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Tensor products of infinite-dimensional Hilbert spaces do not exist.

That is, for infinite-dimensional Hilbert spaces V,W , there is no Hilbert space X and continuous bilinear
map j : V ×W −→ X such that, for every continuous bilinear V ×W −→ Y to a Hilbert space Y , there is
a unique continuous linear X −→ Y fitting into the commutative diagram
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G
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That is, there is no tensor product in the category of Hilbert spaces and continuous linear maps.

Yes, it is possible to put an inner product on the algebraic tensor product V⊗algW , by

〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉 · 〈w,w′〉

and extending. The completion H of V⊗algW with respect to the associated norm, often denoted V ⊗̂W ,
is a Hilbert space, identifiable with Hilbert-Schmidt operators V −→ W ∗. However, this Hilbert space fails
to have the universal property in the categorical characterization of tensor product, as we see below. This
Hilbert space H is important in its own right, but is widely incorrectly portrayed as a tensor product.

The non-existence of tensor products of infinite-dimensional Hilbert spaces is important in practice, not only
as a cautionary tale[1] about naive category theory, insofar as it leads to Grothendieck’s idea of nuclear spaces.
A main feature of nuclear spaces is that they do admit tensor products. The original explicit example of this
was Schwartz’ Kernel Theorem, although earlier discussions of extending differential operators to subspaces
of L2 can be recast in such terms using Sobolev spaces.

Proof: First, we show that the Hilbert-Schmidt tensor product H = V ⊗̂W cannot be a Hilbert-space tensor
product. For simplicity, suppose that V,W are separable, in the sense of having countable Hilbert-space bases.
[2]

Choice of such bases allows an identification of W with the continuous linear Hilbert space dual V ∗ of V .
Then we have the continuous bilinear map V × V ∗ −→ C by v × λ −→ λ(v). The algebraic tensor product
V⊗algW injects to H = V ⊗̂V ∗, and the image is identifiable with the finite-rank maps V −→ V . The linear
map T : H −→ C induced on the image of V⊗algV

∗ is trace. If H = V ⊗̂V ∗ were a Hilbert-space tensor
product, the trace map would extend continuously to it from finite-rank operators. However, there are many
Hilbert-Schmidt operators that are not of trace class. For example, letting ei be an orthonormal basis, the
element ∑

n

1

n
· en ⊗ en ∈ V ⊗̂V ∗

[1] Many of us are not accustomed to worry about existence of objects defined by universal mapping properties,

because we learned set-theoretic constructions of them, thus proving their existence, long before becoming aware

of mapping-property characterizations. Indeed, much as naive set theory does not lead to paradoxes without some

effort, naive category theory’s recharacterization of objects not far from prior experience rarely describes non-existent

objects. Nevertheless, examples such as the present one are genuine.

[2] Large Hilbert spaces, with uncountable Hilbert space bases, are rare, in practice. In any case, the same argument

succeeds in almost the same fashion for Hilbert spaces with Hilbert space bases of the same infinite cardinality. When

the cardinalities are distinct, the Axiom of Choice enables comparison of the two cardinalities, and we can identify

the dual of the smaller with a subspace of the larger, and then a similar argument applies.

1



Paul Garrett: Non-existence of tensor products of Hilbert spaces (July 22, 2010)

does not have a finite trace, since
∑

n≤N 1/n ∼ logN . In other words, the difficulty is that

T
( ∑
a≤n≤b

1

n
· en ⊗ en

)
=

∑
a≤n≤b

1

n
· T (en ⊗ en) =

∑
a≤n≤b

1

n

Thus, the partial sums of
∑

n
1
n en⊗ en form a Cauchy sequence, but the values of T on the partial sums go

to +∞. Thus, the Hilbert-Schmidt tensor product cannot be a Hilbert-space tensor product.

Now we show that no other Hilbert space can be a tensor product, by comparing to the Hilbert-Schmidt
tensor product.

Let V ×W −→ X be a purported Hilbert-space tensor product, and, again, let W be the dual of V , without
loss of generality. By assumption, the continuous bilinear injection V × V ∗ −→ V ⊗̂V ∗ induces a unique
continuous linear map T : X −→ H fitting into a commutative diagram
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The linear map V⊗algV
∗ −→ H is injective, since H is a completion of V⊗algV

∗. Thus, unsurprisingly,
V⊗algV

∗ −→ X is necessarily injective. The uniqueness of the linear induced maps implies that the image of
V⊗algV

∗ is dense in X. Also, T : X −→ H is the identity on the copies of V⊗algV
∗ imbedded in X and H.

Let T ∗ : H −→ X be the adjoint of T , defined by

〈x, T ∗y〉X = 〈Tx, y〉H

On the imbedded copies of V⊗algV
∗

〈v ⊗ λ, T ∗(w ⊗ µ)〉X = 〈T (v ⊗ λ), w ⊗ µ〉H = 〈v ⊗ λ,w ⊗ µ〉H (for v, w ∈ V and λ, µ ∈ V ∗)

Given v ∈ V and λ ∈ V ∗, the orthogonal complement (v⊗λ)⊥ is the closure of the span of monomials v′⊗λ′
where either v′ ⊥ v or λ′ ⊥ λ. For such v′ ⊗ λ′,

0 = 〈v′ ⊗ λ′, v ⊗ λ〉H = 〈T (v′ ⊗ λ′), v ⊗ λ〉H = 〈v′ ⊗ λ′, T ∗(v ⊗ λ)〉X

Thus, for any monomial v ⊗ λ, the image T ∗(v ⊗ λ) is a scalar multiple of v ⊗ λ. The same is true of
monomials (v+w)⊗ (λ+µ). Taking v, w linearly independent and λ, µ linearly independent and expanding
shows that the scalars do not depend on v, λ. Thus, T ∗ is a scalar on V⊗algV

∗.

That is, there is a (necessarily real) constant C such that

C · 〈v ⊗ λ,w ⊗ µ〉X = 〈v ⊗ λ, T ∗(w ⊗ µ)〉X = 〈T (v ⊗ λ), w ⊗ µ〉H = 〈v ⊗ λ,w ⊗ µ〉H

since T identifies the imbedded copies of V⊗algV
∗. That is, up to the constant C, the inner products from

X and H restrict to the same hermitian form on V⊗algV
∗. Thus, any putative X differs from H only by

scaling. However, we saw that the natural pairing V ×V ∗ −→ C does not factor through a continuous linear
map H −→ C, because there exist Hilbert-Schmidt maps not of trace class.

Thus, there is no tensor product of infinite-dimensional Hilbert spaces. ///
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