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I show that over global fields (characteristic not 2) the quadratic norm residue symbol is a Hecke character,
i.e., is a k×-invariant continuous character on the ideles of k. From this reciprocity law follows directly the
traditional reciprocity laws for quadratic Hilbert symbols, and for quadratic symbols.

A striking point in the proof is the role played by quadratic exponential functions, treated as tempered
distributions. The archimedean prototype is the function

Sx(z) = eπix|z|
2

for x ∈ R× and z ∈ C.

This argument is suggested by and is essential to a treatment of Weil representations, and proof that theta
series are automorphic forms.

• Standard set-up and Poisson summation
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• The reciprocity law for quadratic norm residue symbols
• Quadratic Hilbert-symbol reciprocity
• Quadratic reciprocity
• The simplest examples

1. Standard set-up and Poisson summation

This section reviews standard items (measures, convolutions, characters, bilinear forms). Note that we are
concerned not with an L2 Fourier inversion, but rather with a Schwartz-Bruhat Fourier inversion, which is
easier to treat.

Let k be a global field of characteristic not 2. On each completion kp of k we fix a non-trivial additive
unitary character ψp. For global applications, we are constrained to make these choices so that, for all but
finitely-many p,

ψp(xy) = 1 ∀y ∈ op ⇔ x ∈ op

where op is the local ring of integers for non-archimedean primes. Further, we are constrained to choose the
family of characters so that the global character

ψ =
⊗
p

ψp

is trivial on k ⊂ kA.

For an additive Haar measure µop on kp we have a local Fourier transform

Ff(x) = f̂(x) =
∫
kp

f(y)ψp(xy) dµop(y)

We take the Haar measure so that Fourier inversion

f ˆ (̂x) = f(−x)
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holds. The total measure of the quotient Ak/k be 1.

Let K be either a quadratic field extension of k or isomorphic to k × k, and in either case let σ be the
non-trivial k-algebra automorphism of K. Define a k-valued k-bilinear form 〈, 〉 on K by

〈α, β〉 = trK/k(αβσ)

where
trK/k(α) = α+ ασ

We can extend this kp-linearly to a kp-valued kp-bilinear form 〈, 〉p on

Kp = K ⊗k kp

Give the spaces Kp additive Haar measures in a compatible way, such that Fourier Inversion holds locally
everywhere, with respect to the pairing

v × w → ψ(〈v, w〉)

Both locally and globally there is the convolution on Schwartz-Bruhat functions

(f ∗ φ)(v) =
∫

f(v − w)φ(w) dw

Since the groups involved are abelian, convolution is commutative:

f ∗ φ = φ ∗ f

For a Schwartz-Bruhat function f on KA, we have Poisson Summation∑
x∈K

f(x) =
∑
x∈K

f̂(x)

This assertion is equivalent to the assertion that the tempered distribution u defined by

u(f) =
∑
x∈K

f(x)

is its own Fourier transform. This may be proven by proving the one-dimensionality of the space of
distributions v which are (first) supported on K and (second) annihilated by multiplication by the functions

x→ ψ(〈ξ, x〉)

for all ξ ∈ K. The Fourier transform simply exchanges these conditions, from which follows the Poisson
formula up to a constant. Our normalization of measure makes the constant be 1.

2. Weil’s quadratic exponential distributions

We introduce Weil’s quadratic exponential functions, which we consider as tempered distributions. The first
two lemmas below, while straightforward, contain the germ of the reciprocity law. The third lemma is a
recollection of a more general fact as manifest here.

For x ∈ k×p define

Sx(v) = ψp(
x

2
〈v, v〉)
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We may view this as a tempered distribution (as usual), by identifying it with the integration-against
functional

f →
∫
Kp

Sx(v) f(v) dv

Lemma (p-adic case):
FSx = γ(x)S−x−1

where
γ(x) = lim

X

∫
X

ψp(
1
2
x〈w,w〉) dw

as X ranges over larger and larger compact open subgroups of Kp. (In fact, there is a large-enough compact
open subgroup Y of K so that the limit is reached for any X ⊃ Y ).

Lemma: Let f be a Schwartz-Bruhat function on Kp. For x ∈ k× and v ∈ Kp we have

(Sx ∗ f)(v) = Sx(v)F (Sxf)(xv)

Lemma (p-adic version): Let f be a Schwartz-Bruhat function on Kp and let φ be a smooth function on
Kp. For x ∈ k×, v ∈ Kp, we have

F (φf) = Fφ ∗ Ff

where Fφ is the Fourier transform of the tempered distribution φ.

Note: In the last lemma, the ‘smoothness’ means locally constant. The analogue of the third lemma in the
archimedean case requires a more delicate statement, since there Schwartz-Bruhat and test functions differ,
and the notion of ‘moderate growth’ is needed in addition to smoothness.

Proof: (of first lemma) In the course of the proof, we do indeed show that the limit exists, even in the
stronger sense indicated.

By the usual definition of Fourier transform of a tempered distribution,

FSx(f) = Sx(Ff) =
∫
Kp

Sx(v)Ff(v) dv

Since Ff is also a Schwartz-Bruhat function, we can insert the characteristic function chX of any sufficiently
large compact open set X into the integral without affecting its value. Thus,

FSx(f) =
∫
Kp

Sx(v)chX(v)Ff(v) dv

Then SxchX is itself a Schwartz-Bruhat function, so we can apply the identity∫
Kp

f1(v)Ff2(v) dv =
∫
Kp

Ff1(v)f2(v) dv

Thus, we have

FSx(f) =
∫
Kp

F (SxchX)(v) f(v) dv

Given v ∈ Kp, we have

F (SxchX)(v) =
∫
X

Sx(w)ψ̄p(〈v, w〉) dw =

=
∫
X

ψp(
1
2
x〈w,w〉 − 〈v, w〉) dw =
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=
∫
X

ψp(
1
2
x〈w − x−1v, w − x−1v〉 − x−1〈v, v〉) dw

since generally
ψp(〈v, w〉) = ψp(〈v, w〉σ) = ψp(〈w, v〉)

For X large enough (depending upon v), we can replace w by w + x−1v to obtain

F (SxchX)(v) = S−x−1(〈v, v〉)
∫
X

ψp(
1
2
x〈w,w〉) dw

Thus,

FSx = S−x−1 lim
X

∫
X

ψp(
1
2
x〈w,w〉) dw

as claimed. ///

Proof: (of second lemma) From the definitions, and from

ψ(〈v, w〉) = ψ(〈w, v〉)

we have
(f ∗ Sx)(v) = (Sx ∗ f)(v) =

∫
K

Sx(v − w)f(w) dw =

=
∫
K

Sx(v)ψ̄(〈xv,w〉)Sx(w)f(w) dw =

= Sx(v)F (Sxf)(xv)

This is all we want here. ///

Proof: (of third lemma, p-adic case) Let Tw be the (regular representation) operator on Schwartz-Bruhat
functions by

Twf(v) = f(v + w)

The convolution of a distribution u and a test function f is defined as

(u ∗ f)(v) = u(T−vf)

It is easy to see that if the distribution u is integration against a function S, then this convolution is the
usual convolution of functions.

Let chX be the characteristic function of a (large) compact open subgroup X of Kp. Then, in the topology
of (tempered) distributions,

chXφ→ φ

Indeed, for large enough X depending upon the Schwartz-Bruhat function f ,∫
X

φ(v) f(v) dv =
∫
Kp

φ(v) f(v) dv

since in the p-adic case f has compact support. Likewise, since the Fourier transform is an isomorphism
(topological) of Schwartz-Bruhat functions, also

lim
X

F (chXu) = Fu
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Thus,
(Fφ ∗ Ff)(v) = (Fφ)(T−vFf) = lim

X
(F (chXφ))(T−vFf) =

= lim
X

(F (chXφ) ∗ Ff)(v) = lim
X

F (chXφf)(v) =

= F (φf)(v)

where we invoke the usual identity
F (α ∗ β) = Fα ∗ Fβ

only for Schwartz-Bruhat functions. ///

3. Quadratic norm residue symbols and local integrals

One more bit of preparation is required. We define the local norm residue symbol

νp : k×p → {±1}

attached to the ‘separable quadratic extension’ Kp/kp as follows. If Kp = K ⊗k kp is not a field, then just
put νp(x) = 1 for all x ∈ k×p . If Kp is a field, put νp(x) = 1 if x is a norm from Kp, otherwise νp(x) = −1.

It is a ‘standard but non-trivial fact’ that the norms from Kp are of index two in k×p if Kp is a separable
quadratic field extension of k×p . We invoke this in order to be confident that νp is a group homomorphism.

As in the previous section, let

γ(x) = γp(x) = lim
X

∫
X

Sx(v) dv

where X ranges over larger and larger compact open subgroups of Kp, and x ∈ k×p .

Lemma (p-adic case): For x ∈ k×p we have

γp(x) = νp(x)|x|−1
kp
γp(1)

Proof: From the definition,

γ(x) = lim
X

∫
X

ψ(xvvσ) dv

and the limit is actually reached for sufficiently large X. If x ∈ k×p is of the form wwσ, then replacing v by
vw−1 in the integral gives

γ(x) = |w|−1
Kp

lim
X

∫
wX

ψ(vvσ) dv

We are taking the local norms which make the product formula hold, so

|x|kp = |wwσ|kp = |w|Kp

Thus, we have the desired formula in case x is a local norm.

If x is not a local norm, then it must be that Kp is a field, since otherwise the local norm map is onto. Let
Θ be the subgroup of K×p of elements of norm 1; it is compact. Then, letting X vary over Θ-stable compact
open subgroups,

γ(x) = lim
X

∫
X

ψ(xvvσ) dv =

= lim
X

∫
Θ\X

∫
Θ

ψ(xvθθσvσ) dθ dv =
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= lim
X

∫
Θ\X

ψ(xvvσ) dv

where we give Θ total measure 1.

Now

Θ\K×p
φ
−→k×p

by
α→ αασ

is an isomorphism. Note that
d×α = |α|−1

Kp
dα

d×y = |y|−1
kp
dy

are multiplicative Haar measures on K×p and k×p , respectively. Then the (topological) isomorphism just
above yields an identity

γ(x) = lim
X

∫
Θ\X

ψ(xvvσ) dv =

= lim
X′

∫
Θ\X′

ψ(xαασ) |α|Kp d
×α =

= lim
Y

∫
Y

ψ(xy) |y|kp d×y =

where y = αασ, X ′ = X − 0, and Y is the image of X ′ under the norm map. (Here we choose some
compatible normalizations of the measures: it doesn’t matter which compatible normalization we choose).

Then, again using the fact that in this quadratic field extension the norms are of index 2,

lim
Y

∫
Y

ψ(xy) d×y = lim
Z

∫
Z

ψ(xy)
1
2

(1 + νp(y)) |y|kp d×y

where Z runs over larger and larger compact open additive subgroups of kp (ignoring the point 0 ∈ k×p ).

An elementary (and typical) cancellation argument shows that for x 6= 0

lim
Z

∫
Z

ψ(xy) |y|kp d×y = 0

Then
γ(x) = lim

Z

∫
Z

ψ(xy)
1
2
νp(y) |y|kp d×y

At this point, replace y by yx−1 to obtain the desired identity. ///

4. Reciprocity law for quadratic norm residue symbols

The reciprocity law here is the assertion that (quadratic) global norm residue symbols

νK/k(x) = Πp νp(x)

(with x an idele of k) are Hecke characters, i.e., are trivial on k×. (The continuity is clear).

Proof: This global assertion needs a global ‘source’: Poisson summation. Let f be any adelic Schwartz-
Bruhat function. Fix x ∈ k×. For an adele v = (vp)p write

Sx(v) = Πp S
p
x (vp)
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where now
Sp
x (v) = ψp(

1
2
xvpv

σ
p)

Then ∑
v∈K

f(v) =
∑
v∈K

Sx(v)f(v)

since Sx is 1 on K. Then by Poisson summation this is∑
v∈K

F (Sxf)(v) =
∑
v∈K

(FSx ∗ Ff)(v) =

= γ(x)
∑
v∈K

(S−x−1 ∗ Ff)(v) =

by the first lemma concerning Sx which computed its Fourier transform as tempered distribution. Then, by
the second lemma on Sx (computing Sx ∗ f), this is equal to

γ(x)
∑
v∈K

S−x−1(v)F (S−x−1Ff)(xv) =

= γ(x)
∑
v∈K

F (S−x−1Ff)(xv)

since S−x−1 = 1 on K. We may change variables in the sum, replacing v by vx−1, to obtain (so far)∑
v∈K

f(v) = γ(x)
∑
v∈K

F (S−x−1Ff)(v) =

= γ(x)
∑
v∈K

S−x−1(v)Ff(v)

(the latter by Poisson summation)

= γ(x)
∑
v∈K

Ff(v) = γ(x)
∑
v∈K

f(v)

since S−x−1(v) = 1, and again applying Poisson summation.

Thus, taking any f so that ∑
v∈K

f(v) 6= 0

we conclude that necessarily
γ(x) = 1

for all x ∈ k×. Then
1 = γ(x) = Πp γp(x) = Πp |x|kpνp(x)γp(x)

= Πp νp(x)γp(1) = ν(x)γ(1)

from the product formula and from the earlier result that

γp(x) = νp(x)γp(1)

Thus, we have proven that ν is a Hecke character. ///
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5. Quadratic Hilbert-symbol reciprocity

We now ‘recall’ the definition of Hilbert symbols (in the quadratic case), and obtain the reciprocity law for
these from the fact that the norm residue symbol is a Hecke character.

For a, b ∈ kp define the (quadratic) Hilbert symbol

(a, b)p = ±1

by taking it to be 1 if the equation
ax2 + by2 = z2

has a solution x, y, z with x, y, z ∈ kp not all 0, and if there is no solution then we define the value of this
symbol to be −1.

Certainly much can be said about this Hilbert symbol, but we content ourselves with the reciprocity law:

[5.0.1] Theorem: For a, b ∈ k×
Πp (a, b)p = 1

Proof: We prove this from the fact that the quadratic norm residue symbol is a Hecke character.

If b (or a) is a square in k×, then the equation

ax2 + by2 = z2

certainly has a solution over the global field k, with x = 0. Then there is certainly a solution over kp for all
p, so all the Hilbert symbols are all 1. Thus, the reciprocity assertion certainly holds in this case.

Suppose that b is not a square in k×. Then rewrite the equation as

ax2 = z2 − by2 = NormK/k(z + y
√
b)

where K = k(
√
b) is now a quadratic field extension of k.

At a prime p of k which splits in K, the local extension K ⊗k kp is not a field, and the ‘norm’ map is a
surjection, so νp ≡ 1 in that case.

At a prime p of k which does not split in K, the local extension K ⊗k kp is a field, so

ax2 = z2 − by2

can have no (non-trivial) solution x, y, z even in kp unless x 6= 0. In that case, we can divide by x and find
that a is a norm if and only if this equation has a solution.

In summary, the values (a, b)p of the Hilbert symbol coincide with the values of the local norm residue
symbol νp(a) attached to the local field extension k(

√
b)/k. Thus, the ‘reciprocity law’ for the norm residue

symbol gives the corresponding result for the Hilbert symbol. ///

Observe that, in the course of the proof, we essentially proved a local statement stronger than that required
to obtain the reciprocity law: we showed that the quadratic Hilbert symbol (a, b)p is equal to the quadratic
local norm residue symbol νp(a) attached to the ‘local extension’ kp(

√
b), for any non-zero a, b ∈ kp. Here if

b is a square in k then we must interpret this ‘extension’ as being

kp[X] mod X2 − b
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6. Quadratic reciprocity

Now we obtain the most traditional sort of quadratic reciprocity law from the reciprocity law for the quadratic
Hilbert symbol. We only derive what is often called the ‘main part’, i.e., the part refering to non-archimedean
odd primes. Inspection of the relation (indicated in the proof) of the quadratic symbols to Hilbert symbols
will make clear how to obtain the ‘auxiliary’ parts of quadratic reciprocity.

Fix a ‘ring of integers’ o inside k: for number fields k take the integral closure of Z in k, and for a function
field which is a separable extension of Fq(X) take the integral closure of Fq[X] in k.

For a (non-archimedean) prime p of o, and for x ∈ o define the quadratic symbol(
x

p

)
2

to be 1 if x is a non-zero square mod p, 0 if x is 0 mod p, and −1 if x is a non-square mod p. If π ∈ o
generates a prime ideal p, then also write

(x
π

)
2

=
(
x

p

)
2

Recall that a prime p is odd if the cardinality of its residue class field is odd. Concommitantly, in the
number field case, a prime is infinite if it lies over the real prime of Q. In the function field case, the ‘prime
at infinity’ in Fq(T ) is given by the valuation

∞ : P → qdegP

A prime (i.e., valuation) p of a finite separable extension k of Fq(T ), lying over ∞, is an ‘infinite prime
of k’.

The reciprocity law here is:

Quadratic Reciprocity (‘main part’): Let π and $ be two elements of o generating distinct odd prime
ideals. Then ($

π

)
2

( π
$

)
2

= Πq (π,$)q

where q runs over all even or infinite primes, and (, )q is the (quadratic) Hilbert symbol.

Quadratic Reciprocity (‘supplementary part’): Let π and be two elements of o generating an odd
prime ideal. For any other element α of o which is a πo-unit,(α

π

)
2

= Πq (π, α)q

where q runs over all even or infinite primes and over all primes at which α is not a local unit.

The proof of the ‘main part’ illustrates well-enough the connection, so we omit explicit proof of the
‘supplementary part’.

Proof: (of main part) We claim that, since πo and $o are odd primes,

(π,$)q =
(
$
π

)
2

for q = πo
=
(
π
$

)
2

for q = $o
= 1 for q odd and q 6= πo, $o
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Let p = πo. Suppose that there is a solution x, y, z in kp to

πx2 +$y2 = z2

Then (via the ultrametric property) ordpy and ordpz must be identical, and less than ordpx, since $ is a
p-unit and ordpπx

2 is odd. Then multiply through by π2n so that πny and πnz are p-units. Then we see
that $ must be a square modulo p.

On the other hand, if $ is a square modulo p, then we can use Hensel’s lemma to infer that $ is a square
in kp. Then

$y2 = z2

certainly has a non-trivial solution.

Further, if q is an odd prime distinct from both πo and $o, then both π and $ are q-units. If $ is a square
in kq, then

$ = z2

certainly has a solution, so the Hilbert symbol is 1. Suppose $ is not a square in kq. Then, kq(
√
$) is an

unramified field extension of kq, since q is odd. Thus, the norm map is surjective to units in kq. Thus, there
are y, z ∈ kq so that

π = Norm(z + y
√
$) = z2 −$y2

Thus, all but the even prime and infinite prime quadratic Hilbert symbols have interpretations in terms of
quadratic symbols. ///

7. The simplest examples

First, let’s recover the statement of quadratic reciprocity for two (positive) odd prime numbers p, q in Z. We
wish to recover the assertion (

q

p

)
2

(
p

q

)
2

= (−1)(p−1)(q−1)/4

What we have in fact proven, so far, is that by the result of the previous section(
q

p

)
2

(
p

q

)
2

= (p, q)2(p, q)∞

where (p, q)2 is the 2-adic Hilbert symbol and (p, q)∞ is the Q∞ ≈ R Hilbert symbol.

Since both p, q are positive, the equation
px2 + qy2 = z2

certainly has non-trivial real solutions x, y, z. That is, the ‘real’ Hilbert symbol (p, q)∞ for the archimedean
completion of Q has the value 1. Therefore, it is only the 2-adic Hilbert symbol which must contribute to
the right-hand side of Gauss’ formula: so far we have(

q

p

)
2

(
p

q

)
2

= (p, q)2

A modest exercise using Hensel’s lemma shows that the solvability of the equation above (for p, q both 2-adic
units) depends only upon their residue classes mod 8. The usual formula is but one way of interpolating the
2-adic Hilbert symbol by more elementary-looking formulas. ///
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For contrast, let us derive the analogue for Fq[T ] with q odd: for distinct monic irreducible polynomials
π,$ in Fq[T ], we have ($

π

)
2

( π
$

)
2

=
(
−1
Fq

)(deg π)(deg$)

2

where
(
−1
Fq

)
2

is ± depending upon whether −1 is a square in Fq or not.

So far, from the general assertion of the previous section,($
π

)
2

( π
$

)
2

= (π,$)∞

where ∞ is the prime (valuation)
P → qdegP

This valuation has valuation ring consisting of all rational functions in T which can be written as power
series in the local parameter t∞ = T−1. Then

π = t− deg π
∞ (1 + t∞(. . .))

where (1 + t∞(. . .)) is some power series in t∞. A similar assertion holds for $. Thus, if either degree is
even, then one of π,$ is a local square, so the Hilbert symbol is +1.

If t− deg π
∞ (1 + t∞(. . .)) is a non-square, then deg π is odd. Nevertheless, any expression of the form

1 + t∞(. . .)

is a local square (by Hensel’s lemma). Thus, without loss of generality for local purposes, we are
contemplating the equation

t∞(x2 + y2) = z2

The t∞-order of the right-hand side is even. If there is no
√
−1 in Fq, then the left-hand side is t∞-times a

norm from the unramified extension

Fq(
√
−1(T ) = Fq(T )(

√
−1

so has odd order. This is impossible. On the other hand if there is a
√
−1 in Fq then the equation has

non-trivial solutions.

Thus, if neither π nor $ is a local square (i.e., both are of odd degree), then the Hilbert symbol is 1 if and
only if there is a

√
−1 in Fq. The formula given above is an elementary interpolation of this assertion (much

as was done for the case k = Q). ///
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