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indispensable stuff with few prerequisites
• Recollection of some definitions
• Irreducibility of unramified principal series: GL(n)
• Irreducibility of unramified principal series: Sp(n)
• Relation to spherical representations
• Intertwinings of unramified principal series: GL(n)

An important but seldom-heard remark is that there is essentially just one irreducible representation of
a p-adic group. Thus, rather than opening a Pandora’s box of disastrous complication, introduction of
representation-theoretic methods in study of automorphic forms and L-functions is exactly the right thing:
to the extent that there can be simplicity here, it is in the context of representation-theory.

By the claim that there is ‘just one’ representation I mean that ‘almost all the time’ in the study
of automorphic forms one considers only spherical representations, which miraculously are (essentially)
unramified principle series representations, which by definition are the simplest induced representations,
and which are described via structure constants depending upon a finite list of complex parameters. The
point is that in terms of these parameters it makes sense to talk about ‘generic’ unramified principal series
representations, so there is just one.

(Making the idea of ‘generic’ precise is part of the point of [Garrett 1994]. One should be aware that
in representation theory proper the phrase ‘generic representation’ sometimes has a different meaning: it
sometimes means that the representation ‘has a Whittaker model’, which is to say that it imbeds in a certain
induced representation whose definition is descended from study of Fourier coefficients of automorphic forms.
The above use of the word ‘generic’ is, instead, in the spirit of algebraic geometry.)

Further, not only do all the unramified principal series fit together into one family, but the fact that
unramified principal series are induced makes available many standard techniques, especially Frobenius
Reciprocity and further methods involving orbit filtrations and other ‘physical’ reasoning.

The point of these notes is to give clear statements of results which give precise details about irreducibility
of unramified principal series, and thus tell when exactly it is legitimate to presume that spherical
representations are unramified principal series, and vice-versa. All that we really do here is explicate the
assertions of [Casselman 1980] and [Borel 1976] for GL(n) and Sp(n). The first of these is the simplest
possible example, and the second is included in order to achieve a modicum of perspective. More precisely:
one must understand spherical representations of p-adic groups, since they are the most important by
far in any intelligent discussion of automorphic forms. In particular, in the list {πp} of representations of
p-adic groups attached to a ‘cuspform’, all but finitely-many of the πp must be spherical.

But the defining features of spherical representations do not make clear at all how to address any issues
about them. In [Satake 1963] it is shown how to attach a list of complex numbers to a spherical
representation, thereby parametrizing the family of all spherical representations. (This was the genesis
of Satake parameters), and was great progress in understanding spherical representations.

However, Satake’s parametrization of spherical representations still does not give any techniques for studying
them as representations, and implicitly expresses a viewpoint which does not really take representation-theory
seriously.

More effective by far, once the general effectiveness of representation theory is appreciated, is the result
of [Casselman 1980], which gives a precise criterion for irreducibility of unramified principal series (with
regular charater: see below), and gives a complete result about the appearance of spherical representations
as subrepresentations, quotient representations, or sub-quotients, of the unramified principal series. The
latter part of the discussion begins from the result of [Borel 1976].

The proofs in [Casselman 1980], as well as [Borel 1976], are written so as to depend upon never-published
notes [Casselman 1975], and also upon the general theory of buildings and BN-pairs, not to mention the
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general theory of reductive algebraic groups over p-adic fields. While the last of these may be dispensable, it
is unavoidably the case that the prerequisites for the proofs are serious. Even if one limits one’s attention to
GL(n), for the proofs one must have knowledge of enough building-theory to know about the basic structure
of Iwahori-Hecke algebras, which are not quite the more familiar items from the elementary theory of modular
forms.

So we will not give the proofs here, but only try to explain the phenomena to an extent to provide some
motivation to embark upon the much more serious project of understanding the causality.

The result of [Casselman 1980] is fundamental, along with [Borel 1976], and desire to understand the proof
ought to be sufficient reason to study buildings.

On the other hand, if one indulges in excessively compulsive representation-theoretic thinking, then the
appealing simplicity of the (‘regular’) unramified principal series (and spherical representations) becomes
objectionable, or one might start insisting that all irreducible representations be ‘understood’ before
proceeding further, or insist upon addressing the delicacies involved when the character in the unramified
principal series is not regular (see [Reeder ?]). Such impulses are mostly misguided except as issues in
themselves, since the approaches necessary to address questions about all irreducibles, as in [Gross 1991],
are quite unwieldy by comparison to the methods which quite effectively cope with far more delicate questions
about unramified principal series. And, if one cannot answer a question about regular unramified principal
series, it is unlikely that general irreducibles can be treated.

Finally, in the theory of automorphic forms, the p-factors in Euler products of automorphic L-functions are
mirrors of an underlying phenomenology of unramified principal series. See [Garrett 1994].
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1. Recollection of some definitions

Let k be an ultrametric local field of characteristic zero. (Thus, k is a finite extension of some Qp). Let q be
the residue class field cardinality. The most accessible classical group is GLn(k), the group of invertible
n-by-n matrices with entries in k.

Another ‘popular’ classical group is Spn(k), the group of isometries of a non-degenerate alternating form on
a 2n-dimensional k-vectorspace. Here, as is often done, in coordinates we use the alternating form

J = Jn =



0 −1
. . . . . .

0 −1
1 0

. . . . . .
1 0


where we have broken the matrix into n-by-n blocks. Then the definition is

Spn(k) = {g ∈ GL2n(k) : g>Jg = J}

Let G be either one of these groups, and V be a complex vectorspace with a group homomorphism

π : G → AutC(V )

Such π is a representation of G on V . As usual, a representation π of G is said to be smooth if for every
v in the representation space V the isotropy group

Gv = {g ∈ G : π(g)v = v}

of v is open. Such π is irreducible if there is no proper G-stable C-subspace of V .

2. Irreducibility of unramified principal series: GLn

Here we define the unramified principal series for GLn and state the theorem giving necessary and sufficient
condition for their irreducibility, under the hypothesis that the character is regular. In the followng section
we do the same in the only slightly more complicated case of Spn, for a little further perspective.

These are the most important representations of GLn(k) and Spn(k) and all groups in this class, and it is
fortunate that they fit together via the parametrization by s ∈ Cn, as seen below.

The standard minimal parabolic subgroup of GLn(k) is the subgroup P consisting of upper-triangular
matrices. Let

s = (s1, . . . , sn) ∈ Cn

We consider one-dimensional representations χ = χs of P of the form

χs(

 p11 ∗
. . .

0 pnn

) = |p11|s1 |p22|s2 . . . |pnn|sn

where |x| is the normalization of the norm on k so that |$| = q−1, where $ is a local parameter. Any such
χ is called an unramified character of P , since it is trivial (= 1) when all the pii are local units.
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Let
s = (s1, . . . , sn) ∈ Cn

We consider one-dimensional representations χ = χs of P of the form

χs(

 p11 ∗
. . .

0 pnn

) = |p11|s1 |p22|s2 . . . |pnn|sn

where |x| is the normalization of the norm on k so that |$| = q−1, where $ is a local parameter. Any such
χ is called an unramified character of P , since it is trivial (= 1) when all the pii are local units.

The modular function δP of P (whose definition in terms of invariant measures need not concern us at
the moment) is

δ(

 p11 ∗
. . .

0 pnn

) = |p11|n−1|p22|n−3|p33|n−5 . . . |pn−1,n−1|3−n|pnn|1−n

That is, in the notation above, this is the character χs with

s = (n− 1, n− 3, n− 5, . . . , 3− n, 1− n)

Let
Iχ = Is = Iχs

be the induced representation space of complex-valued functions f on GLn(k) so that for p ∈ P and
g ∈ GLn(k) we have

f(pg) = δ
1
2 (p)χ(p) · f(g)

and so that there is some compact open subgroup K of GLn(k) so that

f(gθ) = f(g)

for all g ∈ GLn(k) and for all θ ∈ K. The latter condition is the condition of being uniformly locally constant.
The insertion of the δ

1
2 is the ‘correct’ normalization to achieve most symmetrical statement of results below.

The group GLn(k) acts upon such functions by the right regular representation

g → Rg

defined by
(Rgf)(x) = f(xg)

The vectorspace Iχ, together with the action of GLn(k) upon it by the right regular representation, is an
unramified principal series representation of GLn(k).

If si = sj mod 2πi
log q only for i = j, then the character χ = χs is regular. This notion also has a more

intrinsic form. Let W be the group of permutation matrices in GLn(k), i.e., the collection of matrices with
just one 1 in each row and column, with all other entries 0. Then W normalizes the subgroup M of diagonal
matrices. Thus, for χ = χs as above, for w ∈ W , and for m ∈ M , we define

χw(m) = χ(w−1mw)

Thus, such χ is regular if and only if χw 6= χ unless w = 1. (The group W is essentially the Weyl group of
the Levi component M of P ).
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Theorem: ([Casselman 1980]) For regular character χ: the unramified principal series representation Iχ is
irreducible if and only if for all i < j we have

si − sj 6= ±1 mod
2πi

log q

Granting all these inequalities,
Iχ ≈ Iχw

for all w ∈ W .

3. Irreducibility of unramified principal series: Spn

Now we redo the description of the unramified principal series for Spn: The standard minimal parabolic
subgroup P of Spn(k) is not quite upper-triangular matrices in Spn(k), but rather is the subgroup of matrices
of the form 

p11 ∗
. . . ∗

0 pnn

p−1
11 0

0
. . .

∗ p−1
nn


That is, in blocks, this subgroup consists of elements of the shape(

A ∗
0 (A>)−1

)
with A an n-by-n matrix of the form

A =

 p11 ∗
. . .

0 pnn


We could choose a different non-degenerate alternating form on k2n to make the minimal parabolic actually
upper-triangular, but in fact nothing is gained by such machination.

The unramified characters χs for s ∈ Cn are

χs :



p11 ∗
. . . ∗

0 pnn

p−1
11 0

0
. . .

∗ p−1
nn


= |p11|s1 |p22|s2 . . . |pnn|sn

where again |x| is the normalization of the norm on k so that |$| = q−1, where $ is a local parameter. Any
such χ is called an unramified character of P , since it is trivial (= 1) when all the pii are local units.

The modular function δP of P is

δ(



p11 ∗
. . . ∗

0 pnn

p−1
11 0

0
. . .

∗ p−1
nn


= |p11|2n|p22|2n−2|p33|2n−4 . . . |pn−1,n−1|4|pnn|2
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That is, in the notation above, this is the character χs with

s = (2n, 2n− 2, 2n− 4, . . . , 4, 2)

Let
Iχ = Is = Iχs

be the induced representation space of complex-valued functions f on Spn(k) so that for p ∈ P and
g ∈ Spn(k) we have

f(pg) = δ
1
2 (p)χ(p) · f(g)

and so that there is some compact open subgroup K of Spn(k) so that

f(gθ) = f(g)

for all g ∈ GLn(k) and for all θ ∈ K. The latter condition is the condition of being uniformly locally constant.
The insertion of the δ

1
2 is the ‘correct’ normalization to achieve most symmetrical statement of results below.

The group Spn(k) acts upon such functions by the right regular representation

g → Rg

defined by
(Rgf)(x) = f(xg)

The vectorspace Iχ, together with the action of Spn(k) upon it by the right regular representation, is an
unramified principal series representation of Spn(k).

If si 6= ±sj mod 2πi
log q for i 6= j and if si 6= 0 mod 2πi

log q for all i, then the character χ = χs is regular.
The instrinsic version of this condition is as follows. Let W be the group of signed permutation matrices in
Spn(k), i.e., the collection of matrices in Spn(k) with just one ±1 in each row and column, with all other
entries 0. Then W normalizes the subgroup M of P consisting of diagonal matrices. Thus, as for GLn(k),
for χ = χs as above, for w ∈ W , and for m ∈ M , we define

χw(m) = χ(w−1mw)

A modest amount of reflection reveals that χ is regular if and only if χw = χ implies w = 1. The group W
modulo W ∩M is the Weyl group of the Levi component M of P .

Theorem: For regular character χ: the unramified principal series representation Iχ is irreducible if and
only if for all i < j we have

si ± sj 6= ±1

and for all i
si 6= ±1

Granting all these inequalities,
Iχ ≈ Iχw

for all w ∈ W .

Remarks: If the character is allowed to be not-necessarily regular, things instantly become very
complicated. The case of SL(2) is treated in [Casselman 1975].

Remarks: The proof of this result is highly non-trivial. In the context of ‘the intrinsic general theory of
reductive p-adic groups’, even the statement of the result is rather complicated. The truly essential non-
elementary ingredient in the proof is the fine structure theory of affine BN-pairs, which can be understood
for the classical groups without worrying too much over the general theory of reductive algebraic groups.
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4. Relation to spherical representations

Let o be the ring of integers of the local field k. The subgroup GLn(o) is readily seen to be a compact open
subgroup of GLn(k). In fact, it is not so hard to prove that it is maximal among compact open subgroups.
Analogously, the subgroup Spn(o) of Spn(k) consisting of matrices with entries in o is a maximal compact
subgroup of Spn(k), and is open.

Let G, K be GLn(k), GLn(o) or Spn(k), SpLn(o). An irreducible smooth representation π of G is K-
spherical if there is a non-zero vector vo in the representation space which is a K-fixed vector, i.e., so that
π(θ)vo = vo for all θ ∈ K.

There are several relatively elementary things that can be proven about these spherical representations
without knowing anything tangible about them. However, the crucial fact, which provided the impetus for
this discussion, is the following. (With conventions as just above, this holds for both GLn(k) and Spn(k)).

Corollary: ([Satake 1963]) Every spherical representation π is a subrepresentation of an unramified
principal series Iχ = Is, and is also a quotient of an unramified principal series. A list s = (q−s1 , . . . , q−sn)
of complex numbers so that π ⊂ Is is the list of Satake parameters.

Remarks: Although this result was effectively contained in [Satake 1963], the ideas of [Borel 1976] give a
more incisive and memorable proof.

Corollary: Let π be a spherical representation with Satake parameters s = (q−s1 , . . . , q−sn). If the
unramified principal series Iχ = Is is irreducible, then

π ≈ Iχ

In fact, for any w ∈ W ,
π ≈ Iχ ≈ Iχw

That is, under this irreducibility assumption, the Satake parameters are ambiguous up to (the permutations
in) the Weyl group W .

Remarks: By the criterion of the previous section, if χ is regular and if a certain finite list of inequalities
is satisfied, then we have the isomorphism of this last corollary. Thus, for the Satake parameters off a finite
collection of ‘hypersurfaces’, the spherical representation is an unramified principal series, and the Satake
parameters are ambiguous up to permutations.

5. Intertwinings of unramified principal series: GL(n)

The result about irreducibility of unramified principal series can be refined usefully. Since the statement
involves the Weyl groups, we treat the simplest case, GLn, in this section, and redo everything in the
slightly more complicated case of Spn in the next. Again, all that we present is an explication in more
elementary terms of the result of [Casselman 1980].

For GLn(k) we asserted above that, for χ regular, Iχ and Iχw are isomorphic when certain inequalities modulo
2πi
log q are met. With or without these inequalities, assuming only the regularity of the character χ, [Casselman
1980] proves via an orbit filtration argument that always the dimension of the space of G-homomorphisms
(=intertwining operators) from Iχ to Iχw is 1:

dimC HomGLn(k) (Iχ, Iχw) = 1

Further, there is an integral formula for such intertwining, convergent for suitable values of s, which then
can be analytically continued. The precise form of the integral is not essential at the moment, only the fact
that there is a normalization possible.

We observe that, by the Iwasawa decomposition

GLn(k) = P ·GLn(o)
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in GLn(k), there is only a one-dimensional space of GLn(o)-invariant vectors in any Iχ, a basis for this
subspace being given by the obvious candidate

fχ(pθ) = (δ1/2χ)(p)

for all θ ∈ GLn(o) and p ∈ P . Here we use the fact that χ is trivial on the overlap P ∩GLn(o). As usual,
any GLn(o)-invariant vector in a representation is called a spherical vector.

The point of the following result is that we can see exactly what happens to the essentially unique spherical
vector under these G-homomorphisms:

Theorem: Let
Tχ,w : Iχ → Iχw

be the normalized non-zero intertwining operator. Then

Tχ,wfχ = fχw ·
∏

(i,j):i<jandw(i)>j

1− qsj−si+1

1− qsj−si

where we view elements w ∈ W as giving permutations of {1, 2, . . . , n}.
Remarks: If one wanted, the product over i, j with i > j and so that w(i) < j as the product over positive
roots taken to negative roots by w.

Corollary: If

sj − si + 1 6= 0 mod
2πi

log q

for all i, j, then the spherical vector generates Iχ.

Remarks: The corollary does not follow immediately from the statement of the theorem alone, but depends
on an underlying idea about representations with Iwahori-fixed vectors, as in [Borel 1976].
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