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We treat oscillator representations as representations of the Lie algebra sl2, rather than of the Lie group
SL2(R) or coverings thereof, thus avoiding several complications that might obscure the main ideas.

The objects called oscillator representations are decades old, originally developed by physicists for their
own purposes. For example, [Weyl 1928], [Stone 1930], [vonNeumann 1931]. Detailed study of the infinite-
dimensional representation theory of small classical groups appeared first in [Wigner 1939], [Bargmann 1947].
A more modern treatment of oscillator representations began with [Shale 1962], [Segal 1963], and then

[Weil 1964]. A relatively recent reference is [Li 2000]. [1]

Some completely natural operators on functions (or distributions) on Rn interact with each other in a
manner that leads easily but surprisingly to a representation of the Lie algebra sl2. Further, the action of sl2
commutes with the natural action of the orthogonal group O(n), and interacts well with Fourier transform.
We give this straightforward discussion in the first section. Specifically, we have the usual basis

x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
of sl2 with the usual defining relations

[x, y] = h [h, x] = 2x [h, y] = −2y

The computations below will show, quite directly, that

x→ multiplication by r2/2 y → application of −∆/2 h→ n

2
+
∑
i

xi
∂

∂xi

is a Lie algebra homomorphism, with ∆ the usual Laplacian

∆ =
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

and r =
√∑

i x
2
i the usual radius or norm on Rn. Then we look for weight vectors for h, that is, eigenvectors.

(The eigenvalues are called weights in this context.) Then we look among the weight vectors for highest weight
vectors (that is, x-annihilated weight vectors) or lowest weight vectors (that is, y-annihilated weight vectors).

[1] It was only in the 1960’s that it started to become clear that representation theory would be helpful in the theory

of automorphic forms, particular regarding the theta series studied in [Hecke 1940] and [Siegel 1935]. Less obvious is

that these ideas also bear upon things like Maaß’ special waveforms [Maaß 1949]. We postpone discussion of modern

applications to automorphic forms.
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We first consider these operators on polynomials, which relates harmonic polynomials to representations
of sl2. This is the Fock model of the oscillator representation. The far more general analogous case of
O(p, q)× spn was treated by [Kashiwara Vergne 1978].

Next, we find O(n) × sl2 subrepresentations of the Schwartz space S (Rn). We find lowest-weight
representations (holomorphic discrete series). This explains why the automorphic forms attached to positive
definite quadratic forms are holomorphic. [Enright Howe Wallach 1983] shows that this phenomenon is
typical: for example, all representations of spn obtained via compact orthogonal groups are lowest-weight
representations. A small but important point is that we do not look for h-weight-vectors, but, rather, for
weight vectors for a different operator covertly related to the compact subgroup SO2(R) of SL2(R), despite
our scrupulous avoidance of worry about conversion of the sl2 action to a group action.

Finally, combining these computations with Casselman’s subrepresentation theorem gives decisive information
on the irreducible quotients of S (Rn) as an O(n) × sl2 representation. This complements the discussion
of subrepresentations of S (Rn), and is also applicable to indefinite-signature orthogonal groups O(p, q). A
simple application is to the O(1, 1) × sl2 implicit in [Maaß 1949], allowing one to anticipate the Casimir-
operator eigenvalues of special waveforms attached to großencharacters of real quadratic extensions of Q.
We review relevant ideas about principal series, induced representations, Frobenius reciprocity, and Jacquet
modules.

1. Experiments to adjust constants

The computations below are experiments to determine a normalization to match the structure of sl2. Part
of the point is that there is no compulsion to guess the normalization in advance, but, rather, that one can
find the proper normalization. Further, as noted in greater detail in the remarks at the end of the section,
that the computations turn out well is less surprising than it seems at first. That is, the innocent-seeming
structures at hand determine things more strongly than we might anticipate. [2] We will prove

[1.0.1] Theorem: The map

x =

(
0 1
0 0

)
→ multiplication by r2/2 y =

(
0 0
1 0

)
→ application of −∆/2

h =

(
1 0
0 −1

)
→ n

2
+
∑
i

xi
∂

∂xi

is a Lie algebra homomorphism from sl2 to operators on functions (and/or distributions) on Rn.

Proof: Without trying to anticipate renormalizations, in temporary notation define two natural linear
operators X,Y on Schwartz functions f ,

Xf = r2 · f Y f = ∆ · f

Then

[X,Y ]f = (XY − Y X)f = r2 ∆f −∆(r2 f) = r2 ∆f −

(
2n · f + 2

n∑
i=1

2xi
∂f

∂xi
+ r2 ∆f

)

= −

(
2n+ 4

n∑
i=1

xi
∂

∂xi

)
f

[2] That innocent-seeming structures determine things more strongly than anticipated is one of the persistent charms

of mathematics.
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The minus sign is irritating, but this might not be sufficient reason to change the normalization. However,
casting about for further justification for getting rid of the sign, we might recall that the two operations,
multiplication by r2 and application of ∆, are not quite transformed into each other by Fourier transform F
but, rather, the relation has a sign (in addition to other positive constants). We take this as sufficient reason
to renormalize by putting that sign into the definition of the operator Y , namely,

Xf = r2 · f Y f = −∆ · f

so now

[X,Y ]f = (XY − Y X)f = −r2 ∆f + ∆(r2 f) =

2n · f + 4

n∑
j=1

xj
∂

∂xj

 f

The factor of 4 is ugly and burdensome, but we need more reason than that to renormalize it away. Thus,
though we are are not done with the corrections to our normalization, temporarily consider that operator
we just computed, namely

H = [X,Y ] = XY − Y X = 2n+ 4

n∑
j=1

xj
∂

∂xj

We want to compute [H,X] = HX − XH. Since the summand 2n in H (meaning multiplication by 2n)
certainly commutes with everything, we can drop this summand in doing the computation of the commutator.
Further, for i 6= j certainly the xi and xj terms commute, that is,(

xi
∂

∂xi

)
· x2

j · f − x2
j ·
(
xi

∂

∂xi

)
· f = 0

That is, the only possible non-trivial summands in the commutator will arise from summands in H and
X with the same index. This gives us a soothing conceptual simplification of the computation. [3] Let fj
denote the partial derivative of f with respect to its jth argument.

[H,X]f = 4

n∑
i=j

(
xj

∂

∂xj
· (x2

jf)− x2
j · xj fj

)
= 4

n∑
j=1

(
xj (2xj f + x2

j fj)− x2
j · xj fj

)
= 8r2 f = 8Xf

It looks as though that factor of 4 is dispensable. But, being patient, before doing any more renormalizing,
compute similarly, again noting that differently-indexed terms commute,

[H,Y ]f = 4

n∑
j=1

(
xj

∂

∂xj
(−fjj) +

∂2

∂x2
j

(xj fj)

)
= 4

n∑
j=1

(
−xj fjjj +

∂

∂xj
(fj + xj fjj)

)

= 4

n∑
j=1

(−xj fjjj + (fjj + fjj + xj fjjj)) = 8 ∆f = −8Y f

Again a suspiciously large constant. Thinking of the standard structural equations [h, x] = 2x and
[h, y] = −2y, it appears that we should get rid of the factor of 4 somehow, but we do not want to damage
the structural relation [X,Y ] = H. A reasonable fix is to divide our current H by 4, and to divide both our
current X and Y by 2. Thus, a palatable normalization is

Xf =
r2

2
· f Y f =

−∆

2
f Hf =

(
n

2
+

n∑
i=1

xi
∂

∂xi

)
f

in which case we do have
[X,Y ] = H [H,X] = 2X [H,Y ] = −2Y

[3] Still, computation of [H,X] and [H,Y ] can be done in an entirely naive fashion without much harm.
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matching the relations in sl(2). ///

[1.0.2] Remark: Let the standard orthogonal group O(n) have its usual linear action on Rn, and thereby
on functions on Rn. The operators f → r2 · f and f → ∆f both commute with O(n), so their bracket will
commute. Thus the image of sl2 commutes with the action of O(n).

[1.0.3] Remark: There is less whimsy in distinguishing this representation of sl2 than meets the eye. First,
there are few O(n)-invariant homogeneous polynomials of degree 2, and few O(n)-invariant (pure) second-
order differential operators, and X and Y are just those. Second, since the second-order operator part of
the commutator will vanish, the bracket [X,Y ] will be a first-order (or lower) O(n)-invariant differential
operator. There are few O(n)-invariant first-order differential operators. Then, in the commutator of H and
X, the highest-order (first-order) terms cancel, leaving an O(n)-invariant polynomial of degree at most 2.
Similarly, in the commutator of H and Y the highest-order (cubic) terms cancel, leaving an O(n)-invariant
second-order operator. The only slightly serious aspect not resolved in advance is the normalization of
constants, which was addressed by carrying out the obvious experiment-computations above.

2. Fock model: spaces of polynomials

As a simple test case we consider the action of our operators on polynomials C[x1, . . . , xn]. For intelligibility,
we review some results about the representation theory of sl2, whose proofs are given in the appendix. The
representation of O(n)× sl2 on polynomials C[x1, . . . , xn] on Rn is the Fock model.

First, we determine weight vectors (that is, eigenvectors) [4] for the operator

h =
n

2
+

n∑
i=1

xi
∂

∂xi

on polynomials C[x1, . . . , xn], and then find lowest-weight vectors (annihilated by y) and highest-weight
vectors (annihilated by x) among these polynomial weight vectors for h.

Euler’s identity
n∑
i=1

xi
∂f

∂xi
= d · f (for f homogeneous of degree d)

shows that homogeneous degree d polynomials C[x1, . . . , xn](d) are weight vectors for h with weight n
2 + d.

Since every polynomial is uniquely expressible [5] as a sum of homogeneous polynomials, we have successfully
decomposed the vector space of all polynomials into weight spaces

C[x1, . . . , xn] =

∞⊕
d=0

C[x1, . . . , xn](d) =

∞⊕
d=0

(
n

2
+ d)-weight-space

[2.0.1] Claim: The operator x maps h’s weight-vectors with weight λ to weight-vectors with weight λ+ 2.
The operator y maps weight-vectors with weight λ to weight-vectors with weight λ− 2.

[4] In this context, weight vectors are just eigenvectors for the operator H. They receive a different name to emphasize

that they, as eigenvectors for h, will be transformed by the other operators x and y to eigenvectors for h with

(systematically) altered eigenvalues. This mechanism is central to the representation theory of Lie algebras, and is

already well illustrated in the case of sl2.

[5] The fact that every polynomial is uniquely expressible as a sum of homogeneous polynomials is a misleadingly

easy decomposition result. By contrast, in most situations the analogous decomposition is at best non-trivial to

prove.
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Proof: This is an archetype for computations in Lie algebra representations. Computing directly,

h · (x · v) = hx · v = (hx− xh+ xh) · v = ([h, x] + xh) · v = (2x+ xh) · v

= 2x · v + xh · v = 2x · v + x · λv = (2 + λ)x · v

That is, x maps the λ weight space to the λ+ 2 weight space. Similarly,

h · (y · v) = hy · v = (hy − yh+ yh) · v = ([h, y] + yh) · v = (−2y + yh) · v

= −2y · v + yh · v = −2y · v + y · λv = (−2 + λ)y · v

as claimed. ///

[2.0.2] Remark: Indeed, in the case at hand, multiplication by r2/2 certainly increases the degree of a
homogeneous polynomial by 2, and application of ∆ certainly decreases degree by 2, but the argument of
the claim shows that the mechanism is universal.

Next, we look for weight vectors annihilated by either x or y. Since x literally raises the weight (by 2), a
vector annihilated by x would be a highest weight vector. Similarly, since y lowers the weight by 2 a vector
annihilated by y would be a lowest weight vector.

[2.0.3] Claim: There are no x-annihilated vectors for sl2 in C[x1, . . . , xn]. The y-annihilated vectors for sl2
in C]x1, . . . , xn] are homogeneous harmonic polynomials.

Proof: Since functions [6] are never annihilated by x, that is, by multiplication by r2/2, there are no
x-annihilated vectors here. A y-annihilated vector is one annihilated by application of −∆/2. ///

To identify sl2-submodules of C[x1, . . . , xn], start with the lowest-weight submodules, that is, those
submodules generated by y-annihilated vectors.

Let [7]

U(sl2) = universal enveloping algebra of sl2

From Poincaré-Birkhoff-Witt, [8] since y acts by 0 and h acts by n
2 + d on lowest-weight vectors,

sl2-submodule generated by harmonic P of degree d = U(sl2) · P

=
∑
a,b,c

C · xahbyc · P =

∞∑
a=0

C · xa · P =

∞∑
a=0

C · r2a P

[6] At least classical functions cannot have support consisting of a single point, 0. Of course, (non-classical) generalized

functions may have this feature, and we can and will profitably pursue this shortly.

[7] In general, the universal enveloping algebra U(g) of a Lie algebra g is an associative algebra with a Lie algebra

map g → U(g) with the universal property that any Lie algebra map g → A to an associative algebra A factors

through g→ U(g). In this definition we use the natural and obvious Lie algebra structure Lie(A) that can be put on

any associative algebra A by [a, b] = ab− ba. This is needed to make sense of the Lie homomorphism requirement on

g→ U(g) as well as on the map g→ A. One can also describe the functor g ∼> U(g) as a left adjoint to the functor

A ∼> Lie(A), in the sense that Homassoc(U(g), A) ≈ HomLie(g,Lie(A)).

[8] Recall that the Poincaré-Birkhoff-Witt asserts in this case that the universal enveloping algebra U of sl2 has a

basis consisting of monomials xahbyc in U(g) (with non-negative integers a, b, c).
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The classical theory of spherical harmonics [9] gives an ad hoc argument for the fact that every homogeneous
polynomial P (x) is expressible (uniquely) in the form

P (x) = fo(x) + r2 · f2(x) + r4 · f4(x) + . . . (finite sum with harmonic fi)

But we can make this classical fact be a corollary of natural aspects of the representation theory of sl2. The
following two useful displayed isomorphisms are proven in an appendix. In the decomposition of C[x1, . . . , xn],
we now know that the isomorphism class of U ·P depends only upon the degree of the harmonic homogeneous
polynomial P . Let Mλ be the sl2-module with lowest weight λ, and H(d) the space of homogeneous harmonic
polynomials of degree d. Then

C[x1, . . . , xn] ≈
⊕
d≥0

(dimC H(d)) ·Mn
2 +d (as sl2-representation)

Thinking of H(d) as a representation of the orthogonal group O(n), we have a definitive conclusion

C[x1, . . . , xn] ≈
⊕
d≥0

H(d) ⊗Mn
2 +d (as O(n)× sl2-representation)

3. Subrepresentations of S (Rn)

Now we find O(n) × sl2 subrepresentations of the Schwartz space S (Rn). These are all extreme-weight
representations. This phenomenon is discussed in [Enright Howe Wallach 1983] in a much broader context.
We do not look for h-weight-vectors, but, rather, for weight vectors for a different operator, explained below.

For several reasons, we should not expect to find weight vectors for

h ∼ n

2
+

n∑
j=1

xj
∂

∂xj

in S (Rn). An immediate reason is that differentiable functions which are eigenvectors for this operator are
positive homogeneous, which is a tough condition for Schwartz functions to meet.

In any case, the action of Lie algebra elements imagined to arise from unitary group actions should be skew-
hermitian, while the images of x, y are symmetric, with respect to the hermitian product 〈, ϕ〉 =

∫
Rn f ϕ. [10]

Thus, rather than r2/2 and −∆/2, we should take something like

x→ i · r
2

2
y → −i · −∆

2
=
i∆

2
h→ n

2
+
∑
j

xj
∂

∂xj

with the signs on the i’s chosen to leave [x, y] = h unchanged. However, eigenvectors for h would still be
homogeneous.

[9] The theory of spherical harmonics refers to the relatively elementary theory of harmonic polynomials, using little

or no representation theory. Parts of this theory go back at least to Laplace in his analysis of the solar system.

Sometimes expansion of polynomials or other functions on spheres in terms of harmonic polynomials are called

Laplace expansions.

[10] The skew-hermitian-ness is natural. Let v, w be in a Hilbert space on which a Lie group G acts unitarily, meaning

that 〈gv, gw〉 = 〈v, w〉 for g ∈ G. Let x→ ex be the Lie exponential map. Then for all t ∈ R, the unitary condition

is 〈v, w〉 = 〈etxv, etxw〉. Differentiating both sides in t and taking t = 0 gives, by Leibniz’ rule, 0 = 〈xv,w〉+ 〈v, xw〉,
the desired skew-hermitian-ness.
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Another reason to look for weight vectors for an operator other than this obvious h is that it is more
reasonable to look for eigenvectors of operators arising from compact groups, rather than from non-compact
ones. That is, imagining that sl2 is (the complexification of) the Lie algebra of SL2(R), with compact
subgroup SO(2), we have (complexified) Lie algebra

so2 = {2-by-2 matrices α with α+ α> = 0}

and decide to look for weight vectors for

θ =

[
0 1
−1 0

]
∈ so2

With renormalized x→ ir2/2 and y → i∆/2

θ = x− y → i

2
(r2 −∆)

Instead of the eigenvectors x, y for h, we need eigenvectors in sl2 for θ. To find eigenvectors in sl2 for the
action

[θ,−] : α −→ θα− αθ = [θ, α] = (adθ)(α)

it is convenient to diagonalize [11] the matrix θ

θ =

[
0 1
−1 0

]
=

[
1 i
i 1

] [
i 0
0 −i

] [
1 i
i 1

]−1

The eigenspaces of

[
i 0
0 −i

]
on sl2 are easy to see:

0-eigenspace =

[
∗ 0
0 ∗

]
2i-eigenspace =

[
0 ∗
0 0

]
−2i-eigenspace =

[
0 0
∗ 0

]
Thus, define the raising and lowering operators R,L by

R =

[
1 i
i 1

] [
0 1
0 0

] [
1 i
i 1

]−1

=
1

2

[
−i 1

1 i

]
L =

[
1 i
i 1

] [
0 0
1 0

] [
1 i
i 1

]−1

=
1

2

[
i 1
1 −i

]
We have

[θ,R] = 2i ·R [θ, L] = −2i · L [R,L] = −i · θ

[3.0.1] Remark: If we were to replace θ by −iθ then R,L, θ would be in exactly the same relation as x, y, h.

Thus, as with x, y, h, for a θ-weight-vector v with weight iλ, the vector Rv has weight iλ + 2i and Lv has
weight iλ− 2i.

[3.0.2] Claim: A weight vector f ∈ S (Rn) for θ has weight iλ with λ > 0.

Proof: The point is that the operator f → (r2 −∆)f is positive, since∫
Rn

(r2 −∆)f · f dx =

∫
Rn
r2 f · f dx+

∫
Rn
∇ f · ∇f dx

[11] The matrix

[
1 i

i 1

]
/
√

2 is the Cayley transform, and is a convenient normalization of an element in SL2(C)

mapping the disk to the upper complex half-plane.
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by integrating by parts. ///

[3.0.3] Corollary: For a weight vector f ∈ S (Rn) for θ there is 0 < m ∈ Z such that

Lm · f = 0

Proof: From the claim, the weight of f is iλ with λ > 0. Then Lj · f is still a θ-weight-vector, with weight
i(λ− 2j). If Ljf 6= 0 then λ− 2j > 0. Thus, for large-enough j, certainly Ljf = 0. ///

A θ-weight vector annihilated by L is a lowest-weight vector. A representation of sl2 generated by a
lowest-weight vector in this sense is a lowest-weight representation.

[3.0.4] Remark: The appendix shows that, with weight vector f of weight iλ with Lmf = 0 and λ ≥ 2m+1,
the sl2 representation generated by f is a finite direct sum of lowest-weight representations.

We can exhibit many lowest-weight representations inside S (Rn).

[3.0.5] Claim: A function P (v) e−|v|
2/2 on Rn, with P a homogeneous harmonic polynomial of degree d, is

a lowest weight vector for θ, with weight

i(
n

2
+ d) = lowest weight of rep’n generated by P (v) e−|v|

2/2 (P deg d harmonic homog.)

Proof: First, letting g(v) = e−|v|
2/2, compute

(r2 −∆)(P (v) g(v)) = r2 P (v) g(v)−
∑
j

∂

∂xj
(Pj(v) g(v)− xj P (v) g(v))

= r2 P (v) g(v)−
∑
j

(Pjj(v) g(v)− P (v) g(v)− 2xj Pj(v) g(v) + x2
j P (v) g(v))

= r2 P (v) g(v)−∆P (v) g(v) + nP (v) g(v) + 2dP (v) g(v)− r2 P (v) g(v) = (n+ 2d)P (v) g(v)

invoking Euler’s theorem [12] along the way. Since θ = i
2 (r2 −∆) we obtain the claimed weight.

Now we must see that L annihilates such a function. Expanding in terms of x, y, h, we have

L =
1

2

[
i 1
1 −i

]
=

1

2
(ih+ x+ y) =

1

2

 in
2

+ i
∑
j

xj
∂

∂xj
+
ir2

2
+
i∆

2


Thus, removing a factor of i/4, we want to show thatn+ 2

∑
j

xj
∂

∂xj
+ r2 + ∆

 P (v)g(v) = 0

We can shorten the computation a little by noting that we already computed that

(r2 −∆)P (v)g(v) = (n+ 2d)P (g)g(v)

so
∆P (v)g(v) = (r2 − n− 2d)P (v)g(v)

[12] The theorem of Euler’s we invoke is that
∑
j xj

∂
∂xj

P = d · P for a homogeneous function P of degree d.
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Thus, computing,n+ 2
∑
j

xj
∂

∂xj
+ r2 + ∆

 Pg =

n+ 2
∑
j

xj
∂

∂xj
+ r2 + r2 − n− 2d

 Pg

=

2
∑
j

xj
∂

∂xj
+ 2r2 − 2d

 Pg = 2
∑
j

xj(Pj g − xjP g) + (2r2 − 2d)Pg

= 2dPg − 2r2Pg + (2r2 − 2d)Pg = 0

This shows that these functions are indeed annihilated by the lowering operator L. ///

[3.0.6] Remark: The results of the appendix show that a lowest-weight representation with lowest weight
iλ with λ ≥ 1 is irreducible.

Thus, inside S (Rn) we have

∞⊕
d=0

H(d) ⊗Mn
2 +d (as O(n)× sl2-representation)

where H(d) is the space of homogeneous degree d harmonic polynomials and Mn
2 +d is the [13] lowest-weight

representation of sl2 with lowest weight n
2 + d.

[3.0.7] Remark: The subsequent discussion of quotients of S (Rn) will suggest that the above examples are
all the subrepresentations of sl2.

4. Maps to principal series: subrepresentation theorem

To study irreducibles of sl(2) obtainable as quotients of S (Rn), we will invoke Casselman’s subrepresentation

theorem [Casselman Milicic 1982], explained below. [14]

Instead of simply sl2 representations, we need a bit more structure. This was one of Harish-Chandra’s
fundamental insights.

Let K = SO2(R) be the usual special orthogonal subgroup of SL2(R), defined to be

K = SO2(R) = {g ∈ SL2(R) : g> g = 12}

Letting G = SL2(R) and g = sl2, a (g,K)-module or Harish-Chandra module [15] is a g-representation
space V (a complex vector space) with an additional structure of K-representation, with the (natural)

compatibilities [16] that

k · (x · (k−1 · v)) = (kxk−1) · v (for v ∈ V , x ∈ g, and k ∈ K)

[13] Again, for lowest weight iλ with λ ≥ 1 we know that the isomorphism class of the representation is uniquely

determined by the lowest weight. Thus, for n > 1 or d > 0 we have this uniqueness.

[14] A much simpler proof of the subrepresentation theorem, applicable to sl2 appears in [Casselman Osborne 1978].

[15] Sometimes an additional and implicit condition is imposed in the definition of (g,K)-module,, namely, that the

multiplicity of each irreducible of K in V is finite. This is the condition of (K-) admissibility.

[16] These compatibilities are the ones that would arise if the representation space were the smooth vectors in a

SL2(R)-representation.
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where x → kxk−1 is the adjoint action of k ∈ K on x ∈ g, and that the action of the Lie algebra k of K
exponentiates to the action of K, that is, that

d

dt

∣∣∣∣
t=0

et·y · v = y · v (for v ∈ V , y ∈ k, with ety ∈ K)

The notion of (g,K)-module turns out (with much hindsight) to be even better than the notion of g-module.

The import of the subrepresentation theorem recalled below is that every irreducible (g,K)-module imbeds
into an explicit family of representations, the principal series, parametrized simply by representations of R×,
and described as follows.

First, we grant ourselves that all the (continuous, and actually differentiable representations of R× fall into
two families

a→ χ+
s (a) = |a|s (s ∈ C)

and
a→ χ−s (a) = sgn(a) · |a|s (s ∈ C)

where sgn(a) = ±1 is the sign of a ∈ R×. The first family consists of even representations, the second of
odd. For each χ±s we will construct a useful (g,K)-module.

With G = SL2(R), as usual we have a few further important subgroups in addition to K = SO2(R), namely

P = upper-triangular =

[
∗ ∗
0 ∗

]
N = upper-triangular unipotent =

[
1 ∗
0 1

]
M = diagonal =

[
∗ 0
0 ∗

]
Given a character χ of R×, we have a corresponding character of M given by

χ

[
a 0
0 a−1

]
= χ(a)

Extend such a character trivially to N , thus giving a character on P , by

χ

[
a ∗
0 a−1

]
= χ(a)

The principal series representation [17] with character χ is

I∞χ = {smooth C-valued functions f on G : f(pg) = χ(p) · f(g) for p ∈ P and g ∈ G}

The group G = SL2(R) acts on this space, by right translations

(g · f)(h) = f(hg)

What is this I∞χ ? There are many things that can be said about this construction. The very first one is
that the construction is easy to describe, however ineffable it may be otherwise. Second, the construction is

[17] The word series is not clearly singular or plural. Since there is a family of these representations, one could say

that there is a series of them. The minor confusion arises when the word representation is dropped, and reference is

made to the principal series Iχ, for example.
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an example of induction of a representation of a subgroup to a representation of the whole group. But this
construction is not whimsical: a more substantial point is that the induction functor χ→ I∞χ is approximately
an adjoint functor to the forgetful functor of restricting from G to P . We will elaborate on a variation of
this feature below. Finally, the fact of the subrepresentation theorem makes the construction important, by
its relevance to systematic modeling of irreducible representations.

But the vectorspace I∞χ is a little too large for our present purposes.

The Iwasawa decomposition asserts that
G = P ·K

Thus, every function in the space I∞χ is completely determined by its restriction to K, and the only condition
on this restriction is left equivariance by

P ∩K =

[
±1 0

0 ±1

]
In particular, smooth functions on G restrict to smooth functions on K = SO2(R), which have (literal!)
Fourier series expansions. While smooth functions do have nicely convergent Fourier series, we want to avoid
issues of convergence. With hindsight, this is a good thing to do, although for fairly subtle reasons. A
function f on G is K-finite if the collection of finite linear combinations

g →
∑
i

ci · f(gki)

of right translates g → f(gki) of f by elements ki of K is finite-dimensional. Then, we look at the smaller

subspace [18]

Iχ = IK−finχ = {f ∈ I∞χ : f is K-finite}}

A bad effect of this shrinking of the space is that G no longer can act, since for typical h ∈ G and K-finite
f the function g → f(gh) will no longer be K-finite. However, we have not disrupted the action of g:

[4.0.1] Claim: The (right) action of the Lie algebra g preserves (right) K-finiteness of functions on G.

[4.0.2] Remark: This is a more general fact than merely concerning principal series, and follows essentially
because g is finite-dimensional. The result readily admits further generalization.

Proof: Let f be a right K-finite function on G generating a finite-dimensional K-representation V of
functions on G. The bilinear map

g× V → {functions on G}

by
x× ϕ→ x · ϕ

of course gives rise to a linear map
g⊗ V → {functions on G}

The latter linear map is a K-homomorphism:

((kxk−1 ⊗ (k · ϕ))(g) =
d

dt

∣∣∣∣
t=0

ϕ(g · et kxk
−1

· k) =
d

dt

∣∣∣∣
t=0

ϕ(g · k · et x) = k · (x⊗ ϕ)(g)

Thus, the K-representation space generated by x ·ϕ is of dimension at most the product of dim g and dimV .
///

[18] From the Iwasawa decomposition, in fact one can show that the K-finite vectors are inevitably smooth.

11



Paul Garrett: The oscillator representation (April 27, 2017)

Therefore, the K-finite vectors Iχ form a (g,K)-module. Proof of the following appears in [Cassel-
man Miličić 1982].

[4.0.3] Theorem: (Casselman) An irreducible (g,K) module imbeds in some principal series Iχ. ///

[4.0.4] Remark: Thus, we have a slightly imprecise parametrization of irreducibles of (g,K), namely, by
the principal series into which they imbed. So we give a character χ = χ±s of M ≈ R×, which is specified by
the complex number s and sign ±.

5. Adjointness: Frobenius reciprocity

The defining property of the principal series (g,K)-module Iχ is its adjointness in relation to the forgetful
functor

Resg,Kp,KM
: (g,K)-modules ∼> (p,KM )-modules (where KM = K ∩M = K ∩ P = {±12})

This adjointness is usually called Frobenius reciprocity, an example of an adjunction relationship between
functors:

[5.0.1] Theorem: For all K-admissible (g,K)-modules V there is a natural isomorphism

iV,χ : Homp,KM (Resg,Kp,KM
V, χ) ≈ Homg,K(V, Iχ)

[5.0.2] Remark: The natural isomorphism is indeed the main point here, not the construction or the
formulaic aspects of the isomorphism. The theorem can be construed as asserting the existence of an adjoint
functor χ ∼> Iχ to the forgetful functor Resg,Kp,KM

, rather than asserting any particular construction of either
Iχ or the isomorphism itself. Nevertheless, the proof of existence does proceed by exhibiting a map. In
particular, with our earlier model of Iχ by functions on G, suppressing the bulky notation for the forgetful

functor Resg,Kp,KM
, the map i = iV,χ and its inverse will be proven to be

(iϕ)(v)(pk) = χ(p) · ϕ(k · v) (with v ∈ V , p ∈ P , k ∈ K, and ϕ ∈ Homp,KM (V, χ))

(i−1Φ)(v) = Φ(v)(1) (with v ∈ V , Φ ∈ Homg,K(V, Iχ))

Proof: Let i = iV,χ. Once the formulaic description of the alleged adjoint Iχ and adjunction i are given,
the most significant remaining point is to note that the formula for iϕ gives a well-defined function on G,
since for h ∈ P ∩K

χ(ph)ϕ(h−1k · v) = χ(p)χ(h)χ(h−1)ϕ(k · v) = χ(p)ϕ(k · v)

because ϕ is a (K ∩ P )-homomorphism. Thus, in fact, we have a well-defined function on P × K. The
smoothness of iϕ on G follows from the immediate smoothness of the function on P ×K.

That the formulas for i and i−1 are mutual inverses is readily verified:

i−1(iϕ)(v) = (iϕ)(v)(1) = χ(1)ϕ(1 · v) = ϕ(v) (writing 1 = 1 · 1 ∈ P ·K)

and
i(i−1Φ)(v)(pk) = χ(p) (i−1Φ)(k · v) (definition of i)

= χ(p) Φ(k · v)(1) (definition i−1)
= Φ(k · v)(p · 1) (since Φ(k · v) is in Iχ)
= Φ(v)(p · k) (since Φ is a right K-map)

12
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Finally, there is the issue of naturality of the isomorphism in both V and χ, which amounts to commutativity
of relevant diagrams corresponding to (p,KM )-maps f : χ → χ′ and (g,K)-maps F : V → V ′ (suppressing
restrictions), namely

Homp,KM (V ′, χ)
−◦F //

iV ′,χ

��

Homp,KM (V, χ)
f◦− //

iV,χ

��

Homp,KM (V, χ′)

iV,χ′

��
Homg,K(V ′, Iχ)

−◦F // Homg,K(V, Iχ)
f◦− // Homg,K(V, Iχ′)

where we still write f for the induced map Iχ → Iχ′ , and F : V → V ′ for the map of (p,KM )-modules (after
forgetting part of the (g,K) structure). It’s straightforward to use the formulas for the maps i to see that
every such diagram commutes. This completes the verification of existence of the object Iχ and maps as
required by the adjunction. ///

[5.0.3] Remark: Note that the proof of Frobenius reciprocity in this form needed (p,KM )-module structure,
not merely p-module structure, despite the tininess of the group KM = {±1}. We will give a necessary variant
below, in effect constructing an adjoint functor for slightly different categories.

6. Co-isotypes, Jacquet modules

Since the one-dimensional representations χ of P are trivial on N , the general conclusion of Frobenius
reciprocity can be sharpened, as follows.

On one-dimensional representations χ of P that are trivial on N , the Lie algebra

n =

[
0 ∗
0 0

]
= Lie(N)

acts by 0. For an n-module V , let Vn be the co-isotype of the trivial representation of n, namely, Vn is a
quotient q : V → Vn through which every n-map to a trivial n module factors. [19] The quotient V → Vn
is also called the Jacquet module of V , by analogy with the p-adic case, and V ∼> Vn is the Jacquet
functor.

[6.0.1] Claim: The co-isotype V → Vn exists.

[6.0.2] Remark: From the defining property it is unique up to unique isomorphism if it exists, as usual.
The existence proof proceeds by constructing Vn in an unsurprising fashion as the quotient

Vn = V/nV

Proof: Certainly for a trivial n-module W (meaning that n ·w = 0 for all n ∈ n and w ∈W ) and an n-map
f : V →W ,

f(n · v) = n · f(v) = 0 (for all v ∈ V and n ∈ n)

so all C-linear combinations of elements n · v are in every such kernel. On the other hand, on the quotient
V/nV the Lie algebra n acts trivially:

n · (v + nV ) = n · v + n · nV ⊂ nV (for all n ∈ n and v ∈ V )

[19] This trivial co-isotype is also provably the largest quotient on which n acts trivially. The isotype V n is perhaps

the more intuitive object, consisting of n-fixed, that is, n-annihilated vectors in V . More properly, it is a subobject

i : V n → V through which all mapst from trivial n-modules factor.
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Thus, the quotient qV : V → V/nV is a co-isotype for the trivial n-representation. One should also check
the naturality, namely, that given an n-homomorphism f : V → V ′ we have a commutative diagram

V
f //

qV

��

V ′

qV ′

��
Vn

fn // V ′n

with the obvious definition fn(v + nV ) = f(v) + nV ′. This is immediate. ///

Let

m =

[
∗ 0
0 ∗

]
= Lie(M)

Since m normalizes n, for a p-module V the Jacquet module Vn will have a natural m-module structure

m · (v + nV ) = m · v +m (for m ∈ m, v ∈ V )

Similarly, the Jacquet module Vn attached to a (p,KM )-module V will have a (m,KM )-module structure.

7. Convenient modifications

A pervasive feature of our discussion is that we have avoided worrying about associating to the Lie algebra
representation of sl2 a group representation, whether of SL2(R) or of a covering. This avoidance is justified
both by the ease of setting up the Lie algebra representation, and the decisiveness of the conclusions we can
draw already at the level of Lie algebra representations.

Our intent is to invoke the subrepresentation theorem to approximately determine all irreducible quotients of
S (Rn), in the sense that we take the subrepresentation theorem as justification to simply look for principal
series to which S (Rn) has at least one non-trivial map. Then Frobenius reciprocity and application of the
Jacquet functor would reduce the determination of maps from S (Rn) to Iχ to the determination of n-fixed
vectors in (m,KM )-quotients of S (Rn). In fact, we will dualize to look at subobjects of the space of tempered
distributions.

However, there is a hitch, namely, that the subrepresentation theorem refers to (g,K)-modules, rather than
g-modules. When looking at the oscillator representation, this is a non-trivial issue, since we have not
described any Lie group representation corresponding to the Lie algebra representation of sl2. [20]

Let p be a subalgebra of a Lie algebra g, and let χ ∼> Ialg
χ be a right adjoint functor to the forgetful functor

V ∼> ResgpV from g-modules to p-modules. [21] That is, we want natural isomorphisms

Homp(ResgpV, χ) ≈ Homg(V, Ialg
χ )

for g-modules V and m-modules χ extended trivially to n, thus giving χ on p = m⊕ n.

[20] Indeed, for n odd the associated group representation is of a two-fold covering group of SL2(R), called the

metaplectic group in [Weil 1964]. For n even, there is a corresponding representation of SL2(R), but its definition is

not a trivial matter. Indeed, the relative ease of definition of the Lie algebra representation is in sharp contrast to

the (interesting and important) complications involved in defining the group representation.

[21] We might hope that the earlier functor χ→ Iχ might also be a right adjoint χ ∼> Ialg
χ , thus reducing worry about

defining a K-structure on the oscillator representation. However, these functors have different targets and sources,

so there are complications.
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[7.0.1] Claim: The right adjoint χ ∼> Ialg
χ exists.

[7.0.2] Remark: Existence of the right adjoint functor is the point, but, as usual, existence is proven by a
construction. The proof will show that

Ialg
χ = HomU(p)(U(g), χ)

where we give this space of maps a left U(g)-module structure by

(x · ϕ)(y) = ϕ(xι · y) (for x, y ∈ U(g) and ϕ ∈ HomU(p)(U(g), χ))

where ι is the (standard) involutive anti-automorphism on U(g) defined as follows. First, for x in the copy

of g inside U(g), define xι = −x. Then inductively (on degree in U(g)) define (x · y)ι = yι · xι. [22]

Proof: Having let slip the object(s) claimed to give the adjoint, we should also explicate the asserted
isomorphism

i : Homp(ResgpV, χ) ≈ Homg(V, HomU(p)(U(g), χ))

Unsurprisingly, it is given by

(iϕ)(v)(x) = ϕ(xι · v) (for ϕ ∈ Homp(ResgpV, χ), v ∈ V , and x ∈ U(g))

and
(i−1Φ)(v) = Φ(v)(1U(g)) (for Φ ∈ Homg(V, Ialg

χ ), and v ∈ V )

Verification that iϕ is a U(g)-linear map, and that these are mutual inverses is straightforward. ///

For a (g,K)-module V and m-representation χ extended to p as usual, we have

Homg,K(V, Iχ)
≈ //

inc

���
�
�
�
�
�

Homp,KM (V, χ)

inc

��
Homg(V, Ialg

χ )
≈ // Homp(V, χ)

with an induced injection on the left.

[7.0.3] Remark: Thus, in the happy case that Homg(V, Ialg
χ ) is small, we can get a good estimate on

Homg,K(V, Iχ) by computing via a slightly different adjointness relation. We take this as justification our
suppression of concern about K-structures.

[7.0.4] Remark: Note that in the earlier (g,K)-module formulation the character χ was an (m,KM )-
module, not merely an m-module. In the case of sl2 this only loses KM = {±1}, but this tiny group does
have some impact: we can no longer keep track of the parity of χ. That is, we are inadvertently sticking
together the two representations with the same complex parameter s but two different choices of sign. In
fact, the O(n) does contain ±1, but we won’t worry about capitalizing on that.

[22] This situation is typical of adjoints to forgetful functors between categories of modules. Especially for commutative

rings R ⊂ S with unit 1R = 1S , we have HomR(V,W ) ≈ HomS(V,HomR(S,W )) and HomR(W,V ) ≈ HomS(S ⊗R
W,V ) for R-module W and S-module V .
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8. Maps from S (Rn) to principal series

Thinking of the subrepresentation theorem, we approximately determine the irreducible quotients of S (Rn),
in the sense that we look for maps from S (Rn) to principal series Iχ. Then Frobenius reciprocity and
application of the Jacquet functor reduce the determination of maps from S (Rn) to Iχ to the determination
of n-fixed vectors in quotients of S (Rn). We dualize to look at n-fixed subspaces of the space of tempered
distributions.

[8.0.1] Remark: In the last section we saw that the modification of forgetting an alleged compact-
group structure and only remembering the g-structure does not disturb the computation suggested by the
subrepresentation theorem. As above, Ialg

χ is not the usual unramified principal series, but, rather, is the
right adjoint to the forgetful functor from g-modules to p-modules. Again, we have

Homg,K(V, Iχ)
≈ //

inc

���
�
�
�
�
�

Homp,KM (V, χ)

inc

��
Homg(V, Ialg

χ )
≈ // Homp(V, χ)

≈ // Homm(Vn, χ)

This motivates computing S (Rn)n.

We revert to our notation x, y, h for the special triple of elements of sl2.

We convert the question to one about subobjects rather than quotients. That is, given a short exact sequence

0→ A→ B → C → 0

of locally convex topological vector spaces with A closed and C the quotient, we have a natural short exact
sequence [23]

0 −→ C∗ −→ B∗ −→ A∗ −→ 0

Thus, with C a quotient of B = S (Rn) by a closed subspace A,

0 −→ C∗ −→ S (Rn)∗ −→ A∗ −→ 0

As usual, for γ ∈ sl2 there is a natural adjoint action on distributions by

(γ · u)(ϕ) = u(−γ · ϕ)

for test functions ϕ.

Thus, we will look for submodules Q∗ of the space S (Rn)∗ of tempered distributions with vectors annihilated
by C · x = n. It is easy to find distributions annihilated by x, that is, by multiplication by r2/2. To begin
with,

[8.0.2] Claim: The tempered distributions S ∗(Rn)n annihilated by n = C · x, that is, by multiplication by
r2, are supported at 0, so are linear combinations of derivatives of Dirac’s δ.

Proof: For a test function ϕ the definition of r2 · u is

(r2 · u)(ϕ) = u(r2 · ϕ)

[23] The surjectivity to A∗, follows from Hahn-Banach.
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When ϕ has (closed!) support not containing 0, ϕ/r2 is still a test function, and

0 = (r2 · u)(ϕ/r2) = u(ϕ)

That is, the support of u is {0}. That any such u is a linear combination of derivatives of δ is essentially the
theory of Maclaurin-Taylor expansions. ///

Normalize the Fourier transform as

Ff(ξ) =

∫
Rn
e−2πiξ·x f(x) dx

Since (up to constants) F interchanges x ∼ r2

2 and y ∼ −∆
2 , its relation to h is straightforward:

FhF−1 = F [x, y]F−1 = [FxF−1, FyF−1] = [(2πi)−2 y, (−2πi)2 x] = [y, x] = −h

In particular, weight vectors for h are mapped to weight vectors by Fourier transform (with weights multiplied
by −1). All the distributions supported at 0 are tempered, their Fourier transforms are polynomials, and
vice-versa.

[8.0.3] Claim: The x-annihilated distributions S ∗(Rn)n are of the form u = FP with a harmonic
polynomial P .

Proof: Applying the Fourier transform F , the condition r2u = 0 becomes

0 = F (0) = F (r2 · u) =
−∆

4π2
(Fu)

so ∆(Fu) = 0. We know that Fu is a polynomial, and this condition is that the polynomial Fu is harmonic.
Then Fourier inversion expresses u as a Fourier transform of a harmonic polynomial. ///

In S (Rn)n homogeneous distributions are weight vectors for h, as before. Note that each of these spaces of
distributions is stable under the action of O(n).

[8.0.4] Claim: The space S (Rn)n of x-annihilated distributions decomposes as a direct sum of weight
spaces for h, where

−(n2 + d)-weightspace in S (Rn)n = {u : u = FP, for homogeneous harmonic polynomial P of degree d}

Proof: Euler’s formula asserts exactly that hP = (n2 + d) · P . Taking Fourier transform flips the sign. ///

Let
(FH(d))⊥ = {f ∈ S (Rn) : u(f) = 0, for all u = FP , with P ∈ H(d)}

Dualizing back to the Schwartz space,

[8.0.5] Corollary: The quotient

S (Rn) / (FH(d))⊥

is the (n2 + d)-weightspace inside the n-cofixed vectors S (Rn)n of S (Rn). ///

[8.0.6] Corollary: The space of maps Homg(S (Rn), Ialg
χ ) is at most one-dimensional, and is one-dimensional

exactly when χ(h) = n
2 + d. ///

[8.0.7] Remark: In fact, especially in light of the earlier computations about subrepresentations of S (Rn),
this determination of S (Rn)n as m-module suggests that the actual irreducible appearing is a holomorphic
discrete series, at least for n ∈ 2Z.
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9. Appendix: sl2 representations

We recall some basic abstract features of representations of sl2, especially those with a lowest weight λ,
particularly for λ > 1

2 . As usual, we take elements x, y, h in sl2 such that

[x, y] = h [h, x] = 2x [h, y] = −2y

Since all the considerations here are abstract, it doesn’t matter which triple x, y, h from sl2 we use, as long
as these relations hold.

The symmetric complex-bilinear pairing
〈α, β〉 = tr(αβ)

on sl2 is non-degenerate, meaning that if 〈α, β〉 = 0 for all β then α = 0. [24]

Given a basis {ei} for sl2, as usual a dual basis {e∗i } is another basis for sl2 such that

〈ei, e∗j 〉 =

{
0 (i 6= j)
1 (i = j)

The non-degeneracy of 〈, 〉 uniquely determines the basis dual to a given basis. Up to a normalizing constant,

the Casimir operator [25] for sl2 is

z =
∑
j

ej e
∗
j ∈ U(sl2)

This expression is provably independent of the choice of basis {ei}, and the Casimir operator is in the center

of the universal enveloping algebra U(g). [26]

One application of the centrality of the Casimir operator is that, given a z-eigenvector v with eigenvalue λ
the Casimir operator z will act as the scalar λ on the whole sl2-representation generated by v.

By weight vector we will mean eigenvector for h. A lowest weight vector is a weight vector annihilated by y.

[9.0.1] Theorem: A representation of sl2 generated by a lowest-weight vector v with weight λ > 0 is
irreducible, with isomorphism class determined completely by λ. The eigenvalue of the Casimir operator (as

[24] In the case at hand, this non-degeneracy can be proven as follows. Note that sl2 is stable under conjugate-

transpose β → β∗. With α =

[
a b

c −a

]
, we have 〈α, α∗〉 = 2|a|2 + |b|2 + |c|2, which is positive definite. This proves

non-degeneracy.

[25] This construction of a Casimir operator applies to any semi-simple Lie algebra g, creating the simplest non-trivial

element in the center of the universal enveloping algebra U(g) of g. Without worrying about the general definition

of semi-simplicity, in effect we grab a critical property of it (Cartan’s criterion for semi-simpliciy), that there is a

suitably g-invariant non-degenerate bilinear form 〈, 〉 on g.

[26] The centrality and independence of expression can be proven as follows. Recall the natural isomorphism

EndC(sl2) ≈ sl2 ⊗ sl∗2. The pairing 〈, 〉 has the invariance property 〈gvg−1, gwg−1〉 = 〈v, w〉 for g ∈ SL2(C), so

the identification sl∗2 ≈ sl2 via 〈, 〉 is SL2(R)-equivariant. Then we have SL2(C)-equivariant

End(sl2) ≈ sl2 ⊗ sl∗2 ≈ sl2 ⊗ sl2 ⊂
⊗ • sl2 → U(sl2)

The identity map id in EndC(sl2) certainly commutes with the action of SL2(C). The equivariance implies that the

image of id in U(sl2) commutes with SL2(C), so surely with sl2. In coordinates, this definition yields the expression

in the text.

18



Paul Garrett: The oscillator representation (April 27, 2017)

normalized here) on this representation is 1
2λ

2 − λ. The representation is the direct sum

∞⊕
j=0

C · xj · v

[9.0.2] Theorem: A representation V of sl2 generated by a single weight-vector v (with weight λ)
annihilated by some power ym+1 of y, with λ > 2m, is a finite direct sum of at most m + 1 irreducible
submodules each generated by a lowest weight vector. The lowest weights of these submodules are among
λ, λ− 2, λ− 4, . . . , λ− 2m, each occurring at most once.

Proof: (of first theorem) This argument is an archetype. For basis x, y, h the dual basis is x∗ = y, y∗ = x,
and h∗ = h/2. The lowest-weight property makes the computation of the scalar have an especially explicit
conclusion: for v with h-weight λ,

zv = (
1

2
h2 + xy + yx) · v =

λ2

2
v + 0 + yx · v =

λ2

2
v + 0 + (yx− xy + xy) · v

=
λ2

2
v + 0− hv + xyv =

1

2
λ(λ− 2)v =

1

2
((λ− 1)2 − 1)v

Since v is annihilated by y and acted upon by h by a scalar, by the easy half of Poincaré-Birkhoff-Witt M
is spanned by elements x`v, with respective weights λ+ 2`.

If M had a proper submodule N , then N could not contain v (which generates the whole). Let
w =

∑
`≥j c` x

`v (with finite sum) be an element in N . We can isolate the bottom term cj x
jv by use

of h, as follows. For large t,

(h− (λ+ 2j + 2))(h− (λ+ 2j + 4)) . . . (h− (λ+ 2j + 2t)) · w = (2 · 4 · 6 · . . . · 2t) · cj · xjv

Thus, a proper submodule N would contain a lowest-weight (y-annihilated) vector xjv with 0 < j ∈ Z. Then,
xjv would have weight µ among λ+ 2, λ+ 4, and so on. Since z commutes with xj , xjv is an z-eigenvector
with with the same eigenvalue as v. That is,

1

2
((λ− 1)2 − 1) =

1

2
((µ− 1)2 − 1)

Since µ ≥ λ+2, for λ > 0 this is impossible, by elementary inequalities. Thus, M has no proper submodules.

Let I be the left ideal generated in the enveloping algebra by h − λ and y. Then U/I is an sl2-module
with lowest weight vector 1 + I with weight λ. This module U/I is universal in the sense that it surjects to
any sl2-module with lowest weight λ. By what we just saw, U/I itself is already irreducible. Thus, λ > 0
completely determines the isomorphism class.

Last, since the universal representation U/I with lowest weight λ is already irreducible, invoke Poincaré-
Birkhoff-Witt to see that it is the direct sum of subspaces C · xj · v

U(sl2)/I =
⊕

a≥0,b≥0,c≥0

C · xaybhc/I =
⊕
a≥0

C · xa · v

as claimed. ///

Proof: (of second theorem) Let m+1 be the least non-negative integer such that ym+1v = 0. We do induction
on m. For m = 0, v is a lowest-weight vector, and we invoked the first theorem. By Poincaré-Birkhoff-Witt,
the whole representation V is spanned by xayb · v with b ≤ m and a ≥ 0. We claim that there is a constant
c such that

ym · (v − xmym c) = 0
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Once we know this, by induction y−xmym v generates a direct sum of at mostm lowest-weight representations
with weights among λ, λ − 2, λ − 4, . . ., λ − 2(m − 2), each occuring at most once. By the first theorem,
these are all irreducible. And certainly ymv is a lowest-weight vector with weight λ− 2m, and it generates
an irreducible. Thus,

U(sl2) · v = Mλ−2m +
⊕
µ

Mµ

where Mν is the (irreducible) representation with lowest weight ν, and the direct sum runs over irreducibles
Mµ with lowest weights µ from among the set {λ, λ−2, λ−4, . . . , λ−2(m−1)}. The issue is to be sure that
the sum is entirely direct. The intersection of Mλ−2m with the other (direct) sum is a submodule of Mλ−2m,
which is either 0 or Mλ−2m, by the irreducibility of Mλ−2m. If the latter, there would exist a non-trivial
map of Mλ−2m to the direct sum, hence, to at least one of the summands. But all these irreducibles are
mutually non-isomorphic, so this cannot happen. Thus, the sum is direct.

Last, we turn to proving existence of the constant c such that

ym · (v − xmym c) = 0

Again by Poincaré-Birkhoff-Witt, the subspace C · ymv is the only subspace of the representation with h-
weight λ−2m. Thus, if ymxmym ·v 6= 0, this vector would be a non-zero scalar multiple of ymv, and we’d be
done. The submodule generated by ymv is a lowest-weight representation, is irreducible, and is

⊕
j≥0 C ·xjv,

by the first theorem here. Thus, xm · ymv 6= 0. Then ym · xmymv = 0 would imply that yj · xmymv = 0 for
some j < m, and we’d have a proper submodule of U(sl2) · ymv, contradicting the irreducibility. Thus, there
is such a constant c, and the induction argument succeeds. ///
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