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Harish-Chandra, Bernstein, Kazhdan

• Higher commutators
• Godement’s principle: bounding dimensions of irreducibles
• The von Neumann (strong) density theorem
• Lie’s Theorem on irreducible finite-dimensional representations of connected solvable groups
• Separating families of irreducible finite-dimensional representations
• Subrepresentation Theorem for finite-dimensional representations of reductive linear real Lie groups
• Theorem on admissibility for reductive real linear Lie groups
• Background for the p-adic case
• HarishChandra’s reduction to the supercuspidal case
• The Bernstein estimate and a corollary
• Kazhdan’s estimate on commutative subalgebras of Mn(C)
• Proof of Bernstein’s estimate

Here we prove the admissibility of irreducible unitary representations of real reductive linear Lie groups and
of linear p-adic reducive groups. This is a rewriting and collation of fragments of the above-named authors’
work.

The Lie case of the admissibility assertion was known in the 1950’s, but the p-adic case was not known until
the mid 1970’s.

The admissibility of irreducible unitaries of both p-adic reductive and linear reductive Lie groups are is one
of the fundamental facts which make representation theory effective in the study of automorphic forms and
L-functions.

1. Higher commutators

The ideas here have their origin in work of Kaplansky, who also credits Kolchin. Godement later adapted
these ideas and extended their application.

Let R be an associative ring, not necessarily with an identity. Define the higher commutator or n-
commutator of n elements of R by

[x1, . . . , xn] =
∑
π

sgn(π)xπ(1) . . . xπ(n)

where π is summed over the symmetric group Sn permuting n things.

If all n-commutators [x1, . . . , xn] are 0 for elements [x1, . . . , xn] of a ring R, then say that R is n-abelian.
Note that R is commutative if and only if it is 2-abelian.

Lemma: If R is r-abelian and s > r then R is s-abelian.

Proof: Let G be the symmetric group on s letters. Let H be the symmetric group on {1, . . . , r}, and let
J ≈ Ss−r be the symmetric group on {r + 1, . . . , s}. We imbed H × J into G in the obvious way. Let X be
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a set of representatives for (H × J)\G. Then

[y1, . . . , ys] =
∑
x∈X

sgn(x)
∑
τ∈J

sgn(τ)

(∑
σ∈H

sgn(σ)yσx(1) . . . yσx(r)

)
yτx(r+1) . . . yτx(s)

Every inner sum over σ is zero. Note that the sgn-function behaves as indicated: for example sgn(σ) with σ
viewed as an element of Ss is the same as sgn(σ) with σ viewed as an element of Sr. ♣

Lemma: Let A be an associative algebra over a field k not of characteristic 2, of k-dimension n <∞. Then
A is n+ 1-abelian.

Proof: The assertion is multi-linear in the arguments, so it suffices to take the xi to be k-basis elements for
A. If it should happen that xi = xj for i 6= j, then there is a transposition leaving the value of the higher
commutator unchanged, but changing the sign on the sum. Thus, the expression is 0 since we are not in
characteristic 2. ♣

Lemma (Kaplansky-Kolchin): Let k be a field of characteristic not 2. Given a positive integer n, let
r = r(n) be the least positive integer so that the ring Mn(k) of n× n matrices with entries in the field k is
r(n)-abelian. Then

r(n) ≥ r(n− 1) + 2 > r(n− 1)

Proof: First, by the previous lemma, we see that there do indeed exist finite integers r(n) so that Mn(k) is
r(n)-abelian.

There exist x0, . . . , xr(n−1)−1 ∈Mn−1(k) so that

[x0, . . . , xr(n−1)−1] 6= 0

There exists a pair of indices (p, q) so that the (p, q)th entry of this higher commutator is non-zero. Then let

yi =
(
xi 0
0 0

)
Then we claim that

[y0, . . . , yr(n−1)−1, ej0,n, en,n] 6= 0

where ei,j is the matrix with all 0’s excepting a 1 at the (i, j)th place.

To prove the latter claim, we note that, with y, z from among the yi, we have

. . . yen,nz . . . = 0

unless there are indices i, j so that yi,n 6= 0 and zn,j 6= 0. From this sort of consideration, we have

[y0, . . . , yr(n−1)−1, eq,n, en,n] = [y0, . . . , yr(n−1)−1]eq,nen,n =

= [y0, . . . , yr(n−1)−1]eq,n

which has (p, q)th entry the same as that of

= [x0, . . . , xr(n−1)−1]

which is non-zero. This gives the assertion. ♣

Corollary: Fix a field k of characteristic not 2. Let r(n) be as just above in the Kaplansky-Kolchin lemma.
Let A be a ring with unit. If A is r(n)-abelian then every finite-dimensional irreducible representation of A
(on a k-vectorspace) has dimension ≤ n.
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Proof: If A is r(n)-abelian, then certainly any homomorphic image of it is r(n)-abelian also. Therefore,
for every finite-dimensional representation (π, V ) of A, we conclude that π(A) is r(n)-abelian. Since V is
irreducible and finite-dimensional, by the Density Theorem π(A) is the whole endomorphism algebra of V .
By the Kaplansky-Kolchin lemma,

dimk(V ) ≤ n

This proves the corollary. ♣

Corollary: Fix a field k of characteristic not 2. Let r(n) be as just above in the Kaplansky-Kolchin lemma.
Let A be a ring with unit. If for every 0 6 α ∈ A there is an semi-simple representation π of A with dim π ≤ n
and with πα 6= 0 then A is r(n)-abelian.

Proof: The hypothesis assures that, in fact, for every 0 6 α ∈ A there is an irreducible representation π of A
with dim π ≤ n and with πα 6= 0.

Suppose that some r-commutator
α = [x1, . . . , xr]

in A were non-zero. Take an irreducible representation (π, V ) of A with πα 6= 0 and with dim π ≤ n. By
the Density Theorem, π(A) = End(V ). Then

0 6= π[x1, . . . , xr] = [πx1, . . . , πxr]

By the Kaplansky-Kolchin lemma, r < r(n). ♣

The following lemma arises in HarishChandra’s (1969) reduction of the question of admissibility of
irreducibles (p-adic case) to a related question concerning supercuspidal representations. (See below). This
assertion is not utterly trivial to verify; indeed there are several less careful assertions ‘in circulation’ which
are demonstrably false.

Key Lemma (Godement): In a ring R, consider r-commutators [x1, . . . , xr] where each xi is an s-
commutator [yi,1, . . . , yi,s]. Suppose that s is odd. If every such [x1, . . . , xr] is 0, then R is rs-abelian.

Proof: We write rs elements of the ring as

x1,1, x1,2, . . . , x1,s, x2,1, x2,2, . . . , x2,s, . . . , xr,1, xr,2, . . . , xr,s

Let G be the permutations on the set of all indices (i, j) with 1 ≤ i ≤ r and 1 ≤ j ≤ s. Let Hi be the group
of permutations of

{(i, j) : 1 ≤ j ≤ s}

We view Hi as the subgroup of G which permutes these indices and leaves all others fixed. Let J ≈ Sr be
the subgroup of G consisting of elements of the form

τπ : (i, j)→ (π(i), j)

where π ∈ Sr does not depend upon j. Note that J normalizes the subgroup ΠiHi of G. Let X be a set of
representatives for JΠiHi.

Then
sgn(τπ) = sgn(π)s = sgn(π)

because τπ is a copy of π ∈ Sr ‘on the diagonal’ in an s-fold cartesian power of Sr, and because s is odd.
Then

sgn(Πiσi τπ ξ) = Πisgn(σi) sgn(π)sgn(ξ)

Then

[x(1,1), . . . , x(r,s)] =
∑
ξ∈X

sgn(ξ)
∑

τ=τπ∈J
sgn(π)

(∑
h∈H1

sgn(h)xhτξ(1,1) . . . xhτξ(1,s)

)
. . .
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. . .

(∑
h∈Hr

sgn(h)xhτξ(r,1) . . . xhτξ(r,s)

)
=

=
∑
ξ∈X

sgn(ξ)
∑
τ=τπ

sgn(π)[xξ(1,π1), . . . , xξ(1,πs)] . . . [xξ(r,π1), . . . , xξ(r,πs)] =

=
∑
ξ∈X

sgn(ξ)[yπ1, . . . , yπr]

where
yi = [xξ(i,1), . . . , xξ(i,s)]

This expresses an rs-commutator for s odd as a linear combination of r-commutators of s-commutators.
Thus, it must vanish. ♣

2. Godement’s principle: bounding dimensions of irreducibles

A Banach space representation
π : A→ End(B)

of an associative algebra A is completely irreducible if every bounded operator on B is a strong limit of
operators in π(A).

Recall that the strong topology on the collection of bounded operators on a Banach space B is defined by
the collection of semi-norms

νx(T ) = |Tx|

for x ∈ B and a bounded operator T , where |x| is the norm on B. Thus, Ti → T in the strong topology if
and only if, for all x ∈ B, Tix→ Tx in the topology of B.

Note: The von Neumann Density Theorem (see next section) implies that for unitary Hilbert space
representations, topologically irreducible representations are completely irreducible. In fact, I don’t know
of any other way that (infinite-dimensional) completely irreducible representations occur.

For present purposes, a separating family S of representations of an associative algebra A is a collection
of representations so that, given a finite set of elements x0, . . . , xn of A, there is π ∈ S so that the images
π(xi) are all distinct.

Theorem (Godement): Suppose that an associative algebra A has a separating family S of representations,
each of which is of dimension ≤ N (with N < ∞). Then every completely irreducible Banach space
representation of A (not necessarily assumed finite-dimensional) has dimension ≤ N .

Proof: From the discussion of higher commutators, for each integer n there is a polynomial Pn in r(n) (not
necessarily commuting) variables so that

Pn(x0, . . . , xr(n)) = 0

for all x0, . . . , xr(n) ∈Mn(C), but so that there are y0, . . . , yr(n) ∈Mn+1(C) so that

Pn(y0, . . . , yr(n)) 6= 0

We have the explicit form for these polynomials:

Pn(x0, . . . , xr(n)) =
∑
σ

sgn(σ)xσ(1) . . . xσ(r)
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with σ summed over the symmetric group Sr(n) on r(n) things. The crucial aspect of them which we need
in this proof is the fact that, in every monomial

xi0 . . . xir(n)

occuring,
ij 6= ik

for j 6= k. (And every index does occur in every monomial). That is, each monomial is linear in a given xi.

Put r = r(N). Let π be a completely irreducible representation of A on a Banach space B. We claim that
it suffices to prove that

PN (T0, . . . , Tr) = 0

for all bounded operators T0, . . . , Tr on B. Indeed, let E be a (necessarily closed) finite-dimensional subspace
of B. The Han-Banach theorem can be used to show that, given an endomorphism S of E, there is an
endomorphism S̃ of B whose restriction to E is S. Therefore, for any S0, . . . , Sr endomorphisms of E, we
have

PN (S0, . . . , Sr) = PN (S̃0, . . . , S̃r) = 0

Therefore, by the nature of PN ,
dim E ≤ N

Thus, to prove the theorem it does indeed suffice to prove that

PN (T0, . . . , Tr) = 0

for all bounded operators T0, . . . , Tr on B.

Recall that in the previous section we showed: If an associative algebra A has the property that there is an
integer n so that, for every 0 6= x ∈ A there is an irreducible representation π of A of dimension ≤ n so that
π(x) 6= 0, then A is r(n)-abelian.

We emphasize that
PN (T0, . . . , Tr)

is, after all, a sum of terms of the form
±Ti0 . . . TiN

For brevity, write x instead of πx for x ∈ A. By the definition of complete irreducibility, T0 is a strong limit
of elements ts with ts ∈ A, and every expression of the form

xi0 . . . ts . . . xiN

has limit
xi0 . . . T0 . . . xiN

in the strong topology. Here we are using the fact that each monomial in PN is linear in T0. Therefore, for
all x2, . . . , xr ∈ A, in the strong topology

PN (ts, x2, . . . , xr)→ PN (T0, x2, . . . , xr)

But the left-hand side in this equality is always 0, so

PN (T0, x2, . . . , xr) = 0

Suppose (inductively) that we have shown that

PN (T0, . . . , Tj−1, xj , . . . , xr) = 0
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for all xj , . . . , xr ∈ A. Consider a monomial
±MTjN

of
PN (T0, . . . , Tj , xj+1, . . . , xr)

where M,N are monomials in the other Ti’s and in the xi’s. Again, we are using the fact that each monomial
in PN is linear in Tj . Let ts be elements of A which have strong limit Tj . Then in the strong topology

MtsN →MTjN

Therefore, in the strong topology,

PN (T0, . . . , Tj−1, ts, xj+1, . . . , xr)→ PN (T0, . . . , Tj−1, Tj , xj+1, . . . , xr)

The induction hypothesis implies that for all ts we have

PN (T0, . . . , Tj−1, ts, xj+1, . . . , xr) = 0

Therefore, we conclude that
PN (T0, . . . , Tj−1, Tj , xj+1, . . . , xr) = 0

Having completed this induction, we conclude that, for all T0, . . . , Tr bounded operators on B,

PN (T0, . . . , Tr) = 0

By the earlier remarks in this proof, this implies that the dimension of B is ≤ N . ♣

3. The von Neumann (strong) density theorem

In effect, the von Neumann density theory asserts that topologically irreducible ∗-representations on Hilbert
spaces are ‘completely irreducible’ (in Godement’s sense above).

Let H be a Hilbert space on which an associative algebra A acts by bounded operators. We may identify
elements of A with their actions upon H. We suppose that A is closed under adjoints:

A∗ = A

We suppose that H is topologically irreducible, i.e., that the only A-stable closed subspaces of H are 0 and H
itself. Then, the Density Theorem asserts that, for every bounded operator T on H, for every finite collection
v0, . . . , vn of elements of H, and for every ε > 0, there is α ∈ A so that

|Tvi − αvi| < ε

for all i.

In other words, if H is an irreducible A-space and A is ∗-closed, then in the strong topology A is dense in
the collection of all bounded (i.e., continuous) operators on H.

Proof: One important caution: many basic properties which the uniform norm on bounded operators
possesses, and which are taken for granted, fail for the strong topology . . .

We grant ourselves Schur’s Lemma for bounded operators on a Hilbert space (a consequence of even the
crudest version of a spectral theorem for bounded operators on Hilbert spaces). That is, we grant that if S
is a bounded operator commuting with all elements of A, then S is necessarily a scalar.
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Let EndA(Hn) be the ring of endomorphisms of

Hn = H ⊕ . . .⊕H n copies

commuting with all elements of A. We give this direct sum the inner product which is the sum of that on
the summands. It is easy to check that Hn is a Hilbert space.

From Schur’s Lemma it is not hard to show that every S ∈ EndA(Hn) is of the form

S(v1 ⊕ . . . vn) =
∑
j

S1jvj ⊕ . . .⊕
∑
j

Snjvj

for some complex numbers Sij . That is, this endomorphism ring is isomorphis to the ring B = Mn(C) of
n× n complex matrices.

On the other hand, one verifies directly that

S = T × . . .× T ∈ EndB(Hn)

Now put
v = v1 ⊕ . . .⊕ vn ∈ Hn

For any algebraic subspace E of any Hilbert space F , we have an orthogonal direct sum decomposition

F = Ē ⊕ E⊥

Therefore,
Hn = (Av)⊕ (Av)⊥

Let e be the orthogonal projector to (Av). Then e commutes with all elements of A, basically because A is
closed under ∗. Thus, e ∈ B.

Then
Sv = Sev = eSv ∈ (Av)

since S is a B-endomorphism and e ∈ B. That is, for every ε > 0 there is α ∈ A so that with respect to the
norm on Hn

|Sv − αv|2 < ε

Expressing this norm in terms of that on H, this is

|Tv1 − αv1|2 + . . .+ |Tvn − αvn|2 < ε

This is the von Neumann density theorem. ♣

4. Irreducibles of connected solvable groups

We recall Lie’s Theorem on irreducible finite-dimensional representations of connected solvable groups. The
derived group or commutator subgroup

G(1) = G′ = [G,G]

of a group G is the subgroup generated by all expressions

ghg−1h−1
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(In some cases one takes closure as well).

A group G is solvable if
G ⊃ G′ ⊃ G′′ ⊃ . . . G(n) ⊃ . . .

eventually terminates, i.e., if G(n) = 1 for n large enough.

Theorem (Lie): Let B be a connected solvable real Lie group. Then all irreducible finite-dimensional
representations of B are one-dimensional.

Proof (Godement): First we need

Lemma: If B is connected then so is B′.

Proof of Lemma: Let
X1 = {xyx−1y−1 : x, y ∈ B}

Xn = {x1 . . . xn : x1, . . . , xn ∈ X1}

Then X1 is connected, being the continuous image of the connected set B × B, and similarly all the other
Xn are connected. From this it is a little exercise to check that B′ =

⋃
Xi is connected:

If U, V were disjoint open sets in B with U ∪ V = B, then for all indices i either Xi ⊂ U or Xi ⊂ V . If
X1 ⊂ U then X1 ⊂ Xi implies that V ∩Xi = ∅. Thus, we would conclude that X1 ⊂ U would imply B ⊂ U .
Thus, B′ is connected, as the Lemma asserts. (♣)

Proof of theorem: If B is abelian, this is the finite-dimensional Schur’s lemma. We do induction on the ‘height’
of B, i.e., the least integer n so that B(n) = 1. Let π be an irreducible finite-dimensional representation of
B, and let N = B′.

Then ResBNπ contains a one-dimensional representation λ of N , by finite-dimensionality, so there is a non-
zero λ-eigenvector vλ of N . Let Vλ be the space of all λ-eigenvectors in the representation space V of π. Let
Λ be the collection of one-dimensional representations λ of N so that Vλ 6= 0. By the finite-dimensionality,
Λ is finite. And, of course, if vi ∈ Vλi for distinct λi, then

∑
i vi = 0 implies that all vi are 0.

Since N is normal in B, B acts on the set Λ by the ‘dual’ of conjugation:

λb(n) = λ(b−1nb)

. We give the collection of all one dimensional complex-valued characters on N the ‘strong’ topology: λi → λ
if λ(n) → λ(n) for all n ∈ N . Since Λ is finite, it is discrete. On the other hand, since B is connected, its
continuous image {λb : b ∈ B} is also connected. Thus, Λ must be a discrete set with a single connected
component, so consists of a single element.

Given b ∈ B, again using the finite-dimensionality, take a non-zero eigenvector v for b; suppose bv = cv with
c ∈ C. Then, for all x ∈ B, the commutator bxb−1x−1 is in N , by definition of what N is. Thus,

π(b)(π(x)v) = π(bxb−1x−1)π(x)(π(b)v) =

= λ(bxb−1x−1)π(x)(cv) = λ(bxb−1x−1) c π(x)v

That is, π(x)v is also an eigenvector of b.

Further, the function cλ(bxb−1x−1) is a continuous function of x, so by connectedness of B does not depend
upon x. Thus, its value is just c, since this is the value obtained for x = 1. Thus, the c-eigenspace for b in
V is a B-stable non-zero subspace of V , so must be all of V .

In other words, there is a map φ : B → C so that for all v ∈ V and for all b ∈ B

π(b)v = φ(b) v
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It follows that φ is a continuous group homomorphism. Thus, if V were not one-dimensional we would obtain
a contradiction. So we conclude that π was indeed one-dimensional. ♣

5. Separating families of irreducibles

We introduce the notion of a separating family of irreducible finite-dimensional representations. Let G be
a closed subgroup of some GL(n,R). That is, G is assumed to be a linear group.

Theorem: For all 0 6= f ∈ C∞c (G), there is an irreducible finite-dimensional representation (π, V ) of G so
that π(f) 6= 0 ∈ EndC(V ).

Proof: We may suppose without loss of generality that f is real-valued. By the Weierstrass approximation
theorem, for every ε > 0 there is a real polynomial Q on the space of real n×n matrices so that the supremum
of |f(x)−Q(x)| over the support of f is < ε. Then∫

G

fQ ≥
∫

f · (f − ε) =
∫
|f |2 − ε

∫
|f |

which is positive (hence, non-zero) for ε small enough.

Let (ρ, V ) be the representation space of G ‘generated by’ Q under right translations. That is, V consists of
all complex linear combinations of right translates by G of Q:

(
∑
i

ciRhiQ)(g) =

(
g →

∑
i

ciQ(ghi)

)

Since the action of G is linear, it preserves the total degree of such polynomials. Thus, ρ is necessarily
finite-dimensional.

Now
∫
G
fQ 6= 0 is the same thing as

(ρ(f)Q)(1) = (Rf (Q))(1) 6= 0

where R is the right regular representation. Thus, ρ(f)Q 6= 0, so certainly ρf 6= 0.

By Zorn’s lemma, this ρ has an irreducible non-zero quotient. By induction, we can make a chain of G-
subspaces

V = V1 ⊃ V2 ⊃ V3 ⊃ . . . ⊃ Vn = 0

where each quotient πi = Vi/Vi+1 is an irreducible finite-dimensional G-representation.

If πn−1f 6= 0 then we have the theorem. If, on the other hand, πn−1f = 0, then πn−1f gives rise to a
well-defined operator on Wn−2. It is easy to check that this operator is none other than πn−2f . If this is
non-zero, then we are done. If it is zero, then we continue inductively. The finite-dimensionality of ρ assures
that, if πf 6= 0, then for some i we must have πif 6= 0. This gives the theorem. ♣

6. A Subrepresentation Theorem

Here is a subrepresenation theorem for finite-dimensional representations of linear reductive real Lie groups.
Let B be a connected solvable subgroup of the linear reductive real group G.

Proposition: Every finite-dimensional irreducible representation ρ of G is a subrepresentation of IndGBχ for
some one-dimensional representation χ of B.

9



Paul Garrett: Proving Admissibility (January 15, 2009)

Proof: By finite-dimensionality, the restriction of ρ to B contains some irreducible of B, which is one-
dimensional, by previous results. Fix a non-zero vector v in that subspace, and take λ in the linear dual V ∗

so that λ(v) 6= 0. Then the map
v → cv,λ

is a G-homomorphism to IndGBχ, where cv,λ is the coefficient function

cv,λ(g) = 〈ρ(g)v, λ〉

where 〈, 〉 is the canonical pairing
V × V ∗ → C

Since λ(v) 6= 0 this map is non-zero, and since ρ is irreducible this must be an injective map. ♣

7. HarishChandra-Godement Admissibility Theorem

Now we have the HarishChandra-Godement theorem on admissibility for reductive real linear Lie groups.
Let G be a reductive real linear Lie group with maximal compact subgroup K.

Theorem: Let G be a reductive linear real Lie group and let π be an irreducible unitary representation of
G. For every irreducible δ of K, the multiplicity of δ in π is ≤ dimC δ.

Proof: Let Ω be a separating family of finite-dimensional representations of G, meaning that for any
0 6= φ ∈ C∞c (G) there is a ρ ∈ Ω so that π(φ) 6= 0.

Proposition: Fix an irreducible δ of K. If there is a constant N so that the multiplicity of δ in ρ|K is ≤ N
for all ρ ∈ Ω, then for every irreducible unitary π of G the multiplicity of δ in π|K is ≤ N .

Proof of proposition: Let C∞c (G, δ) be the collection of test functions which are of left and right K-type δ,
i.e., which under the right (or left) regular action of K generate a space which is δ-isotypic. We have

C∞c (G, δ) = χδ ∗ C∞c (G) ∗ χδ

where the convolution is over K and χδ is the character of the (finite-dimensional!) representation δ. Recall
that π(χδ) acts as a non-zero scalar on any δ-isotypic space.

Let πδ be the δ-isotype in π. Then for f ∈ C∞c (G, δ) we have π(f) = 0 if and only if πδ(f) = 0. This follows
from the convolution expression just above.

For π ∈ Ω we are assuming that dim πδ ≤ N . Therefore, for all f0, . . . , fr(N) ∈ C∞c (G, δ) we have a vanishing
higher commutator

[πf0, . . . , πfr(N)] = 0

where r(N) as in the Kaplansky-Kolchin trick discussion. Then, by Godement’s principle,

dim πδ ≤ N

This is the desired admissibility assertion. ♣

Proof of theorem: We apply the result of the proposition, invoking the Subrepresentation Theorem for
finite-dimensional representations of G:

We have seen that the finite-dimensional representations of G are a separating family, and that they all
lie inside IndGBχ for any fixed maximal connected solvable subgroup B, for some one-dimensional χ. The
Iwasawa decomposition asserts that G = BK and B ∩K = 1. Then, as K-spaces we have

IndGBχ ≈ IndKB∩KχB∩K ≈
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≈ IndK{1}C = C∞c (K) ⊂ L2(K) ≈ ⊕̂δ δ ⊗ δ̌

where we view either C∞c (K) or L2(K) as K ×K-spaces with respect to the biregular representation. Thus,
δ occurs with multiplicity which is the dimension of δ̌, which is the same as that of δ. This proves the
theorem. ♣

8. The theorem on admissibility for p-adic reductive groups

Let G be a p-adic reductive group in the sequel.

Theorem: Let K be a compact open subgroup of G, and let (δ,W ) be an irreducible representation of K.
Then δ occurs with finite multiplicity in any irreducible unitary representation (π, V ) of G.

The proof of this result was completed over the course of about twenty years, starting with some ideas of
Godement in the early ‘50’s (based on the Kaplansky-Kolchin higher commutator business), systematically
developed by HarishChandra in the ‘60’s, and concluded by Bernstein’s estimate in the early ‘70’s. The
latter result invokes in a serious way HarishChandra’s general development of the representation theory in
order to reduce the question to a relatively elementary issue. Thus, the main body of the result is due to
HarishChandra, with some crucial elements contributed by Godement (before) and Bernstein (later).

9. Background for the p-adic case

Let Z be a closed subgroup of G inside the center of G, sufficiently large so that the center of G modulo
Z is compact. (E.g., we might take Z to be the whole center, but the present condition is more flexible
and often more convenient). By Schur’s Lemma (the unitary case), any irreducible unitary representation π
of G, when restricted to the center of G, consists of scalar operators; in particular, π(Z) consists of scalar
operators. As usual, we say that π has ‘central character’ ω : Z → C× if π(z)v = ω(z)v for all z ∈ Z and
for all v ∈ V .

As usual, define C∞c (G) to be the collection of locally constant C-valued functions f on G which are
compactly-supported. And define C∞c (Z\G,ω) to be the collection of locally constant C-valued functions f
on G which are compactly-supported modulo Z, and so that

f(zg) = ω(z)f(g)

for all z ∈ Z and g ∈ G.

For a finite-dimensional (complex) representation (δ, V ) of a ‘good’ maximal compact subgroup K of G, let
H(G,δ ) be the space of EndC(V )-valued compactly-supported locally constant functions on G so that, for
all g ∈ G and for all x, y ∈ K

f(xgy) = δ(x)f(g)δ(y)

(The notation here is slightly abusive, but this is unavoidable.) This is a generalization of the Hecke algebras
H(G,K) which are defined to be the left and right K-invariant C-valued test functions on G.

Further, for a character ω of Z and representation (δ, V ) of K, we define Hω(G,K, δ) to be the collection of
End(V )-valued functions f on G so that for all g ∈ G, z ∈ Z, and x, y ∈ K

f(zxgy) = ω(z)δ(x)f(g)δ(y)

Say that f in C∞c (G), Hω(G,K, δ), or H(G, δ) is a supercuspform if, for all g ∈ G and for all unipotent
radicals N of proper parabolics P we have ∫

N

f(gn) dn = 0

11
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In any space of functions on G in which the notion of supercuspform makes sense, we denote the subspace
of such by appending left superscript ‘o’ to the symbol for the space. Thus, the subspace of Hω(G,K, δ)
consisting of all such is oHω(G,K, δ).

An irreducible unitary representation (π, V ) of G with central character ω is supercuspidal if there exist
v ∈ V, λ ∈ V ∗ so that the coefficient function cv,λ is compactly-supported modulo the center. (Again, by
Schur’s Lemma every irreducible does have a central character.)

There is another ‘definition’ of supercuspidal representation whose equivalence to the previous definition
must be appreciated. Let N be the unipotent radical of a parabolic P in G, and let N ′ range over larger and
larger compact open subgroups of N , so that the union of all the N ′ is all of N . Let (π, V ) be an irreducible
unitary representation of G. If

lim
N ′

∫
N ′

π(n)v dn = 0

for a vector v ∈ V , then (only temporarily) say that v is P -cuspidal. If every smooth vector in an irreducible
unitary π is P -cuspidal for every parabolic P , then say (only temporarily) that π is ‘para-supercuspidal’.

It is a non-trivial result, due to HarishChandra (and recreated by Jacquet in a different circumstance) that
for irreducible unitary representations supercuspidal and para-supercuspidal are equivalent.

As a paraphrase of the latter theorem, we see that always the coefficient functions of supercuspidal
representations are supercuspforms.

10. HarishChandra’s reduction to the supercuspidal case

The argument of this section reduces the general question of admissibility of irreducible unitaries to a
question of admissibility of irreducible supercuspidal representations. However, we must prove something
stronger than just admissibility for supercuspidal representations: we must show that, as π varies over
irreducible supercuspidal unitary representations, that

sup
π

dimCHomK(ρ, π|K) <∞

for every irreducible ρ of every compact open subgroup K. That is, we need to show bounded multiplicity of
ρ in π as π varies over supercuspidal representations.

Note that supercuspidal representations, being square integrable (modulo the center), are admissible. This
result holds for any (unimodular) totally disconnected group. Also, note that it suffices to consider only the
case that K is a ‘good’ maximal compact subgroup, since for any other compact open subgroup Θ and a
(necessarily finite-dimensional) irreducible ρ of Θ, IndKΘ ρ is finite-dimensional, etc.

Proof of reduction: We do induction on the semisimple rank srk(G) of G. If this rank is 0 then G/Z is
compact and an irreducible representation of G is necessarily finite-dimensional. The bounded multiplicity
of ρ in any irreducible of G follows from this.

When srk(G) > 0 then G has a proper parabolic subgroup P . A Levi component M of P has
srk(M) < srk(G). Let N be the unipotent radical of P .

Let VP be the subspace of W consisting of elements w so that for all θ ∈ N ∩K

ρ(θ)w = w

Let EP be the orthogonal projection of W to WP . For m ∈M ∩K define

ρM (m) = ρ(m) ◦ eP

12
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Then ρM is a representation of M ∩K upon VP .

For f ∈ H(G, ρ) and m ∈M define

(µP f)(m) = fP (m) = δ
1/2
P (m)

∫
N

f(mn)EP dn

where δP is the modular function on P . Then fP ∈ H(M, δM ). The ‘obvious’ integration-theory computation
proves directly that the map

µP : f → fP

is a convolution-algebra homomorphism

µP : H(G, δ)→ H(M, δM )

(Indeed, it would appear that the reason HarshChandra used H(G, ρ) rather than considering Hecke algebras
H(G,K ′) of scalar-valued functions for smaller compact open subgroups is that this convolution-algebra
homomorphism gets lost).

The compact support and local constancy give a standard sort of result:

H(M, δM ) ⊂ H(M, δ0)⊗ End(VP )

where δ0 is the trivial representation of a small-enough compact open subgroup K0 of G inside K. By
induction, H(M, δ0) is r-abelian for all sufficiently large r, and certainly End(W ) is r-abelian for all
sufficiently large r, so the tensor product is r-abelian for all sufficiently large r. Then H(M, δM ) is r-abelian
for all sufficiently large r.

There are finitely-many G-conjugacy classes of parabolics, and it follows (via the Iwasawa decomposition)
that there are finitely-many K-conjugacy classes of parabolics. We note that r(P ) is constant on K-conjugacy
classes.

Fix s ≥ r(P ) for all P . Take f1, . . . , fs ∈ H(G, δ) and put

φ = [f1, . . . , fs]

Then since H(M, δM ) is s-abelian for every proper parabolic we certainly have µP (φ) = 0 for all P if s is
sufficiently large. That is, such s-commutators are End(W )-valued supercuspforms for all s sufficiently large.

The HarishChandra’s Corollary to Bernstein’s Theorem (see the following section) asserts that the
convolution algebra oH(G, δ) of End(W )-valued supercuspforms is q-abelian for all sufficiently large q.

Thus, for all sufficiently large s and q, q-commutators of s-commutators of elements ofH(G, δ) are all 0. From
this, by Godement’s Key Lemma on these higher commutators, H(G, δ) itself is r-abelian for all sufficiently
large r. This completes HarishChandra’s proof. ♣

11. HarishChandra’s corollary to Bernstein’s estimate

The following theorem was proven by Bernstein about 1972. A crucial role is played by a clever auxiliary
estimate due to Kazhdan. Also necessary is the older fact that discrete series representations of unimodular
totally disconnected groups are admissible. HarishChandra’s speculative development of representation
theory under the assumption that someone would prove a theorem (such as Bernstein did) not only showed
remarkable foresight, but also was indispensable to the Bernstein result.

Indeed, here we state as ‘Bernstein’s Theorem’ the result which Bernstein literally proved, without invoking
the prior work of HarishChandra. By ‘HarishChandra’s corollary’ we mean the deductions made by
HarishChandra from an estimate of the sort proven by Bernstein.

13
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Let Ẑ be the unitary dual of Z, i.e., the collection of unitary characters on Z. As usual, let oHω(G,K) be
the collection of left and right K-invariant elements of oC∞c (Z\G,ω).

Theorem (Bernstein): For any compact open subgroup K of G, the supremum of the dimensions of the
finite-dimensional representations of Hω(G,K) is finite.

Proof: Below, in succeeding sections.

The first of the following two corollaries is HarishChandra’s non-trivial deduction (in advance) from the
result just stated. The second corollary, which is an elementary corollary of the first corollary, is what is
actually needed in HarishChandra’s induction argument of the previous section.

Corollary (HarishChandra): For any compact open subgroup K of G, the Hecke algebra oHω(G,K) is
p-abelian for sufficiently large p.

Proof: From general ‘abstract representation theory’, one knows the following (often called the Gelfand-
Raikov Theorem): Let G be a unimodular, locally compact, second countable topological group. Then,
given 0 6= f ∈ Coc (G), there is an irreducible unitary representation π of G so that π(f) 6= 0.

From this, we know that, given an element f ∈o Hω(G,K) there is an irreducible unitary representation π
of G so that π(f) 6= 0. But unless π is supercuspidal we would have π(f) = 0, since by HairshChandra’s
work (mentioned above) supercuspidal representations are ‘para-supercuspidal’. Thus, for f ∈o Hω(G,K)
we conclude that there is a supercuspidal irreducible unitary representation π of G so that π(f) 6= 0.

By the definition, supercuspidal representations have coefficient functions which are compactly supported
modulo the center (and are continuous), so are square-integrable modulo the center. That is, they are
in the discrete series. Again from ‘general representation theory’, any discrete-series representation of a
locally compact unimodular totally disconnected group is admissible. Thus, the associated representations
of Hω(G,K) on the K-fixed vectors πK in discrete series π are finite-dimensional. It also follows from the
admissibility that πK is an (algebraically) irreducible representation of Hω(G,K), for π a discrete series
representation.

Then, by the Bernstein estimate, there is an absolute bound (depending only upon K) for the dimension of
the K-fixed vectors in discrete series of G.

Thus, we have a family of finite-dimensional representations, of absolutely bounded dimension, which
‘separate’ elements of oHω(G,K). By the Godement principle, we conclude that oHω(G,K) is indeed
p-abelian for sufficiently large p. ♣

Corollary (of corollary): Let (ρ, V ) be a finite-dimensional representation of a compact open subgroup
K of G. Then the convolution algebra oC∞c (G, ρ) of End(W )-valued supercuspforms is p-abelian for all
sufficiently large p.

Proof of corollary of corollary: We assume the assertion of HarishChandra’s corollary. For a sufficiently
small compact open subgroup K0 of K ⊂ G, ρ|K0 is a multiple of the trivial representation. Thus,

oH(G, δ) ⊂o H(G,K0)⊗C End(W )

Now for an irreducible (π, V ) of G with central character ω, for f ∈ H(G) we have

π(f) = πω(fω)

where
fω(g) =

∫
Z

ω(z) f(zg) dz ∈ C∞c (Z\G,ω−1)

and for v ∈ V
πω(fω)v =

∫
G

/Z f(ḡ)π(ḡ)v dḡ
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Take f1, . . . , fp ∈o H(G,K0). Then

π[f1, . . . , fp] = [πωf1,ω, . . . , πωfp,ω] = 0

for all p large-enough so that
p > sup

ω∈Ẑ
dim oC∞c (K0\G/K0, ω)

Therefore, we conclude that oH(G, δ) is p-abelian for such p. This proves the corollary. ♣

12. Kazhdan’s estimate on commutative subalgebras

Kazhdan’s estimate on commutative subalgebras of matrix algebras is essential in Bernstein’s argument and
of independent interest. The reader might imagine that a sharper estimate can be obtained, but it seems
difficult to do so.

[12.0.1] Lemma: (Kazhdan) Let k be a field. A commutative k-subalgebra (with unit 1) A = k[α1, . . . , α`]
of Endk(kn) with ` (non-scalar) k-algebra generators α1, . . . , α` has

dimk A ≤ (n2)1−2−`

Proof: The argument is by induction on `. For ` = 1, the assertion is that the dimension is at most n, which
follows from elementary divisor theory. For ` > 1, we do an induction on n. Let ϕ(`, n) be the maximum
dimension of commutative algebras A of Endk(kn) with ` generators for given n, and let

f(`, n) = (n2)1−2−`

If V decomposes as a direct sum of A-modules

V = V1 ⊕ V2

with dimk Vi = ni, then, by induction in n,

dimk A ≤ ϕ(`, n1) + ϕ(`, n2) ≤ f(`, n1) + f(`, n2) ≤ f(`, n)

with the last inequality following because the exponent 2(1− 2−`) satisfies 2(1− 2−`) ≥ 1.

Therefore, to accomplish the induction step in n, it suffices to consider V which does not decompose properly
as a direct sum of A-submodules. We assume dimk A > f(`, n) and reach a contradiction.

When the A-module V does not properly as a direct sum of proper A-submodules, there is a k-algebra
homomorphism λ : A→ k and an integer N such that for all α ∈ A and for all v ∈ V

(α− λ(α))N (v) = 0

Replace each of the (non-scalar) generators α1, . . . , α` of A by αi − λ(αi), to assume that these generators
are nilpotent.

We claim that, when V does not decompose as a direct sum of proper A-submodules,

dimk A ≤ φ(`,
[
n− φ(`, n)

n

]
) + φ(`− 1, n)

where [x] is the greatest integer less than or equal a real number x.
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To prove this claim, let I be the ideal in A generated by the nilpotent generators α1, . . . , α`, and fix a
subspace L in V complementary to I · V with m = dimk L. Since IiL generates Ii · V modulo Ii+1 · V ,
necessarily A · L = V .

Any T ∈ A is necessarily determined by its values on L, because AL = V and for αi ∈ A and vi ∈ L we have

T (
∑
i

αivi) =
∑
i

αi Tvi

Thus,
dimk A ≤ nm

and

n−m ≤
[
n− φ(`, n)

n

]
Let A′ = A · α1 and let A′′ be the subalgebra generated by α2, . . . , α`. Then A = A′ +A′′ and α · V ⊂ I · V
gives

dimk A ≤ dimk A
′ + dimk A

′′ ≤ dimk A
∣∣
I·V + dimk A

′′ ≤ ϕ(`, n−m) + ϕ(`− 1, n)

= φ(`,
[
n− φ(`, n)

n

]
) + φ(`− 1, n)

proving the claim.

Now we can reach our contradiction to the assumption that dimk A > f(`, n). Using the assertion of the
claim, applying the induction hypothesis,

f(`, n) < dimk A ≤ f(`,
[
n− φ(`, n)

n

]
) + f(`− 1, n) ≤ f(`, n− φ(`, n)

n
) + f(`− 1, n)

≤ f(`, n− f(`, n)
n

) + f(`− 1, n)

because f is monotone increasing in its second argument, and because of the assumption

f(`, n) < dimk A ≤ ϕ(`, n)

Abbreviating ε = 21−`, the inequality we’ve apparently obtained

f(`, n) < f(`, n− f(`, n)
n

) + f(`− 1, n)

is written more explicitly as
n2−ε < (n− n1−ε)2−ε + n2−2ε

Removing a factor of n2−ε from both sides would give

1 < (1− n−ε)2−ε + n−ε

or
1− n−ε < (1− n−ε)2−ε

This last inequality is impossible, because 2− ε ≥ 1. Thus, the hypothesis that dimk A > f(`, n) leads to a
contradiction. This completes the induction step in n for fixed `, and thereby completes the induction in `.

///

13. Proof of Bernstein’s estimate
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Proof of Theorem: More generally, suppose that we have a locally compact topological group G with a
decomposition

G = K0A
+ΩZK0

where A+ is a finitely-generated commutative semi-group with unit, Ω is a finite set, K0 is a compact open
subgroup, and Z is a closed subgroup of G contained in the center of G. (Here a semi-group is simply a set
with an associative binary operation.)

Let K ⊂ K0 be a small-enough compact open subgroup so that K has an ‘Iwahori factorization’

K = Γ− · Γ+ = Γ+ · Γ−

where for all a ∈ A+

aΓ−a−1 ⊂ Γ−

a−1Γ+a ⊂ Γ+

The Bruhat-Tits structure theory referred to as buildings and BN-pairs assures that these hypotheses apply
to p-adic reductive groups. Further, for classical groups, these hypotheses can be verified directly.

The following proposition’s conclusion is of the sort we want. Therefore, our labor will be to see that the
hypotheses of this proposition apply to the Hecke algebras H(G,K).

Proposition: Let L be an associative algebra with unit, let A ⊃ Z be subalgebras with Z inside the
center of L. Take A1, . . . , A` ∈ A and X1, . . . , Xp, Y1, . . . , Yq ∈ L. Suppose further that A is commutative,
generated by the Ai’s and by Z, and suppose that

L =
∑
i,j

XiAYj

Then every irreducible finite-dimensional representation of L has dimension ≤ (pq)(2`−1). That is, there is
an absolute bound on the dimension of finite-dimensional irreducibles.

Proof of proposition: Let ρ : L → End(Cn) be irreducible. Then the finite-dimensional Schur’s Lemma
implies that ρ(Z) = C, since ρ(Z) is central. And, by Burnside’s theorem from the elementary theory of
semisimple modules, ρ(L) = End(Cn). In particular,

dim ρ(L) = n2

On the other hand, by Kazhdan’s Lemma,

dim A ≤ n2−21−`

Then certainly
n2 = dim ρ(L) ≤ pqn2−21−`

from which we have
1 ≤ pqn−21−`

or, taking 2`−1 powers,
n ≤ (pq)2`−1

This proves the proposition. ♣

Lemma: Let g, h ∈ G. If either g or h normalizes K, or if g, h ∈ A+, then

KgK ·KhK = KghK
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Proof: When one of g, h normalizes K the assertion is immediate. For g, h ∈ A+, we use the ‘Iwahori
decomposition’ to compute:

KgK ·KhK = KgΓ−Γ+hK = K(gΓ−g−1)gh(h−1Γ+h)K ⊂ KghK

as desired. ♣

Let H(G,K) = C∞c (K\G/K) be the usual Hecke algebra ‘at level K’, i.e., the collection of left and right
K-invariant compactly-supported C-valued functions on G. The multiplication in this ring is convolution
on G. Let Z be the subalgebra of H(G,K) generated by the characteristic function of sets of the form KzK
for z ∈ Z. Let A be the subalgebra of H(G,K) generated by the characteristic functions of the sets KαzK
for α ∈ A+, z ∈ Z.

First, we consider the simple case that every element of Ω normalizes K. Note that, in fact, for ‘generic’
reductive groups over local fields, we can take Ω = {1}.

For representatives xi ofK0/K, letXi ∈ H(G,K) be the characteristic function ofKxiK. For representatives
yi of ΩK0/K, let Yi ∈ H(G,K) be the characteristic function of KyiK.

Corollary of Lemma: We have
H(G,K) =

∑
i,j

XiAYj

Proof: The level-K Hecke algebra H(G,K) has C-basis consisting of the characteristic functions of sets KgK
for g ∈ G. In light of the postulated decomposition of G, we need to show that the characteristic function
of every set KaωzK is in the sum on the right-hand side. For α ∈ A+ and z ∈ Z, with xi and yj as just
above, we have

KxiK ·KαK ·KzK ·KyjK = KxiαzyjK

by the previous lemma.

To compare this with the outcome of convolution multiplication, note that the convolution of two elements
of H(G,K) does indeed lie in H(G,K) again, so is a linear combination of characteristic functions of sets of
the form KgK. If g, h ∈ g have the special property that

KgK ·KhK = KghK

then the convolution of the characteristic functions of KgK and KhK is simply a constant multiple of the
characteristic function of KghK. It is easy to check that it is not the zero multiple. Thus, we do obtain the
whole level-K Hecke algebra as indicated. ♣

Now drop the assumption that Ω normalizes K. Let the yj be representatives for KΩK0/K, and let M be
the functions in H(G,K) with support inside KA+ZKΩK0. Then M is a left A-module and

H(G,K) =
∑
i

XiM

Granting this, the following lemma directly implies that H(G,K) meets the hypotheses of the proposition,
as desired.

Lemma: M as just above is a finitely-generated A-module.

Proof: For α ∈ A+, let
Γ+
α = α−1Γ+α ⊂ Γ+

As in the Lemma just above, for α, β ∈ A+ we compute

KαKβyjK = KαΓ−Γ+βyjK =
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= K(αΓ−α−1)αββ−1Γ+βyjK =

= KαβKΓ+
β yjK

Similarly,
KαβyjK = KΓ+αβyjK = KαβΓ+

αβyjK

Thus, if
Γ+
αβyjK = Γ+

β yjK

then
KαK ·KβyjK = KαβyjK

As discussed in a different situation above, such an equality of sets implies an equality of convolutions of the
characteristic functions, up to a non-zero constant.

For a subset Θ of K, let
ν(Θ) =

∑
j

card(ΘyjK/K)

If Θ′ ⊂ Θ, then certainly
ν(Θ′) ≤ ν(Θ)

And if Θ′ ⊂ Θ and
ν(Θ′) = ν(Θ)

then for all j we have
Θ′yjK = ΘyjK

Let a1, . . . , a` be the generators for A. Let D = D` be the ‘`-dimensional integer orthant’, i.e., the set of
`-tuples of non-negative integers. For u = (u1, . . . , u`) ∈ D, put

au = Πi a
ui

Also, let
f(u) = card(Γ+

au)

Write u < v for u, v ∈ D if u 6= v and if v − u ∈ D.

If v < u then f(v) ≥ f(u). If we further assume that f(u) = f(v), then for every index j

Γ+
auyjK = Γ+

avyjK

That is, the characteristic functions of the sets Γ+
auyjK lie in the A-module generated by the characteristic

functions of the sets Γ+
avyjK. The characteristic functions of the sets Γ+

awyjK as j varies and w ∈ D varies
generate M as a Z-module so we can choose as A-module generators for M just the characteristic functions
of the sets Γ+

awyjK with w ‘singular’, in the sense that for all v < w we have a strict inequality f(v) > f(w).

Thus, we wish to prove:

Combinatorial Lemma: Let f be a non-negative integer valued function on D`. Show that there are only
finitely-many singular points (in the sense just defined).

Proof: If w is singular, then f(w) < f(0). By induction on f(0), in w + D there are only finitely-many
singular points. Since D − (w + D) is a finite union of copies of (` − 1)-dimensional integer orthants. By
induction on `, there are only finitely-many ‘singular points’ in each of these. ♣

Therefore, we can conclude that M is finitely-generated as an A-module, so the level-K Hecke algebra
H(G,K) satisfies the hypotheses of the proposition, and we see that there is an absolute bound on finite-
dimensional irreducible representations of this Hecke algebra. This finishes the proof of Bernstein’s estimate.
♣
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