̄ ⊗ F̄ ) Γϕ(s) ds

where F runs over an orthonormal basis for all level-one cuspforms together with vertical integrals
of all level-one Eisenstein series on GL2(Q), with no restriction on the right K–types. The weight
function Γϕ(s) is given by

Γϕ(s) =
∑
±

ρ
F
(±1)ρ

F
(±1) ·

∞∫
0

∞∫
0

∞∫
0

∞∫
0

(t2y)v−s+
1
2 (t′ 2y′)s−

1
2 ·

∞∫
0

r2ϕ(r) Jκ(2πrt) Jκ(2πrt′)
dr

r

·Wµ

 ty
t

1

W±
F, R

(
y

1

)
Wµ

 t′y′

t′

1

W
±
F, R

(
y′

1

)
dy

y2

dt

t

dy′

y′2
dt′

t′
,

with all four possible sign choices in the sum.

§4. Spectral decomposition of Poincaré series

We begin by showing that our Poincaré series Pé(g) is a degenerate GL3 object (i.e., the
cuspforms on SL3(Z) do not contribute to its spectral decomposition). We have the following

Proposition 4.1. The Poincaré series Pé(g) is orthogonal to the space of cuspforms on SL3(Z).

Proof: Let f be a cuspform on SL3(Z) with Fourier expansion

f(g) =
∑

γ∈N(Z)\H(Z)

∞∑
`1=1

∑
`2 6=0

a(`1, `2)
|`1`2|

·W (Lγg).

Unwinding twice, it follows, as before, that

(4.2)
∫

ZSL3(Z)\G

Pé(g)f̄(g) dg =
∑
`1, `2

a(`1, `2)
|`1`2|

∫
ZN(Z)\G/K

ϕ(g)W (Lg) dg.
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Now, write g ∈ G in Iwasawa form,

g =

 1 x1 x2

1 x3

1

 y1y2
y1

1

 d
d

d

 k (y1, y2 > 0, k ∈ K)

=

 y1y2 d
y1d

d

 1 x1/y2
1

1

 1 0 (x2 − x1x3)/y1y2
0 1 x3/y1
0 0 1

 k.

Then,

(4.3) ϕ(g) = (y2
1y2)

v ϕ

 1 0 (x2 − x1x3)/y1y2
0 1 x3/y1
0 0 1


and

(4.4) W (Lg) = e2πi(`2x1+`1x3) ·W

 `1y1|`2|y2
`1y1

1

 .

Also, the integral in the right hand side of (4.2) can be written explicitly as

∫
ZN(Z)\G/K

· · · dg =

∞∫
y2=0

∞∫
y1=0

∞∫
x3=−∞

∞∫
x2=−∞

1∫
x1=0

· · · dx1 dx2 dx3
dy1
y3
1

dy2
y3
2

.

Letting
x1 = t1, x2 = t2 + t1t3, x3 = t3,

the inner integral over t1 is
1∫

0

e−2πi`2t1 dt1 = 0

(since `2 6= 0). Thus, ∫
ZSL3(Z)\G

Pé(g)f̄(g) dg = 0. �

Now write the Poincaré series as

Pé(g) =
∑

γ∈H(Z)\SL3(Z)

ϕ(γg) =
∑

γ∈P (Z)\SL3(Z)

∑
β∈U(Z)

ϕ(βγg)
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where P (Z) denotes the subgroup of SL3(Z) with the bottom row (0, 0, 1). By the Poisson
summation formula, we have

∑
β∈U(Z)

ϕ(βg) =
∞∑

m2,m3=−∞
ϕ

 1 m2

1 m3

1

 1 x1 x2

1 x3

1

 y1y2
y1

1


=

∞∑
m2,m3=−∞

ϕ

 1 x1 x2 +m2

1 x3 +m3

1

 y1y2
y1

1


=

∞∑
m2,m3=−∞

C(m2,m3)
ϕ (x1, y1, y2) e2πi(m2x2+m3x3),

where C(m2,m3)
ϕ (x1, y1, y2) is given by

C(m2,m3)
ϕ (x1, y1, y2) = (y2

1y2)
v

∫
R2

ϕ

 1 0 (u2 − x1u3)/y1y2
0 1 u3/y1
0 0 1

 e−2πi(m2u2+m3u3) du2 du3

= (y2
1y2)

v+1

∫
R2

ϕ

 1 t2
1 t3

1

 e−2πi[m2y1y2t2+(m2x1+m3)y1t3] dt2 dt3.(4.5)

Therefore, denoting C(m2,m3)
ϕ (x1, y1, y2) e2πi(m2x2+m3x3) by ϕ̂g(m2,m3), we can write

Pé(g) =
∑

γ∈P (Z)\SL3(Z)

∞∑
m2,m3=−∞

ϕ̂γg(m2,m3).

Thus, by (4.5) we can decompose the Poincaré series Pé(g) as

(4.6) Pé(g) = C(ϕ) · E2,1(g, v + 1) + Pé∗(g)

where E2,1(g, v + 1) is the maximal parabolic Eisenstein series on SL3(Z) and

(4.7) C(ϕ) =
∫
R2

ϕ

 1 t2
1 t3

1

 dt2 dt3.

To obtain a spectral decomposition, we need to present the Poincaré series Pé(g) with the
maximal parabolic Eisenstein series on SL3(Z) removed in a more useful way. To do so, we first
write

Pé∗(g) =
∑

γ∈P (Z)\SL3(Z)

∞∑
m2,m3=−∞

(m2,m3) 6=(0,0)

ϕ̂γg(m2,m3)

=
∑

γ∈P (Z)\SL3(Z)

∑
ψ∈(U(Z)\U(R))b

ψ 6=1

ϕ̂γg(ψ),
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where
ϕ̂g(ψ) =

∫
U

ϕ(ug)ψ(u) du.

For β ∈ H(Z), we observe that

ϕ̂βg(ψ) =
∫
U

ϕ(uβg)ψ(u) du =
∫
U

ϕ(ββ−1uβg)ψ(u) du =
∫
U

ϕ(β−1uβg)ψ(u) du

=
∫
U

ϕ(ug)ψ(βuβ−1) du,(4.8)

as ϕ(βg) = ϕ(g) for β ∈ H(Z) and g ∈ G. Setting ψβ(u) = ψ(βuβ−1), the last integral in (4.8) is
ϕ̂g(ψβ).

Consider the characters on U(Z)\U(R)

ψm(u) = e2πimu3

m ∈ Z× and u =

 1 u2

1 u3

1

 .

Since every non-trivial character on U(Z)\U(R) is obtained as (ψm)β , for unique m ∈ Z× and
β ∈ P 1,1(Z)\H(Z), where P 1,1(Z) is the parabolic subgroup of H(Z), it follows from (4.8) that

Pé∗(g) =
∑

γ∈P (Z)\SL3(Z)

∑
β∈P 1,1(Z)\H(Z)

∑
m∈Z×

ϕ̂βγg(ψm)

=
∑

γ∈P 1,1,1(Z)\SL3(Z)

∑
m∈Z×

ϕ̂γg(ψm).

Let

Θ =


 1

∗ ∗
∗ ∗

 , U ′ =


 1 ∗

1
1

 , U ′′ =


 1

1 ∗
1

 .

Then

Pé∗(g) =
∑

γ∈P 1,2(Z)\SL3(Z)

∑
β∈P 1,1(Z)\Θ(Z)

∑
m∈Z×

∫
U ′′

ψ
m
(u′′) ·

(∫
U ′
ϕ(u′u′′βγg) du′

)
du′′.

Setting

ϕ̃(g) =
∫
U ′
ϕ(u′g) du′,

the last expression of Pé∗(g) becomes

(4.9) Pé∗(g) =
∑

γ∈P 1,2(Z)\SL3(Z)

∑
β∈P 1,1(Z)\Θ(Z)

∑
m∈Z×

∫
U ′′

ψ
m
(u′′) ϕ̃(u′′βγg) du′′.

Let

(4.10) Φ(g) =
∑

β∈P 1,1(Z)\Θ(Z)

∑
m∈Z×

∫
U ′′

ψ
m
(u′′) ϕ̃(u′′βg) du′′.

We need the following simple observation.
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Lemma 4.11. We have the equivariance

ϕ̃(pg) = |q|v+1 · |a|v · |d|−2v−1 · ϕ̃(g),

for p =

 q b c
a

d

 ∈ GL3(R)

 .

Proof: Indeed, since 1 t
1

1

 q b c
a

d

 =

 q b td+ c
a

d

 =

 q b
a

d

 1 (td+ c)/q
1

1

 ,

we have

ϕ̃(pg) =
∫
U ′
ϕ(u′pg) du′ =

∣∣∣qa
d2

∣∣∣v·∫
R
ϕ

 1 (td+ c)/q
1

1

g
 dt = |q|v+1·|a|v·|d|−2v−1ϕ̃(g). �

Assuming g of the form

g =
(
a ∗

g′

)
(a ∈ R× and g′ ∈ GL2(R)),

(we can always do using the Iwasawa decomposition), and decomposing it as

g =
(
a ∗

I2

)(
1

g′

)
,

we have

ϕ̃(g) = |a|v+1 · ϕ̃
(

1
g′

)
.

Since (
1

D

)
g =

(
a ∗

Dg′

)
(for D ∈ GL2(R)),

it follows that Φ(g) defined in (4.10) descends to a GL2 Poincaré series, with the corresponding
Eisenstein series removed, of the type studied in [Di-Ga1], [Di-Go1], [Di-Go2]. Setting

ϕ(2)

(
1 x

1

)
= ϕ̃

 1
1 x

1

 (x ∈ R)

and extending it to GL2(R) by

ϕ(2)

((
a

d

)
gk

)
=
∣∣∣a
d

∣∣∣ 3v+1
2 · ϕ(2)(g) (g ∈ GL2(R), k ∈ O2(R)),

we can write

(4.12) Φ
(
a ∗

g′

)
= |a|v+1 · |det g′|−

v+1
2 ·

∑
β∈P 1,1(Z)\SL2(Z)

∑
m∈Z×

∫
N

ψ
m
(n)ϕ(2)(nβg′) dn,
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with N the subgroup of upper-triangular unipotent elements in GL2(R). Note that, for

ϕ

(
I2 u

1

)
=
(
1 + ||u||2

)−w
2 ,

we have

ϕ(2)

(
1 x

1

)
= ϕ̃

 1
1 x

1

 =
∫
U ′
ϕ

u′
 1

1 x
1

 du′(4.13)

=
∫ ∞

−∞

(
1 + u2 + x2

)−w
2 du =

√
π

Γ(w−1
2 )

Γ(w2 )
·
(
1 + x2

) 1−w
2 .

Then, by (2.2), (2.3) and (5.8) in [Di-Go1], it follows that, for an orthonormal basis of Maass
cuspforms which are simultaneous eigenfunctions of all the Hecke operators, we have the spectral
decomposition

Φ
(
a ∗

g′

)
=

1
2

∑
F−even

ρ
F
(1)L

(3v
2

+ 1, F
)
G
(1

2
+ iµ

F
;
3v + 1

2
, w − 1

)
|a|v+1 |det g′|−

v+1
2 F (g′)

+
1

4πi

∫
<(s)= 1

2

ζ( 3v
2 + 1

2 + s) ζ( 3v
2 + 3

2 − s)
π−1+s Γ(1− s) ζ(2− 2s)

G
(
1− s;

3v + 1
2

, w − 1
)
|a|v+1 |det g′|−

v+1
2 E(g′, s) ds,

where

G(s; v, w) = π−v+
1
2

Γ
(−s+v+1

2

)
Γ
(
s+v
2

)
Γ
(−s+v+w

2

)
Γ
(
s+v+w−1

2

)
Γ(w+1

2 )Γ
(
v + w

2

) .

This decomposition holds provided <(v) and <(w) are sufficiently large. Hence, by (4.9) and (4.10),
Pé∗(g) has the induced spectral decomposition from GL2,

Pé∗(g) =
1
2

∑
F−even

ρ
F
(1)L

(3v
2

+ 1, F
)
G
(1

2
+ iµ

F
;
3v + 1

2
, w − 1

)
E1,2
F (g, v + 1)

+
1

4πi

∫
<(s)= 1

2

ζ( 3v
2 + 1

2 + s) ζ( 3v
2 + 3

2 − s)
π−1+s Γ(1− s) ζ(2− 2s)

G
(
1− s;

3v + 1
2

, w − 1
)
E1,1,1

(
g,
v + 1

2
− s

3
,
2s
3

)
ds.

By Godement’s criterion (see [Bo]), the minimal parabolic Eisenstein series E1,1,1 inside the integral
converges absolutely and uniformly on compact subsets of G/ZK for <(v) sufficiently large. The
meromorphic continuation of the Poincaré series Pé(g) in (v, w) ∈ C2 follows by shifting the contour
similarly to Section 5 of [Di-Go1], or Theorem 4.17 in [Di-Ga1].

We summarize the main result of this section in the following theorem.

Theorem 4.14. For <(v) and <(w) sufficiently large, the Poincaré series Pé(g) associated to

ϕ

(
I2 u

1

)
=
(
1 + ||u||2

)−w
2
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has the spectral decomposition

Pé(g) =
2π

w − 2
· E2,1(g, v + 1)

+
1
2

∑
F−even

ρ
F
(1)L

(3v
2

+ 1, F
)
G
(1

2
+ iµ

F
;
3v + 1

2
, w − 1

)
E1,2
F (g, v + 1)

+
1

4πi

∫
<(s)= 1

2

ζ( 3v
2 + 1

2 + s) ζ( 3v
2 + 3

2 − s)
π−1+s Γ(1− s) ζ(2− 2s)

G
(
1− s;

3v + 1
2

, w − 1
)
E1,1,1

(
g,
v + 1

2
− s

3
,
2s
3

)
ds.

Final Remark. Let ϕ on U be defined by

ϕ

(
I2 u

1

)
= 21−w√π

Γ(w2 )
(
1 + ||u||2

)−w
2 F (w2 ,

w
2 ;w; 1

1+||u||2 )

Γ(w−1
2 )

,

and consider the Poincaré series Pé(g) attached to this choice of ϕ. Representing the hypergeometric
function by its power series,

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)
·
∞∑
m=0

1
m!

Γ(α+m)Γ(β +m)
Γ(γ +m)

zm (|z| < 1),

and using the last identity in (4.13), it follows, as in [Di-Ga2], Section 3, that the Poincaré series
Pé(g) with v = 0 satisfies a shifted functional equation (involving an Eisenstein series) as w → 2−w
(see also [G] and [Di-Go1]).
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