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The p-adic integrals evaluated here were explicitly introduced only in the later 20th century, starting with
Tate and Iwasawa in 1950, by MacDonald in the 1950s, in the 1960’s by Gelfand and Piatetski-Shapiro,
Jacquet, Shalika, and then by Jacquet-Langlands in 1970, although shadows of them appeared long ago in
the work of Lagrange, Legendre, Gauss, Galois, and Dirichlet. From our vantage, they are analogues of
classical archimedean integrals.

Throughout, we compute intertwinings under the tacit assumption that parameters are in a range such that
integrals are absolutely convergent. Amusingly, the parameter values for unitary principal series are at the
edge of the region of absolute convergence, so a further analytic continuation argument is needed.

1. Normalizations of L-functions
2. Unramified principal series
3. Spherical Whittaker functions (trivial central character)
4. Spherical Whittaker functions (non-trivial central character)
5. Spherical Mellin transforms
6. Spherical Rankin-Selberg integrals
7. Spherical symmetric square via Rankin-Selberg

1. Normalizations of L-functions

Some details of the larger context are helpful in appreciating the p-adic computations. This also gives a
more detailed preview of some of the later computations.

The classical description of the L-function attached to a holomorphic modular form

f0(z) =
∑
n≥1

an e
2πinz

of level 1 and of weight κ ∈ 2Z on the upper half-plane is

Λ(s, f0) =
∫ ∞

0

ys f0(iy)
dy

y
= (2π)−s Γ(s)

∑
n≥1

an

ns

The functional equation f0(−1/z) = zκ · f0(z) of f0 gives the corresponding functional equation

Λ(κ− s, f0) = Λ(s, f0)

For various reasons, a normalization that gives a functional equation s ←→ 1 − s is more convenient. This
is almost accomplished by thinking in terms of the associated automorphic form f on the Lie group, in this
case given by

f(
(

1 x
0 1

) (
y 0
0 1

)
) = yκ/2 · f0(x+ iy)

If we were to take the Mellin transform of this, the functional equation would be with respect to s←→ −s,
which would be better, in that it would depend less upon the specific local data. And, in principle, the
normalization of coordinates cannot matter. However, patterns of more sophisticated phenomena in both
local representation theory and in a global theory of automorphic forms agitate for a correct uniform notion
of critical strip for the L-function. It turns out that a good modern normalization is

Λ(s, f) =
∫ ∞

0

ys− 1
2 f(iy)

dy

y
=

∫ ∞

0

ys− 1
2+ κ

2 f0(iy)
dy

y
= (2π)−(s− 1

2+ κ
2) Γ(s− 1

2 + κ
2 )

∑
n≥1

an

ns− 1
2+ κ

2
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= (2π)−
κ−1

2 · (2π)−s Γ(s− 1
2 + κ

2 )
∑
n≥1

an/n
κ−1

2

ns

Generally, the standard L-function [1] attached to a cuspform f on GL2 over a number field k, including the
gamma factor, is the Mellin transform

Λ(s, f) =
∫
J/k×

|y|s− 1
2 f

(
y 0
0 1

)
d×y =

∫
J

|y|s− 1
2 Wf

(
y 0
0 1

)
d×y

where Wf is the global Whittaker function for f , namely,

Wf (g) =
∫

k\A
ψ(x) f(

(
1 x
0 1

)
g) dx

with fixed non-trivial character ψ. In this normalization, the L-function has a functional equation under
s←→ 1−s. Uniqueness of local Whittaker models implies that Wf factors over primes Wf =

⊗
v Wv. Thus,

letting πv denote the (irreducible) representation of GL2(kv) generated by f , the vth Euler factor of Λ(s, f)
is given by the local Mellin transform

Lv(s, πv) =
∫

k×v

|y|s− 1
2 Wv

(
y 0
0 1

)
d×y

For example, for kv ≈ R, for a holomorphic discrete series representation πv of weight κ ∈ 2Z, the Whittaker
function for the lowest Kv-type is

Wv

(
y 0
0 1

)
= yκ/2 e−2πy (for y > 0)

Thus, the local L-function (gamma factor) in this normalization is

Lv(s, πv) =
∫ ∞

0

ys− 1
2 yκ/2 e−2πy dy

y
=

∫ ∞

0

ys+ κ−1
2 e−2πy dy

y
= (2π)−(s+ κ−1

2 ) Γ(s+
κ− 1

2
)

At spherical finite places v, the local Whittaker function is given below by the easiest case of the Shintani-
Kato-Casselman-Shalika formula,

Wv

( (
1 x
0 1

) (
y 0
0 1

) )
=

{
ψ(x) · α

n+1 − βn+1

α− β (for n = ord y ≥ 0)

0 (for n = ord y < 0)

where αβ = ω($)/q, with q the residue field cardinality, ω is the central character, $ a local parameter,
and ψ is the fixed additive character specifying the Whittaker model. Thus, at good finite primes,

Lv(s, πv) =
1

α− β

∞∑
n=0

q−n(s− 1
2 )(αn+1 − βn+1)

=
1

α− β
·
( α

1− αq−(s− 1
2 )
− β

1− βq−(s− 1
2 )

)
=

1(
1− αq−(s− 1

2 )
)(

1− βq−(s− 1
2 )

)
[1] This integral is most properly termed a zeta integral, rather than L-function, since only an optimal choice of

cuspform within an irreducible gives good local factors, especially at bad primes. The discussion of finite bad primes

is not the point here.
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=
1

1−√q(α+ β) q−s + ω($)q−2s

We can write the local L-factor in the form

Lv(s, πv) =
1(

1−Aq−s
)(

1−B q−s
) =

1

det
(
1 − q−s ·

(
A 0
0 B

) )
with

A = q
1
2α B = q

1
2β (up to permutations)

In this notation, the local factor of the symmetric square L-function at a spherical finite prime is

1

det
(
1 − q−s · Sym2

(
A 0
0 B

) ) =
1

det
(
1 − q−s ·

A2 0 0
0 AB 0
0 0 B2

 )

=
1

(1−A2 q−s) (1−AB q−s) (1−B2 q−s)

=
1

(1− qα2 q−s) (1− qαβ q−s) (1− qβ2 q−s)
=

1
(1− qα2 q−s) (1− ω($)q−s) (1− qβ2 q−s)

2. Unramified principal series

Let k be a finite extension of some non-archimedean completion ofQ, over which it is assumed unramified, for
convenience. [2] Let G = GL2(k). For applications to automorphic forms, the most important irreducible
representations of G are the spherical representations, meaning irreducibles possessing non-zero vectors
fixed under the compact subgroup [3] K = GL2(o) of G. It is non-trivial [4] that every spherical smooth
representation is a subrepresentation of one of the smooth [5] unramified principal series representations,
described just below, and is also a quotient of one such. [6]

[2] The assumption that a non-archimedean local field k is absolutely unramified over Qp is convenient because then

the local trace pairing k× k → Qp by α× β → tr k
Qp

(αβ) makes the local integers be their own dual module. Let ψo

be the additive character on Qp extended by the homomorphism property and continuity from ψo(p−`) = e−2πip−`

.

Let ψ be the additive character on k obtained by composing ψo with trace. This ψ has the convenient feature that

the indicator function of the local integers is mapped to itself by Fourier transform.

[3] In fact, K = GL2(o) is maximal compact in G. We do not use this fact. Further, every maximal compact

subgroup in G is conjugate to K. We do not use this fact, either. For G = GL2(k), proofs of these assertions are not

difficult, but are not high priority.

[4] Arguments special to GL2 can be made to show that every spherical representation imbeds in an unramified

principal series, but the best general argument is the Borel-Matsumoto theorem, whose proof uses non-trivial facts

about affine buildings attached to p-adic reductive groups.

[5] As usual, a representation of a totally disconnected group G such as GL2(k) on a complex vector space V is

smooth if the isotropy subgroup of every v ∈ V is open in G. This turns out to be the correct analogue for p-adic

groups of differentiability conditions for Lie groups.

[6] The two unramified principal series representations of which π is a subrepresentation and a quotient are certainly

isomorphic in the typical case that these unramified principal series are irreducible.
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A character α : k× → C× is unramified when it is trivial on the local units otimes. In that case, α factors
through k×/o×, so is a function of the norm, and can be written as [7]

α(y) = |y|s (for complex s)

The most straightforward model for the naively normalized unramified principal series of representations
of G induced from the subgroup P of upper-triangular matrices, with trivial central character, is [8]

Inf
χ = {f ∈ C∞(G) with f(p · g) = χ(p) f(g) for all p ∈ P and g ∈ G} (where χ

(
a ∗
0 d

)
= |a/d|s)

As usual, the smoothness condition f ∈ C∞(G) on a totally disconnected G is really a local constancy
condition that, given g ∈ G, there is an open subgroup U of G such that

f(g · u) = f(g) (for all u ∈ U)

It is easy to consider unramified principal series with not-necessarily-trivial central character ω, namely

Inf
χ = {f ∈ C∞(G) : f(p · g) = χ(p) f(g)} (where χ

(
a ∗
0 d

)
= ω(d) · |a/d|s)

Most of the computations below are qualitatively the same for non-trivial central character as for trivial,
with a slight increase in notational burden.

Another non-trivial fact [9] is that typically Inf
χ is irreducible. Thus, the spherical representations of p-adic

GL2 are essentially unramified principal series. The advantage in shifting our attention from spherical
representations to unramified principal series is that the latter are very explicitly described in a form
convenient for computations and applications.

3. The simplest integral: intertwining among principal series

The simplest integral related to non-archimedean G = GL2(k) computes the effect of a natural, frequently
appearing, intertwining operator among unramified principal series. Namely, when it converges, the integral

Tsf(g) =
∫

N

f(wng) dn (where w =
(

−1
1

)
, N =

(
1 ∗
0 1

)
)

gives a G-hom
Ts : Inf

s −→ Inf
1−s

[7] The complex parameter s is ambiguous by integer multiples of 2πi/q, where q > 1 is a generator for the (discrete)

group of non-zero values of the norm on k.

[8] Although we need an explicit model for these representations in order to carry out some standard computations,

the best definition of Inf
χ is as an object that makes a suitable form of Frobenius Reciprocity hold, namely, for every

smooth representation π of G,

HomG(π, Inf
χ ) ≈C HomP (ResGP π, χ)

where P is the subgroup of upper-triangular matrices. That is, Inf
χ is the image of χ under the functor adjoint

to the forgetful functor ResGP that converts G-representations to P -representations. Verification that the present

construction succeeds in exhibiting such an adjoint is not difficult, but not our point.

[9] A precise statement about typical irreducibility of unramified principal series representations is best considered

a corollary of the Borel-Matsumoto theorem, as in [Casselman 1980].
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The shift in index from s to 1− s is verified by changing variables: replace n by mnm−1.

The specific integral we will compute is related to the image Tsϕ
o
s of the spherical vector ϕo

s ∈ Inf
s , that is,

the right K = GL2(o)-invariant function in Inf
s taking value 1 at 1 ∈ G. Certainly a G-hom maps spherical

vectors to spherical vectors. By the Iwasawa decomposition, there is a unique such function in Inf
s .

Thus, Tsϕ
o
s is a constant multiple of ϕo

1−s. This constant is

Tsϕ
o
s(1) =

∫
N

ϕo
s(wn) dn

where w is the longest Weyl element. To evaluate the integral, use the p-adic Iwasawa decomposition, and
observe the two regimes: first, for n ∈ N ∩K, the product wn is already inside K, so ϕo

s(wn) = 1, by its
definition. For the opposite case that n 6∈ K, take x 6∈ o, and note that

w

(
1 x

1

)
·
(

1 0
−x−1 1

)
= w

(
0 x
−x−1 1

)
=

(
−x−1 1

0 −x

)
=

(
−x 0
0 −x

) (
−x−2 ∗

0 1

)
(as

(
1 0
−x−1 1

)
∈ K)

Thus, in this case,

ϕo
s(w

(
1 x

1

)
) = χ

(
−x−1 ∗

0 −x

)
= | − x−2|s = |x|−2s (for x 6∈ o)

Together, ∫
N

ϕo
s(wn) dn = meas (o) · 1 +

∫
x6∈o

|x|−2s dx = 1 +
∑
n≥1

meas (o× ·$−n) · |$−n|−2s

= 1 +
∑
n≥1

q − 1
q

qn · (qn)−2s = 1 +
q − 1
q

∑
n≥1

(q1−2s)n = 1 + 1− 1
q

q1−2s

1− q1−2s

=
1− q1−2s + (1− 1

q )q1−2s

1− q1−2s
=

1− q−2s

1− q1−2s
=

ζv(2s− 1)
ζv(2s)

Thus, with the Levi-component part included to show how the parameter of the unramified principal series
changes, we have ∫

N

f(wn
(
y 0
0 1

)
) dn = |y|1−2s · 1− q−2s

1− q1−2s

4. Spherical Whittaker functions (trivial central character)

This classical computation is the very simplest instance of the Kato-Shintani-Casselman-Shalika formula for
spherical Whittaker convolutions on GLn and on reductive groups generally.

The Whittaker function attached to a spherical representation modeled by an unramified principal series Inf
χ

is the image under a natural intertwining operator [10] from Inf
χ to the Whittaker space attached to a fixed

character ψ on N , namely

W nf
χ (g) =

∫
N

ψ(n) ϕsph
χ (w · n · g) dn (where w =

(
0 −1
1 0

)
)

[10] The intertwining operator from a principal series to the Whittaker space is essentially unique (up to scalars).

This is visible from Mackey-Bruhat double-coset considerations, namely, that P\G/N has just two elements, and one

of them cannot support a non-trivial intertwining operator.
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where ϕsph
χ is the spherical vector in Iχnf normalized by ϕsph

χ (1) = 1. Since this intertwining operator yields
W nf

χ left N -equivariant and right K-invariant, it suffices to evaluate W nf
χ on M . In fact, since the central

character is determined by that of the principal series, to know W nf
χ it suffices to evaluate

W nf
χ

(
y 0
0 1

)
=

∫
k

ψ(x) ϕsph
χ (w · nx ·my) dx (where nx =

(
1 x
0 1

)
and my =

(
y 0
0 1

)
)

Roughly: unless y is integral, local cancellation due to ψ will cause the integrand to vanish entirely. For y
integral, there is still a local cancellation effect for ordx large negative. At the edge of this regime, some
cancellation will occur without annihilating the integrand entirely. Thus, the integral will be equal to a finite
geometric series with slightly different beginning and ending terms.

For k absolutely unramified, the standard character ψ : k → C× is trivial on the local integers o but non-
trivial on $−1o, with $ a local parameter. [11] We make this assumption on ψ. An unramified character χ
with trivial central character is of the form

χ

(
a ∗
0 d

)
= |a/d|s (with s ∈ C)

First,

w · nx ·my = w ·my · nx/y =
(

1 0
0 y

)
· w ·

(
1 x/y
0 1

)
Thus, with trivial central character,

ϕ(w · nx ·my) = χ

(
1 0
0 y

)
· ϕ(w · nx/y)

Thus,

W (my) = χ

(
1 0
0 y

)
·
∫

k

ψ(x)ϕ(w · nx/y) dx = |y|1−s ·
∫

k

ψ(xy)ϕ(w · nx) dx

by replacing x by xy, producing a change-of-measure constant of |y|.

We compute the latter integral. For y 6∈ o, the character

x→ ψ(xy)

is non-trivial on o. On the other hand, nt ∈ K for t ∈ o, and ϕ is right K-invariant, so

ϕ(w · nx · nt) = ϕ(w · nx) (for t ∈ o)

Thus, we have a standard vanishing argument by change of variables, as follows.∫
k

ψ(xy)ϕ(w·nx) dx =
∫

k

ψ(xy)ϕ(w·nx ·nt) dx =
∫

k

ψ((x−t)y)ϕ(w·nx) dx = ψ(ty)
∫

k

ψ(xy)ϕ(w·nx) dx

by replacing x by x− t. Since y 6∈ o, there is t ∈ o such that ψ(ty) 6= 1. Thus,∫
k

ψ(xy)ϕ(w · nx) dx = 0 (for y 6∈ o)

[11] Even when k is absolutely ramified, sometimes there is a character ψ trivial on o and non-trivial on $−1o. This

issues is not the point here.
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Now take y ∈ o. Here we need to compute ϕ(w · nx) via the p-adic Iwasawa decomposition of wnx: right
modulo K,

w · nx =
(

0 −1
1 x

)
=


(

0 −1
1 x

) (
1 0
−x−1 1

)
=

(
x−1 −1
0 x

)
(for ordx ≤ 0)

= 1 (for ordx ≥ 0)

Thus, under the convention [12] that the measure of o is 1, break the integral over k − o into o× orbits:∫
k

ψ(xy)ϕ(w · nx) dx =
∫

o

ψ(xy) · 1 dx +
∫

k−o

ψ(xy) |x−2|s dx

For fixed y ∈ o, for ordxy < −1, the map

x→ x · (1 +$u) (with u ∈ o)

leaves ϕ(wnx) invariant, but
ψ(x(1 +$u)y) = ψ(xy) · ψ(xy$ · u)

Since xy$ 6∈ o, the character
u→ ψ(xy$ · u) (for u ∈ o)

is non-trivial, so the integral in x over such an (1 +$o)-orbit must vanish. Thus,∫
k

ψ(xy)ϕ(w · nx) dx =
∫

o

ψ(xy) · 1 dx+
∫

0>ordx≥−1−ord y

ψ(xy) |x|−2s dx

Further, there is no cancellation due to ψ except when ordxy = −1, so∫
k

ψ(xy)ϕ(w · nx) dx =
∫

o

1 dx+
∫
−ord y≤ordx<0

|x|−2s dx+
∫

ordx=−(1+ord y)

ψ(xy) |x|−2s dx

Let n = ord y and q the residue field cardinality. In the last integral, |x|−2s is constant, and∫
ordx=−(1+ord y)

ψ(xy) dx =
∫

ordx≥−(1+ord y)

ψ(xy) dx−
∫

ordx≥−ord y

ψ(xy) dx = 0−meas (y−1o) = −qn

since the first integral is the integral of a non-trivial character. Thus,∫
ordx=−(1+ord y)

ψ(xy) |x|−2s dx = −qn · (q(1+n))−2s

Thus, so far, ∫
k

ψ(xy)ϕ(w · nx) dx = 1 +
q − 1
q

n∑
`=1

q` · (q`)−2s − qn · (q(1+n))−2s

using the comparison of additive and multiplicative measures

meas ($−`o×) = q` · q − 1
q

[12] The choice of additive Haar measure on k giving o total measure 1 is compatible with other reasonable conventions

when k is absolutely unramified, but not otherwise.
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Summing the finite geometric series,

1 +
q − 1
q
· q

1−2s − (qn+1)1−2s

1− q1−2s
− qn · q−(n+1)2s

To see how this should simplify, let X = q1−2s. Then the whole is

1 +
q − 1
q
· X −X

n+1

1−X
− Xn+1

q

=
q(1−X) + (q − 1)(X −Xn+1)− (1−X)Xn+1

q(1−X)

=
q − qX + qX −X − qXn+1 +Xn+1 −Xn+1 +Xn+2

q(1−X)
=

q −X − qXn+1 +Xn+2

q(1−X)

=
1− 1

qX −X
n+1 + 1

qX
n+2

1−X
=

(1− 1
qX) (1−Xn+1)

1−X

Also, express |y|1−s in terms of X,

|y|1−s = (q−n)1−s = (q−
n
2 )2−2s = q−

n
2 · (q−n

2 )1−2s = q−
n
2 ·X−n

2

Thus,

W nf(my) = |y|1−s ·
(1− 1

qX) (1−Xn+1)

1−X
= q−

n
2 ·X−n

2
(1− 1

qX) (1−Xn+1)

1−X

= (1− 1
qX) · q−n

2 · X
−n+1

2 −X n+1
2

X−
1
2 −X 1

2
= (1− 1

qX) · (1/qX)
n+1

2 − (X/q)
n+1

2

(1/qX)
1
2 − (X/q)

1
2

Let
α = (1/qX)

1
2 = q

1
2 (−(1+1−2s)) = q−1+s β = (X/q)

1
2 = q

1
2 (1−2s−1) = q−s

Note that
α · β = 1/q

Then

W nf
s (my) = (1− q−2s) · α

n+1 − βn+1

α− β

Normalizing this Whittaker function to take value 1 at the identity encourages us to discard the leading
constant 1− q−2s. Further, the unramified principal series representations satisfy a relation under s→ 1− s
in the naive normalization, suggesting replacing s by 1

2 + iµ. Thus, with a less naive normalization,

Wiµ(my) =
1

1− q−2( 1
2+iµ)

·W nf
1
2+iµ(my) =

αn+1 − βn+1

α− β
(where α = q−

1
2+iµ and β = q−

1
2−iµ)

5. Spherical Whittaker functions (non-trivial central character)

Now we re-do the computation of the Whittaker function for an unramified principal series, allowing arbitrary
unramified central character. This adds some further notational clutter, but no new ideas. The discussion
will repeat the previous one, but be less verbose.
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The Whittaker function attached to an unramified principal series Inf
χ is the image under a natural

intertwining operator from Inf
χ to the Whittaker space attached to a fixed character ψ on N , namely

W nf
χ (g) =

∫
N

ψ(n) ϕsph
χ (w · n · g) dn (where w =

(
0 −1
1 0

)
)

where ϕsph
χ is the spherical vector in Iχnf normalized by ϕsph

χ (1) = 1. Since this intertwining operator yields
W nf

χ left N -equivariant and right K-invariant, and since the central character is determined by that of the
principal series, to know W nf

χ it suffices to evaluate

W nf
χ

(
y 0
0 1

)
=

∫
k

ψ(x) ϕsph
χ (w · nx ·my) dx (where nx =

(
1 x
0 1

)
and my =

(
y 0
0 1

)
)

The standard character ψ : k → C× is trivial on the local integers o but non-trivial on $−1o, with $ a local
parameter. An unramified character χ with central character ω is of the form

χ

(
a ∗
0 d

)
= ω(d) · |a/d|s (with s ∈ C)

First,

w · nx ·my = w ·my · nx/y =
(

1 0
0 y

)
· w ·

(
1 x/y
0 1

)
Thus,

ϕ(w · nx ·my) = χ

(
1

y

)
· ϕ(w · nx/y) = ω

(
y

y

)
χ

(
y−1

1

)
· ϕ(w · nx/y)

For convenience, write

ω(y) = ω

(
y

y

)
Thus,

W (my) = ω(y)χ
(
y−1 0
0 1

)
·
∫

k

ψ(x)ϕ(w · nx/y) dx = ω(y) |y|1−s ·
∫

k

ψ(xy)ϕ(w · nx) dx

by replacing x by xy. For y 6∈ o, the character

x→ ψ(xy)

is non-trivial on o. On the other hand, nt ∈ K for t ∈ o, and ϕ is right K-invariant, so

ϕ(w · nx · nt) = ϕ(w · nx) (for t ∈ o)

Thus, we have a standard vanishing argument by change of variables, as follows.∫
k

ψ(xy)ϕ(w·nx) dx =
∫

k

ψ(xy)ϕ(w·nx ·nt) dx =
∫

k

ψ((x−t)y)ϕ(w·nx) dx = ψ(ty)
∫

k

ψ(xy)ϕ(w·nx) dx

by replacing x by x− t. Since y 6∈ o, there is t ∈ o such that ψ(ty) 6= 1. Thus,∫
k

ψ(xy)ϕ(w · nx) dx = 0 (for y 6∈ o)

9
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Now take y ∈ o. Here we need to compute ϕ(w · nx) via the p-adic Iwasawa decomposition of wnx: right
modulo K,

w · nx =
(

0 −1
1 x

)
=


(

0 −1
1 x

) (
1 0
−x−1 1

)
=

(
x−1 −1
0 x

)
(for ordx ≤ 0)

= 1 (for ordx ≥ 0)

Thus, under the convention that the measure of o is 1, break the integral over k − o into o× orbits:∫
k

ψ(xy)ϕ(w · nx) dx =
∫

o

ψ(xy) · 1 dx +
∫

k−o

ψ(xy)ω(x)|x−2|s dx

For fixed y ∈ o, for ordxy < −1, the map

x→ x · (1 +$u) (with u ∈ o)

leaves ϕ(wnx) invariant, but
ψ(x(1 +$u)y) = ψ(xy) · ψ(xy$ · u)

Since xy$ 6∈ o, the character
u→ ψ(xy$ · u) (for u ∈ o)

is non-trivial, so the integral in x over such an (1 +$o)-orbit must vanish. Thus,∫
k

ψ(xy)ϕ(w · nx) dx =
∫

o

ψ(xy) · 1 dx+
∫

0>ordx≥−1−ord y

ψ(xy)ω(x)|x|−2s dx

Further, there is no cancellation due to ψ except when ordxy = −1, so∫
k

ψ(xy)ϕ(w · nx) dx =
∫

o

1 dx+
∫
−ord y≤ordx<0

ω(x)|x|−2s dx+
∫

ordx=−(1+ord y)

ψ(xy)ω(x)|x|−2s dx

Let n = ord y and q the residue field cardinality. In the last integral, ω(x)|x|−2s is constant, and∫
ordx=−(1+ord y)

ψ(xy) dx =
∫

ordx≥−(1+ord y)

ψ(xy) dx−
∫

ordx≥−ord y

ψ(xy) dx = 0−meas (y−1o) = −qn

since the first integral is the integral of a non-trivial character. Thus,∫
ordx=−(1+ord y)

ψ(xy)ω(x)|x|−2s dx = −qn · ω($−(n+1))(q(1+n))−2s

Thus, so far,∫
k

ψ(xy)ϕ(w · nx) dx = 1 +
q − 1
q

n∑
`=1

q` · ω($−`)(q`)−2s − qn · ω($−(n+1))(q(1+n))−2s

using the comparison of additive and multiplicative measures

meas ($−`o×) = q` · q − 1
q

Summing the finite geometric series,

1 +
q − 1
q
· ω($−1)q1−2s − (ω($−(n+1))qn+1)1−2s

1− ω($−1)q1−2s
− qn · ω($−(n+1))q−(n+1)2s

10
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To see how this should simplify, let X = ω($−1)q1−2s. Then the whole is

1 +
q − 1
q
· X −X

n+1

1−X
− Xn+1

q

=
q(1−X) + (q − 1)(X −Xn+1)− (1−X)Xn+1

q(1−X)

=
q − qX + qX −X − qXn+1 +Xn+1 −Xn+1 +Xn+2

q(1−X)
=

q −X − qXn+1 +Xn+2

q(1−X)

=
1− 1

qX −X
n+1 + 1

qX
n+2

1−X
=

(1− 1
qX) (1−Xn+1)

1−X

= (1− ω($−1)q1−2s

q
) · 1− ω($−1)n+1 (q1−2s)n+1

1− ω($−1) q1−2s
= (1− ω($−1)q−2s) · 1− ω($−1)n+1 (q1−2s)n+1

1− ω($−1) q1−2s

Put back the leading factor ω(y)|y|1−s = ω($n)(q−n)1−s to obtain

W nf(my) = ω($n)(q−n)1−s(1− ω($−1)q−2s) · 1− ω($−1)n+1 (q1−2s)n+1

1− ω($−1) q1−2s

= (1− ω($−1)q−2s) ·
(
ω($)q−(1−s)

)n+1 −
(
q−s

)n+1

ω($)q−(1−s) − q−s

Let
α = ω($)q−(1−s) β = q−s

Note that

α · β =
ω($)
q

(with central character ω)

Then

W nf(my) = (1− ω($−1)q−2s) · α
n+1 − βn+1

α− β
Normalizing this Whittaker function to take value 1 at the identity encourages us to discard the leading
constant 1 − ω($−1)q−2s. Further, the unramified principal series representations satisfy a relation under
s→ 1−s in the naive normalization, suggesting replacing s by 1

2 + iµ. Thus, with a less naive normalization,

Wχ(my) =
1

1− ω($−1)q−2( 1
2+iµ)

·W nf
χ (my) =

αn+1 − βn+1

α− β
(with α = ω($)q−

1
2+iµ, β = q−

1
2−iµ)

6. Spherical Mellin transforms

The v-adic local factor in the Mellin transform representation of standard L-functions for GL2 is∫
k×
|y|s− 1

2 W

(
y

1

)
dy (s ∈ C, measure is multiplicative Haar)

where W is the non-naively normalized Whittaker function W = Wχ just computed. The shift by 1
2 in the

exponent is as in the discussion of normalization of L-functions. Since the integrand is o×-invariant, the
integral over k× is ∫

k×
=

∫
k×/o×

∫
o×

=
∫

k×/o×
(giving o× measure 1)
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with k×/o× having counting measure. Thus, the local Mellin transform is∫
k×
|y|s− 1

2 W

(
y

1

)
dy =

∞∑
n=0

|$n|s− 1
2
αn+1 − βn+1

α− β

=
∞∑

n=0

(q−n)s− 1
2
αn+1 − βn+1

α− β
(where α = ω($)q−

1
2+iµ, β = q−

1
2−iµ)

Summing the geometric series gives

1
α− β

·
( α

1− αq−(s− 1
2 )
− β

1− βq−(s− 1
2 )

)
=

1
α− β

· α− αβq
−(s− 1

2 ) − β + αβq−(s− 1
2 )

(1− αq−(s− 1
2 )) (1− βq−(s− 1

2 ))

=
1

(1− αq−(s− 1
2 )) (1− βq−(s− 1

2 ))
=

1
1−√q(α+ β) q−s + qαβ q−2s

=
1

1−√q(α+ β) q−s + ω($) q−2s

since, as in the computation of Whittaker functions, αβ = ω($)/q, with central character ω.

7. Spherical Rankin-Selberg integrals

The local integral appearing in a Rankin-Selberg convolution is∫
Z\G

ε(g) W1(g) W2(g) dg

where εs is a vector in a principal series, and the Wj ’s are Whittaker functions. Locally at absolutely
unramified finite places where ε is the normalized spherical vector in the sth unramified principal series,
where both Wj ’s are spherical, all with trivial central characters, the integral over Z\G is an integral over
Z\G/K where K is maximal compact. Then the integral is over Z\P where P has left Haar measure,∫

k×
|y|s−1 W1

(
y

1

)
W2

(
y

1

)
dy =

∑
n≥0

|$`|s−1 α
n+1 − βn+1

α− β
· γ

n+1 − δn+1

γ − δ

where α, β, γ, δ are complex numbers with

αβ = γδ = 1/q (for trivial central characters)

With X = |$|s−1 = q−(s−1), this is

∑
n≥0

Xn αn+1 − βn+1

α− β
· γ

n+1 − δn+1

γ − δ
=

1
(α− β)(γ − δ)

(
αγ

1− αγX
− αδ

1− αδX
− βγ

1− βγX
+

βδ

1− βδX

)

=
1

(α− β)(γ − δ)

(
αγ − α2γδX − αδ + α2γδX

(1− αγX) (1− αδX)
− βγ − β2γδX − βδ + β2γδX

(1− βγX) (1− βδX)

)
=

1
(α− β)

(
α

(1− αγX) (1− αδX)
− β

(1− βγX) (1− βδX)

)

=
1

(α− β)
·

(
α− γ

qX −
δ
qX + β

q2 X
2
)
−

(
β − γ

qX −
δ
qX + α

q2 X
2
)

(1− αγX) (1− αδX) (1− βγX) (1− βδX)

=
1

(α− β)
·

(α− β)− (α− β) 1
q2 X

2

(1− αγX) (1− αδX) (1− βγX) (1− βδX)
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=
1− 1

q2 X
2

(1− αγX) (1− αδX) (1− βγX) (1− βδX)

=
1− q−2s

(1− αγq−(s−1)) (1− αδq−(s−1)) (1− βγq−(s−1)) (1− βδq−(s−1))

Since
αβ = γδ =

1
q

the shift in the exponent of q can reasonably be absorbed:

(1− q−2s) · 1

det
(
14 − q−s ·

(
α
√
q

β
√
q

)
⊗

(
γ
√
q

δ
√
q

) )

8. Spherical symmetric square via Rankin-Selberg

In the non-archimedean local Rankin-Selberg integral, when the two Whittaker functions are the same, that
is, when [13]

γ = α and δ = β or γ = β and δ = α

there is simplification: the integral of the last section becomes

1− q−2s

(1− α2q−(s−1)) (1− 1
q q
−(s−1)) (1− β2q−(s−1)) (1− 1

q q
−(s−1))

=
1− q−2s

(1− α2q−(s−1)) (1− q−s) (1− β2q−(s−1)) (1− q−s)

=
1− q−2s

1− q−s
· 1
(1− α2q−(s−1)) (1− q−s) (1− β2q−(s−1))

=
1− q−2s

1− q−s
· 1

det
(
13 − q−s ·

α2q
1

β2q

 )

[13] This could be put more elegantly, as the requirement that the conjugacy class of

„
α

β

«
is the same as the

conjugacy class of

„
γ

δ

«
.

13


