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Fourier series decompose periodic functions f(x)
as sums of simpler periodic functions

f(l') -~ Z cn 627rz'na:
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There’s a handy formula for the
decomposition coeflicients c,,:

1
Cp, = / f(z) e ™" dy
0

This decomposition is discrete in the sense that
the atomic pieces, the exponential functions, are
themselves in the space of functions being decom-
posed.

For future reference, we note that it may be better
to consider periodic functions f(z 4+ 1) = f(x) as
living on the circle R/Z rather than on the unit
interval.



By contrast, Fourier transforms give a
continuous decomposition
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of L2(R), with a good formula for f:
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This deserves to be called continuous since it is an
integral (rather than a sum), and since the expo-
nential functions are not in L?(R), so are them-
selves are not in the space being decomposed.

(This is a little strange.)

The exponential functions’ not being in L? creates
trouble both in defining f — f in the first place,
and in the reconstitution of f from f, since the

integrals generally don’t converge.



The Fourier series decomposition of L#(0,1) lets
us write the same thing in two different ways.

As a first example, the Fourier coeflicients of

f(z) =z — 5 are easily computed
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The Plancherel formula
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applied to f(z) =z — 3 gives
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giving the popular formula
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Though the Fourier series
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for f(z) = z — % doesn’t converge absolutely, it
does converge for 0 < x < 1. For example,
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which simplifies to the ever-popular
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A slightly less trivial application of the
Fourier series
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(letting w =€ and grouping +n terms). This

simplifies to
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Similarly, for f(z) = tz(z — 1) + 5
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and as an example of an application, letting w =
e2™i/5 and grouping +n terms,
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This simplifies (less trivially than before) to
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Indeed, there are polynomials B,(x), B1(x),
Bs(x), ... (essentially Bernouilli polynomials)
with coeflicients in Q so that

(2mi)" - Be(z) ~ >

n#0

From this, for an N-periodic Q-valued function
on Z with a parity condition

X(a+ N)=x(a) and x(—n)=(-1)"x(n)

we can conclude that
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More precisely, as was secretly the case in the
examples above, if x is a primitive Dirichlet char-
acter modulo N, and X(—l) = (—1)%, then

Xy(zf == > x0) B3
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where g(x) is a Gauss sum
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For both the circle and the line, there are sev-
eral possible viewpoints about what we decom-
pose with respect to.

Those decompositions do expand functions in
terms of eigenfunctions of the (translation invari-
ant) differential operator d?/dz?.

Also, the exponential functions are exactly the
functions on R/Z or on R which are
homomorphisms to C*.

Also, Fourier series decompose the representation
space L?>(R/Z) for the translation action

Rif(x) = f(x+t) into irreducible one-dimensional
representations C - e2™"% with n € Z. (Similarly
for Fourier transforms.)

Fourier series expand functions in eigenfunction
expansions for the adjoint-closed algebra of com-
pact operators

R,f(z) = /R n(t) £z + t) dt

for test functions n € C°(R). (By contrast, on
L?(R) these operators are not compact.)



It is more interesting to look at decomposition of
functions on more complicated objects than the
circle (for Fourier series), or the line (for Fourier
transforms).

For example, consider the linear fractional
(Mobius) transformation action of I' = SL(2, Z)
on the complex upper half-plane H

a b (z)_az+b
c d  cz+d

The space we want is the quotient
X =T\H =~ sphere P! with co removed

The metric on the P! is inherited from the
SL(2,R)-invariant metric d“;;iy on H. It is not
the usual sphere metric, but instead makes the
missing point infinitely far away.

For (Z’ Z) in SL(2,R) there are formulas

d faz+b\ 1
dz \cz+d/) (cz+d)?

i az+b Im (z)
1N =
cz+d |cz + d|?
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If we want to look at holomorphic functions on H
with some sort of nice behavior under the action
of I', it turns out that actual invariance is too
restrictive.

A holomorphic modular form of weight 2k is a
holomorphic function f on H

e Which is of moderate growth: for some N
flz+iy) = O(y") as y — +o0
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e Which for all ( ) € I satisfies

(8 5) @0 =(e+art s

The last condition is equivalent to the invariance
of the form

f(z)dz"

under the action of I'. That is, holomorphic mod-
ular forms are I'-invariant sections of a line bun-
dle, rather than being I'-invariant functions.
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The simplest examples of modular forms are
holomorphic Eisenstein series

1
For(z) = Z’ CEwIE (m,n not both 0)

m,n

The Eisenstein series g5 = E4 and g3 = Eg occur
in the Weierstrasss equation

o' (u)? = 4p(u)® — 60gap(u) — 140g3

for the elliptic function

p(z) = ' ((u_ (m1z+n))2 N (mzirn)Q)

m,n

It is elementary to verify that Eisenstein series
are modular forms.

The other simple kind of holomorphic modular

forms (though with a somewhat smaller T" in place
of SL(2,Z)) is a theta series

hole) = 3 -
vEL™

where () is a Z-valued positive-definite quadratic
form on R™. It is not entirely elementary to verify
that theta series are modular forms.
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Note that I' = sl(2,Z) contains the subgroup

Nz:{((l) ?):nEZ}

whose elements act on H by integer translations

((1) T) (z +iy) = (z +n) + iy

Also, for such matrices the corresponding
cz+d is simply 1. Thus, modular forms f(z) have
Fourier expansions

fz) =Y enly) e
neZ
Since f(z) is holomorphic, necessarily c,(y) is a
constant multiple of e=2™"¥. Further, the mod-
erate growth condition excludes negative-index
Fourier terms, so actually the Fourier expansion

looks like |
f(Z) _ Z ¢, 627rznz
n>0

That is, we can decompose modular forms by the
action of translations. Such f(z) is called a cusp-
form if ¢, = 0, in which case f(z) is actually of
rapid decay as y — +00.
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The Fourier expansions of holomorphic Eisenstein
series can be directly computed, using residue cal-
culus from complex analysis and using a little
Fourier analysis.

)2k .
E2k:(2) = QC(ZI{;)_'_ 2(2 ) . Z 02k—1(n) 627rznz

where as usual

Tanoa(n) =3 () =Y

1<d|n n>1

The higher Fourier coeflicients are elementary,
while by contrast the constant term 2 - ((2k) is
not.
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An elementary complex analysis argument shows
(much like Liouville’s theorem) that the only
weight-zero modular forms are constants, and for
low weights

oloXoXo oo
S

weight 0 modular forms
weight 2 modular forms
weight 4 modular forms
weight 6 modular forms
weight 8 modular forms
weight 10 modular forms
weight 12 modular forms =

where Ramanujan’s

:'HQS((2féJ)3__(2§%))2)

24
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is the lowest-weight cuspform.

15



Restrictions on existence of modular forms im-
ply relations. Some senseless but possibly slightly
charming examples are some relations among the
sum-of-powers-of-divisors functions o9 _1 that
occur in the higher Fourier coefficients of Eisen-
stein series:

o7(n) = o3(n)+ 120 z_: o3(m)os(n —m)
1log(n) = 2los(n) — 1003(n)

n—1

+ 5040 )  o3(n)os(n —m)

m=1

which follow from

(2?;1))2 B 2?(8&

and
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Similarly, constraints on existence of modular
forms yield relations between theta series and
Eisenstein series. First, at the level of an amuse-
ment, one can prove the traditional

number of ways to express an odd n as

sum of 8 squares n = x4 + ...+ o3

with (CL‘Z c Z)
= 16 0'3(7?,)

More seriously, the Siegel- Weil formula asserts
that normalized Eisenstein series F4x/2((4k) are
rational-coefficient linear combinations of theta
series.

Since Fourier coefficients of theta series are
rational, and since all parts of these Eisenstein
series are explicit except for the ((2k),

((2k) = rational x 72"
This argument works as well for zeta functions

of any totally-real algebraic number field, such as
Q(cos 27 /n) for integer n.
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The best of Riemann’s proofs of the analytic con-
tinuation of ((s)—>Y_ 1/n? uses an integral rep-
resentation

> O(iy) —1 d
7T_S/2F(§)<(S)=/(; ys/2 (Zy; 1 yy

with 6 defined on the upper half-plane H by

0(z) = Z i’z

neZ

The Poisson summation formula ) ., f(n) =
ZnEZ f (n) applied to the test function f(n) =

2, .
e~ "™ Y gives

b(iy) = % 0(—1/iy)

from which we obtain the analytic continuation:
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Proof of analytic continuation of ((s)

- ]

8/2
= entire —|—/ y*/? bliy) dy / %y
0 0

2y 2y
> 0(—1/iy) d 1
— entire _|_/ y—S/Q ( /Zy) y =
1 2 y S
> 0(iy) d 1
— entire _|_/ y—s/2 (Zy) Yy ot
1 2y y S
> O(iy) — 1 d
— entire -I—/ y(1=5)/2 (i) Y
1 2 J
_|_ -
1 2 y S
tire(s)+ entire(1 — s) — —— —
= entire(s)+ entire(l — s) — — -
1 —s S

Symmetry of the last expressions gives the
functional equation

1l —s
2

T—5/2 F(g)c(s) — (1=5)/2 I‘( )C(l —S)
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Hecke used holomorphic cuspforms
f(2) =3 ,,50 €n €2™% to obtain analytic contin-
uations and functional equations of L-functions

Cn

Lg(s) =

nS
n>0

by an integral representation parallel to
Riemann’s, but simpler

(2m)~°T(s) Ly (s) = / Ty fiy) “;—y

o0 1 o0
d
=/ +/ — entire +/ y° f(z'y)—y
1 0 1 Yy

> d
= entire +/ Yy~ ° f(—l/iy)—y
1 Y

= entire + (—1)’“/ g2k s f(zy)d—y
1 Y

= entire(s) + (—1)” entire(2k — s)
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A less elementary family of modular forms con-
sists of Maass’ waveforms, I'-invariant
moderate-growth functions on ‘H which are eigen-
functions fo the SL(2, R)-invariant Laplacian

02 02
2
A=Y (ax2+ay2)

We want a decomposition of L*(T\H) by A.

The simplest (but not square-integrable) wave-
form is another type of Eisenstein series

S

_ Y
Ey(z) = Z Imz + n|?s
gcd(m,n)=1
= Y Im(y(2)*
YET o \T'

where I'. consists of elements ( * : ) in I'. The

0

A-eigenvalue of E; is

A=X;=s(s—1)
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Waveforms have Fourier expansions
f(z) =) caly) ™
n

where the Fourier coeflicient satisfies a differential
equation
” A 2 2 _
u’ — (— +47°n")u =0
Y
The Eisenstein series correctly suggests the
entirely unobvious fact that an integral represen-
tation for a solution with eigenvalue p(p — 1) is

+ oo

— y,u —2minx
U(y)—/_oo (x2_|_y2)ue dx

This integral only converges for Re () > %, but
can be rearranged to a better form

oo
u(y) = s / e T /LT L pi s at
0 t

This solution is the only rapidly decreasing
solution (as y — +00).
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Maass did for waveforms what Hecke did in the
holomorphic case. For cuspidal waveform (zero-
th Fourier coefficient 0) with normalized rapid-
decay u,, with eigenvalue u(u — 1)

F(2) = cn-unly) ™™
n#0

the same integral transform is appropriate
/ y® fliy) —
0 Y

1 — n
E r(i“)ﬂ”2 S

The computation of the gamma factors is feasi-
ble when the integral representation of the u,,’s is
known.

The same argument proves analytic continuation
and functional equation.
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What’s in L*(T'\'H) besides cuspidal waveforms?

The orthogonal complement of cuspforms is
spanned by functions

Op(z) = Y o(Im(y2))

YEL o \I

where ¢ € C2°(0,00), so decompose these into
A-eigenfunctions. Define T'F on C2°(0, o0)

o+100
0,(g) = —— / To(s) Ealg) (Re(s) > 1)

27'('7/ — {00

The complement of cuspforms is integrals of

Eisenstein series. However, we should push the
line of integration to Re(s) = 1/2, despite the
Eisenstein series only converging for Re(s) > 1.
Meromorphically continue the Eisenstein series.
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One can compute separately, much as in the holo-
morphic case

£(2s —1)
§(2s)

where ¢ is ( with its proper gamma factor

Ei(z) =y°+ y' ™ + higher-order terms

§(s) =21 (5) ¢(s)

Though the zeta function was understood prior
to the Eisenstein series, Selberg noted that mero-
morphic continuation of E; would prove mero-
morphic continuation of {(s).

This idea was vastly extended by Langlands, who
looked at constant terms of more complicated

Eisenstein series on bigger groups, like GL(n), ob-
taining in 1960’s the meromorphic continuation of
a large family of L-functions. Shahidi extended
and refined Langlands’ idea to obtain functional
equations as well. This is the Langlands-Shahidi
method for obtaining integral representations.
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The Rankin-Selberg-method is another type of in-
tegral representation which makes essential use
of the meromorphic continuation of Eisenstein se-
ries.

For holomorphi_c cuspforms f(z) = Za/n62ﬂ-inz7
g(2) = 3" b,e*™ "% of weight 2k

F(2)9(2) Ba(z) > W
T\ Y

a5, by,

= (4m)~°T(s) ) _

n

nS

The rapid decay of the cuspforms combined with
the moderate growth (even of the meromorphi-
cally continued Eisenstein series) makes the inte-
gral converge away from the poles of the Eisen-
stein series.
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Bernstein refined of one of Selberg’s methods for
meromorphic continuation of Eisenstein series.

Consider the holomorphically parametrized sys-
tem of equations

Au = s(s—1)-u
{ (yg% —(1 —8)> clu) = (2s—1)y°

For u a nice function of moderate growth on I'\'A.
Note that E, satisfies this system, and the trickier
part of the constant term is masked.

Theorem (Bernstein) Suppose that for s in a
non-empty open subset of C the system has the
unique solution F,. Suppose that (locally every-
where) for some n there is a holomorphic family
of linear maps

hs : C" — {moderate growth functions on I'\'H}

so that all solutions of the system lie inside the
image hs(C™). Then F, has a meromorphic con-
tinuation to s € C.

The first condition is uniqueness, the second
finiteness.
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Proof: Fix s ¢ R with Re(s) >> 0. If a function
vs other than F, were to satisty the system, then

E, —vs=c-y' %+ higher

The theory of the constant term assures that the
higher-order terms are of rapid decay, so this dif-
ference would be square-integrable. But the
Laplacian A on H is essentially self-adjoint, so
any L?(T'\H) eigenfunction must have a real
eigenvalue. But s(s — 1) ¢ R, contradiction.
Thus, for s in a non-empty open set Fy is the
unique solution to the system.

For large real T', let

s _ Jy? (fory>T)
T30 (else)

And form special Eisenstein series by

E(y;)= Y yi(2)

YET L\

where y7. is viewed as a function on H. These
converge for all s.

28



If v, is a solution of Av, = s(s — 1), then by the
theory of the constant term

v, = aF(y5) + bE(y; *) 4+ rapid decay

Thus, any solution of the original system is inside
the space

C-E(y%)+ C- E(yy ®) + { rapid decay }
In fact, solutions are inside a space
C-E(yy)+C- E(y; )

+{ constant term compactly supported }

Lemma (Selberg-Bernstein) Let V' be a Banach
space. Consider a parametrized family of linear
maps Ts(v) =0, with T : V. — W, where W is a
Banach space, and s — T is holomorphic for the
uniform-norm Banach-space topology. Suppose
that for some fixed s, the operator T  has a left
inverse modulo compact operators, that is, that
there exists an operator A : W — V so that

Ao Xs;, = 1y + (compact operator)

Then the finiteness condition holds.
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But the theorem of Selberg, Gelfand, Piatetski-
Shapiro, Langlands on the compactness of inte-
gral operators on modular forms with compact-
support constant term meets the condition of the
lemma!

The same type of argument applies at the very
least to Eisenstein series made with cuspidal data
on maximal proper parabolics. (The expanded
version of my Tel Aviv talk (March 2001) gives
details.)

A refinement of Bernstein’s criterion allows for
discussion of poles in terms of unitariness of as-
sociated representations.

Via Langlands-Shahidi and Rankin-Selberg
integral representations, knowledge of poles of
Eisenstein series gives information about poles of
L-functions.
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