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The point here is the relatively simple argument that non-vanishing of an L-function on the line Re(s) = 1
implies an asymptotic result parallel to the application of ζ(s) to the Prime Number Theorem. This is based
upon [Newman 1980]. In particular, this argument avoids estimates on the zeta function at infinity and also
avoids Tauberian arguments.

For completeness, we recall the standard clever ad hoc argument for the non-vanishing of ζ(s) on Re(s) = 1,
thus giving a complete proof of the Prime Number Theorem here.

However, the larger intent is to prove non-vanishing results for L-functions by capturing the L-functions in
constant terms of Eisenstein series (after Langlands and Shahidi), and then apply the present argument to
obtain the most immediate asymptotic corollary.

• Non-vanishing of L-functions on Re(s) = 1
• Convergence theorem
• First corollary on asymptotics
• Elementary lemma on asymptotics
• The Prime Number Theorem
• Second corollary on asymptotics
• A general asymptotic result

1. Non-vanishing of L-functions on Re(s) = 1
As the simplest example, the Riemann zeta function

ζ(s) =
∑

n

1
ns

=
∏

p prime

1
1− 1

ps

does not vanish on the line Re(s) = 1. This is not obvious! (The usual simple but ad hoc proof is given just
below, for completeness.) As a consequence, using the Euler product expansion over primes, its logarithmic
derivative

d

ds
log ζ(s) =

ζ ′(s)
ζ(s)

= −
∑

p

d

ds
log(1− p−s) = −

∑
p

log p

ps
−

∑
p

∑
m≥2

log p

pms

is holomorphic (except for the pole at s = 1) on an open set containing Re(s) ≥ 1. From this we prove
(below) the Prime Number Theorem

lim
x→∞

number of primes ≤ x

x/ log x
= 1

or, at it is usually written,
π(x) ∼ x

log x

As is well known, a form of this was conjectured by Gauss, and the theorem was proven independently by
Hadamard and by de la Valleé Poussin.

The methodology below is perhaps the clearest proof of the Prime Number Theorem, using simplifications
found by D.J. Newman about 1980. However, the simplified form does not give any indication of the relation
between zero-free regions and the error term in the Prime Number Theorem.

In general, non-vanishing of an L-function (with Euler product) on a vertical line implies an analogous
asymptotic result.
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The following proof is standard, but is objectionable for its ad hoc nature.

Proposition: The zeta function ζ(s) does not vanish on the line Re(s) = 1.

Proof: The trick is to note that for arbitrary real θ

3 + 4 cos θ + cos 2θ ≥ 0

This follows from cos 2θ = 2 cos2 θ − 1 and the fact that then

3 + 4 cos θ + cos 2θ = 2 + 4 cos θ + 2 cos2 θ = 2 (1 + cos θ)2 ≥ 0

Suppose that ζ(1 + it) = 0, and consider

D(s) = ζ(s)3 · ζ(s + it)4 · ζ(s + 2it)

At s = 1 the pole of ζ(s) at s = 1 would cancel some of the alleged vanishing of ζ(s + it) at s = 1, and
1+2it may be a 0 of ζ(s), but is certainly not a pole. Thus, in fact, if we can prove that D(s) does not have
a zero at s = 1, then we will have proven that ζ(s) has no zero on the line Re(s) = 1.

For Re(s) > 1, taking the logarithmic derivative of D(s) gives

d

ds
log D(s) = −

∑
p

∑
m≥1

(3 + 4p−mit + p−2mit) log p

pms

The limit of this multiplied by (s− 1), as s → 1 from the right (on the real axis), is the order of vanishing of
D(s) at s = 1, including as usual poles as negative ordersof vanishing. The real part of 3 + 4p−mit + p−2mit

is non-negative, as noted above. Thus, as s → 1 along the real axis from the right, the real part of the latter
expression is non-positive (due to the leading minus sign). In particular, this limit cannot be a positive
integer. Thus, D(s) does not have a genuine zero at s = 1. As noted, this implies that ζ(1 + it) 6= 0.

///

2. Convergence theorems

The two theorems in this section are two simple special cases of a general result. The first version has obvious
relevance to Dirichlet series, but in fact the second version is what we will use to prove the Prime Number
Theorem. A unified proof is given.

Theorem: (Version 1) Suppose that cn is a bounded sequence of complex numbers. Define

D(s) =
∑

n

cn

ns

Suppose that D(s) extends to a holomorphic function on an open set containing the closed set Re(s) ≥ 1.
Then the sum

∑
n

cn

ns converges for Re(s) ≥ 1.

Theorem: (Version 2) Suppose that S(t) is a bounded locally integrable complex-valued function.

f(s) =
∫ ∞

0

S(t) e−st dt

Suppose that f(s) extends to a holomorphic function on an open set containing the closed set Re(s) ≥ 0.
Then the integral

∫∞
0

S(t) e−st dt converges for Re(s) ≥ 0 and equals f(s).
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Proof: The boundedness of the sequence of constants cn assures that the sum D(z) =
∑

n
cn

nz is holomorphic
for Re(z) > 1. In this case define f(z) = D(z +1). Thus, in either case we have a function f(s) holomorphic
on an open set containing Re(z) ≥ 0.

Let R ≥ 1 be large. Depending on R, choose 0 < δ > 1/2 so that f(z) is holomorphic on the region
Re(z) ≥ −δ and |z| ≤ R, and let M ≥ 0 be a bound for it on that (compact) region.

Let γ be the (counter-clockwise) path bounded by the arc |z| = R and Re(z) ≥ −δ, and by the straight line
Re(z) = −δ, |z| ≤ R. Let A be the part of γ in the right half-plane and let B be the part of γ in the left
half-plane.

By residues

2πif(0) =
∫

γ

f(z) Nz

(
1
z

+
z

R2

)
dz

Indeed, the integral of f(z) against the Nzz/R2 term is simply 0 (by Cauchy’s theorem), since f(z) ·Nzz/R2

is holomorphic on a suitable region. On the other hand, the integral of f(z)Nz against 1/z is 2πi times the
value of f(z)Nz at z = 0, which is f(0).

The N th partial sum or truncated integral (respectively)

SN (z) =
∑
n<N

cn

nz

SN (z) =
∫ N

0

S(t) e−zt dt

of f(z) is an entire function of z, so we can express SN (0) as an integral over the whole circle of radius R
centered at 0, rather than having to use the path along Re(z) = −δ as for f(z), namely

2πiSN (0) =
∫

A∪−A

SN (z) Nz

(
1
z

+
z

R2

)
dz

where −A denotes the left half of the circle of radius R. Breaking the integral into A and −A pieces and
replacing z by −z in the −A integral gives∫

A

SN (z)Nz

(
1
z

+
z

R2

)
dz = 2πiSN (0)−

∫
A

SN (−z)N−z

(
1
z

+
z

R2

)
dz

On the arc A, f(z) is equal to its defining series, which we split into the N th partial sum SN (z) and the
corresponding N th tail TN (z). Therefore, the N -tail TN (0) = f(0) − SN (0) of the series/integral for f(0)
has an expression

2πi(f(0)− SN (0)) =
∫

A

(
TN (z)Nz − SN (−z)N−z

) (
1
z

+
z

R2

)
dz +

∫
B

f(z)Nz

(
1
z

+
z

R2

)
dz

Essentially elementary estimates will now show that this goes to 0 as N becomes large.

We carry out these estimates in some detail. Use a << b to mean a = O(b), and let x = Re(z). We’ll need
some obvious and elementary inequalities:

1
z + z

R2 = 2x
R2 on |z| = R

1
z + z

R2 << 2
δ along B, for fixed R, for δ sufficiently small

TN (z) <<
∫∞

N
dn

nx+1 = 1
xNx

SN (−z) <<
∫ N

0
nx−1 dn = Nx

(
1
N + 1

x

)
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On the contour A

TN (z) ·Nz

(
1
z

+
z

R2

)
<<

1
xNx

· 2x

R2
<<

1
R2

and also on A

SN (z) ·N−z

(
1
z

+
z

R2

)
<< Nx

(
1
N

+
1
x

)
· 2x

R2
<<

1
R2

+
1

N R

with constants independent of N , R, etc. Thus, estimating the integral over A by the sup of the absolute
value of the integrand multiplied by the length of the path,∫

A

(
TN (z)Nz − SN (−z)N−z

) (
1
z

+
z

R2

)
dz <<

1
R

+
1
N

On the path B,∫
B

f(z) Nz

(
1
z

+
z

R2

)
dz ≤

∫
B

M ·Nx ·
(

1
|z|

+
|z|2

R2

)
|dz| ≤ M ·

∫ R

−R

N−δ · 2
δ

dy + 2 ·M ·
∫ 0

−δ

Nx · 1
R

dx

≤ 4M

δN δ
+

2M

R log N

Thus, altogether,

f(0)− SN (0) <<
1
R

+
1
N

+
RM

δN δ
+

M

R log N

In this expression, for given positive ε take R = 1/ε, (with corresponding choice of δ, and then of bound M)
obtaining

f(0)− SN (0) << ε ·
(

1 +
1

εN
+

M

εδN δ
+

M

log N

)
for all N . By now it is clear that for sufficiently large N the expression inside the parentheses is smaller than
(for example) 2, proving that the sum/integral for f(0) converges by proving that the partial sums/integral
SN (0) converge to the value f(0) of the holomorphic function f at 0. ///

3. Corollary on asymptotics

This corollary of the convergence theorem is sufficient to prove the Prime Number Theorem. It is also used
to prove a variant (below) in which the coefficients cn are merely assumed to be bounded complex numbers
and non-zero only for n prime.

Corollary: Let cn be a sequence of non-negative real numbers. Define

D(s) =
∑

n

cn · log n

ns

Suppose that
S(x) =

∑
n≤x

cn · log n

is O(x), and that (s − 1)D(s) extends to a holomorphic function on an open set containing the closed set
Re(s) ≥ 1. That is, except for a possible simple pole at s = 1, D(s) is holomorphic on Re(s) ≥ 1. Let ρ be
the residue of D(s) at s = 1. Then ∑

n≤x

cn · log n ∼ ρ x
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Proof: Writing the sum as a Stieltjes integral and integrating by parts,

D(s) =
∫ ∞

1

t−s dS(t) = s ·
∫ ∞

1

S(t) t−s−1 dt = s ·
∫ ∞

0

S(et) e−ts dt

by replacing t by et. For Re(s) > 0, from the definition we have∫ ∞

0

(
S(et)e−t − ρ

)
e−st dt =

f(s + 1)
s + 1

− ρ

s

Note that S(et)e−t is bounded, and that the right-hand side is holomorphic on an open set containing
Re(s) ≥ 0. Thus, the convergence theorem applies, and we conclude that∫ ∞

0

(
S(et)e−t − ρ

)
e−st dt

is convergent for Re(s) ≥ 0. In particular, the integral for s = 0, namely∫ ∞

0

(
S(et)e−t − ρ

)
dt

is convergent. Changing variables back, replacing et by t, we conclude that∫ ∞

1

S(t)− ρt

t2
dt

is convergent.

To complete the proof, note that S(x) is positive real-valued and non-decreasing. Suppose now that there is
ε > 0 so that there exist arbitrarily large x with S(x) > (1 + ε)ρx. Then∫ (1+ε)x

x

S(t)− ρt

t2
dt ≥

∫ (1+ε)x

x

(1 + ε)ρx− ρt

t2
dt = ρ ·

∫ 1+ε

1

(1 + ε)− t

t2
dt

by replacing t by tx, using the non-decreasing feature of S(x). For ρ 6= 0, the latter expression is strictly
positive and does not depend upon x, contradicting the convergence of the integral. Similarly, suppose that
there is ε > 0 so that there exist arbitrarily large x with S(x) < (1− ε)ρx. Then∫ x

(1−ε)x

S(t)− ρt

t2
dt ≤

∫ x

(1−ε)x

(1− ε)ρx− ρt

t2
dt = ρ ·

∫ 1

1−ε

(1− ε)− t

t2
dt

which is negative and independent of x, contradicting the convergence. ///

4. Elementary lemma on asymptotics

The lemma here is elementary but used over and over, so deserves to be understood clearly apart from other
issues.

Lemma: Let f(x) be some function and suppose that∑
p≤x

f(p) · log p ∼ rx

Then ∑
p≤x

f(p) ∼ rx

log x
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Proof: Let
θ(x) =

∑
p≤x

f(p) · log p

ϕ(x) =
∑
p≤x

f(p)

Use a ’*’ to denote a sufficiently large but fixed lower limit of integration, whose precise nature is irrelevant
to these asymptotic estimates. Integrating by parts

ϕ(x) ∼
∫ x

∗
dϕ(t) =

∫ x

∗

1
log t

· dθ(t) =
[

1
log t

θ(t)
]x

∗
+

∫ x

∗
θ(t)

1
t log2 t

dt

We can estimate the integral of 1/ log2 t via

∫ x

∗

1
log2 t

dt =
∫ √

x

∗

1
log2 t

dt +
∫ x

√
x

1
log2 t

dt

=
∫ √

x

∗

t

t log2 t
dt +

∫ x

√
x

1
log2 t

dt ≤
√

x ·
∫ √

x

∗

1
t log2 t

dt +
1

log2√x
·
∫ x

√
x

1 dt

∼ 2
√

x

log x
+

4x

log2 x
= o

(
x

log x

)
Thus,

ϕ(x) ∼ rx

log x
−

∫ x

∗
θ(t)

1
t log2 t

dt ∼ rx

log x

This gives the asymptotics for ϕ(x) as claimed. ///

5. The Prime Number Theorem

This is the simplest example of application of the analytical results above. As always, π(x) is the number of
primes less than x. Using Chebycheff’s traditional notation, let

θ(x) =
∑
p<x

log p

where the notation is meant to imply that the sum is over primes less than x.

Theorem: (Prime Number Theorem)

π(x) ∼ x

log x

Proof: First, we’ll use properties of ζ(s) and the convergence theorem’s corollary to prove that

θ(x) ∼ x

Taking the logarithmic derivative of the zeta function gives

d

ds
log ζ(s) =

ζ ′(s)
ζ(s)

= −
∑

p

d

ds
log(1− p−s) = −

∑
p

log p

ps
−

∑
p

∑
m≥2

log p

pms
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The second sum in the latter expression is readily estimated to give a holomorphic function in the region
Re(s) > 1

2 , so the non-vanishing of ζ(s) on Re(s) = 1 (and the simple pole with residue 1 at s = 1) implies
that

f(s) =
∑

p

log p

ps

has a simple pole with residue 1 at s = 1 and is otherwise holomorphic on Re(s) ≥ 1. This Dirichlet series
has coefficients

cn =
{

log p (for n = p prime)
0 (otherwise)

The corollary of the convergence theorem immediately gives∑
p≤x

log p ∼ x

Then application of the lemma above gives the asymptotics on π(x). ///

6. Second corollary on asymptotics

Corollary: Let cp be a bounded sequence of complex numbers indexed by primes p. Define

D(s) =
∑

p

cp · log p

ps

Suppose that
S(x) =

∑
p≤x

cp · log p

is O(x), and that (s − 1)D(s) extends to a holomorphic function on an open set containing the closed set
Re(s) ≥ 1. That is, except for a possible simple pole at s = 1, D(s) is holomorphic on Re(s) ≥ 1. Let ρ be
the residue of D(s) at s = 1. Then ∑

p≤x

cp log p ∼ ρ x

Proof: First, consider the case that
S(x) =

∑
p<x

cp · log p

is real-valued (but not necessarily non-decreasing). Let C be a sufficiently large positive constant so that
C + cp ≥ 0 for every prime index p. Then the first corollary applies to S1(x) =

∑
p≤x (C + cp) · log p and to

the associated Dirichlet series

D1(s) =
∑

p

(C + cp) · log p

ps
= C ·

∑
p

log p

ps
+ D(s)

We already know that (s − 1)
∑

p
log p
ps is holomorphic on Re(s) ≥ 1, has a simple pole with residue 1 at

s = 1. And we have already proven the asymptotic assertion∑
p≤x

log p ∼ x

from the first corollary. Thus, ∑
p≤x

(C + cp) · log p ∼ (C + ρ) · x
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from which we obtain ∑
p≤x

cp · log p ∼ ρ · x

by subtracting the asymptotics for
∑

p
log p
ps . This proves the corollary for real-valued bounded cp. For

complex-valued bounded cp, simply break everything into real and imaginary parts. This proves the second
corollary. ///

7. A general asymptotic result

Let
L(s) =

∏
p

1
det(1n − p−s · Φp)

be a general Euler product expansion, where Φp is a semi-simple n-by-n complex matrix. Assume that the
eigenvalues of Φp are bounded (as p varies over primes). The boundedness assures that this Dirichlet series
converges for Re(s) > 1. The non-vanishing of L(s) on Re(s) = 1 would in many cases be implied by the
the behavior of a related Eisenstein series (in whose constant term the L-function appears). The proof is
entirely parallel to the analogous proof of the Prime Number Theorem.

Theorem: Assume that (s− 1)L(s) is holomorphic and non-zero for Re(s) ≥ 1, and that L(s) itself has a
simple pole at s = 1 with residue ρ (possibly 0). Then

∑
p≤x

log p · trΦp ∼
{

x (for ρ 6= 0)
0 (for ρ = 0)

Proof: First suppose that ρ 6= 0. Let
θ(x) =

∑
p≤x

log p · trΦp

First, use properties of L(s) and the convergence theorem’s corollary to prove that

θ(x) ∼ x

Taking the logarithmic derivative of L(s) gives

d

ds
log L(s) =

L′(s)
L(s)

=
∑

p

trΦp log p

ps
+

∑
p

∑
m≥2

trΦp log p

pms

The second sum in the latter expression is a holomorphic function in the region Re(s) > 1
2 , so the non-

vanishing of L(s) on Re(s) = 1 (and the simple pole with residue ρ 6= 0 at s = 1) implies that the Dirichlet
series

f(s) =
∑

p

trΦp log p

ps

has a simple pole with residue 1 at s = 1 and is otherwise holomorphic on Re(s) ≥ 1. This Dirichlet series
has coefficients

cn =
{

trΦp log p (for n = p prime)
0 (otherwise)

The corollary of the convergence theorem immediately gives

θ(x) =
∑
p≤x

trΦp log p ∼ x
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In the previous discussion, if ρ = 0, then the logarithmic derivative has no pole whatsoever at s = 1, and
instead of ∼ x we have ∼ 0 · x, meaning that

lim
x→∞

θ(x)
x

= 0

From the lemma above, an asymptotic relation θ(x) ∼ rx implies∑
p≤x

trΦp ∼
rx

log x

for arbitrary r. ///

[Newman 1980] D.J. Newman, Simple Analytic Proof of the Prime Number Theorem, Amer. Math. Monthly
87 (180), no. 7, pp. 693-96.
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