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Discrete spectrum of Laplacians on compact manifolds

Let M be a compact Riemannian manifold, thus equipped with Laplacian ∆ = ∆M and a measure so that
∆ is symmetric on L2(M) ∩ C∞c (M). For simplicity of notation, consider two-dimensional M .

Cover M with coordinate neighborhoods {Vm : m ∈ M}. At each m ∈ M choose a smaller coordinate
neighborhood Um such that Um ⊂ Vm. Invoke compactness to produce a finite subcover {Ui = Umi

}. Fix a
smooth partition of unity {ϕi} subordinate to that finite cover. Let ψi : Ui → R2 be the coordinate map.

On ψi(Ui), the image of the measure from M can be described by a two-form µi(x, y) dx∧dy with continuous
µi > 0. The shrinking of the coordinate patches (above) ensures that µi extends continuously to the
(compact) closure of ψi(Ui), so is bounded above and away from 0.

That is, the image on ψi(Ui) of the measure from M is bounded above and below by non-zero constant
multiples of dx ∧ dy.

There is large-enough r > 0 such that each ψi(Ui) sits inside the rectangle

R = {(x, y) ∈ R2 : |x| ≤ r, |y| ≤ r}

Thus, given f ∈ C∞(M), each ϕif on Ui descends to a smooth function (ϕi · f) ◦ψ−1i on ψi(Ui) ⊂ R, which
is identified with a smooth function on the two-torus R2/rZ2.

Without loss of generality, all functions here are R-valued.

[0.1] Comparison of L2-norms of functions and smooth truncations On one hand, because
0 ≤ ϕi ≤ 1, certainly

|ϕif |L2(M) ≤ |f |L2(M)

On the other hand,

|f |2L2(M) =
〈∑

i

ϕi · f, f
〉
L2(M)

=
∑
i

∣∣∣〈ϕif, f〉L2(M)

∣∣∣ ≤ ∑
i

|ϕif |L2(M) · |f |L2(M)

Cancelling the factor of |f | from both sides,

|f |L2(M) ≤
∑
i

∣∣ϕif ∣∣L2(M)

[0.2] Comparison of H1-norms of functions and smooth truncations A similar argument gives one
direction of bound:

|f |2H1(M) =
〈∑

i

ϕif, f
〉
H1(M)

=
∑
i

〈ϕif, f〉H1M ≤
∑
i

|ϕif |H1(M) · |f |H1(M)

so
|f |H1M ≤

∑
i

|ϕif |H1(M)

From the other side, integrating by parts, now denoting the pairing 〈, 〉m in the tangent space to M at m by

v · w and writing ||v|| = (v · v)
1
2 ,

|ϕif |2H1(M) ≤
∫
M

(−∆ + 1)(ϕif)ϕif =

∫
M

∇(ϕif) · ∇(ϕif) +

∫
M

ϕif ϕif
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=

∫
M

(
f∇ϕi + ϕi∇f

)
·
(
f∇ϕi + ϕi∇f

)
+ |ϕif |2L2 =

∫
M

f2||∇ϕi||2 +

∫
M

2fϕi∇f · ∇ϕi + |ϕif |2L2

The first and last summands are dominated by |f |2L2 with an implied constant independent of f . For the
middle term, by Cauchy-Schwarz-Bunyakowsky,∣∣∣ ∫

M

2fϕi∇f · ∇ϕi
∣∣∣ ≤ ∫

M

2ϕi |f | ||∇f || ||∇ϕi|| �
∫
M

|f | ||∇f || ≤
(∫

M

|f |2
) 1

2
(∫

M

||∇f ||2
) 1

2

= |f |L2 ·
(∫

M

−∆f f
) 1

2 ≤ |f |L2 ·
(∫

M

(1−∆)f f
) 1

2

= |f |L2 · |f |H1 ≤ |f |2H1(M)

That is, with an implied constant independent of f ,

|ϕif |H1(M) � |f |H1(M)

[0.3] Comparison to flat-tori norms Thus, we consider f supported in a single coordinate patch U ,
viewed as sitting inside the rectangle R, which we map to a two-torus T2 by identifying opposite sides.
Smooth functions supported on U descend to smooth functions on T2. Suppress the index i, view the
coordinate map ψ = ψi be an inclusion, and suppress ψ from the notation. It is easy to compare the
L2(M)-norm of such f to the flat-torus L2-norm:

∣∣f ∣∣2
L2(M)

=

∫
R

∣∣f ∣∣2 µ(x, y) dx dy �
∫
R

∣∣f |2 dx dy =
∣∣f ∣∣2

L2(T2)
(µ bounded above)

Conversely,

∣∣f ∣∣2
L2(T2)

=

∫
R

∣∣f ∣∣2 dx dy � ∫
R

∣∣f |2 µ(x, y) dx dy =
∣∣f ∣∣2

L2(M)
(µ bounded below)

For the H1-norm, integrating by parts on M ,∫
M

−∆Mf · f =

∫
M

∇Mf · ∇Mf =

∫
R

(afx + bfy)2 + (cfx + dfy)2 µ(x, y) dx dy

for some smooth coefficient functions a, b, c, d. On one hand, this is clearly dominated by
∫
R

(fx)2 +
(fy)2 dx dy. On the other hand, the ellipticity of ∆M promises that the quadratic forms

Q(u, v) = (au+ bv)2 + (cu+ du)2 = (a2 + c2)u2 + 2(ab+ cd)uv + (b2 + d2)v2

have a2 + c2 > 0 and b2 + d2 > 0 uniformly on U , and the discriminant is uniformly negative on U . That is,

u2 + v2 � Q(u, v) � u2 + v2 (uniformly on U)

Thus, ∫
R

(fx)2 + (fy)2 �
∫
M

−∆f · f �
∫
R

(fx)2 + (fy)2

and
|f |H1(R) � |f |H1(M) � |f |H1(R)

With f descended to a smooth function on T2, this is

|f |H1(T2) � |f |H1(M) � |f |H1(T2)
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[0.4] Compactness of H1(M)→ L2(M) Let V oi be the closure in L2(T2) of {ϕif : f ∈ L2(M)}, and
let V 1

i be the closure in H1(T2) of {ϕif ◦ ψ−1i : f ∈ H1(M)}.

The exponentials ψξ(x) = eπi〈x,ξ>/r form an orthogonal basis in both Hilbert spaces, but |ψξ|H1 = ||ξ||·|ψξ|L2

where ||ξ|| is the Euclidean norm of ξ ∈ Z2. Since ||ξ|| → +∞, this proves a simple Rellich lemma:
H1(T2)→ L2(T2) is compact.

As a corollary, the restriction to V 1
i → V oi is compact.

The estimates above demonstrate continuity of H1(M)→
⊕

i V
1
i and

⊕
i V

o
i → L2(M) given by

f → {ϕif ◦ ψ−1i } and {gi ∈ L2(ψi(Ui))} −→
∑
i

gi ◦ ψi

Thus, the composite

H1(M) −→
⊕
i

V 1
i −→

⊕
i

V oi −→ L2(M)

is compact.

[0.5] Discreteness of spectrum of ∆M Since the resolvent of the Friedrichs extension ∆̃ of ∆ = ∆M

maps continuously L2(M) → H1(M) and H1(M) → L2(M) is compact, the resolvent is compact, so has
purely discrete spectrum. The eigenfunctions for the resolvent are those of ∆̃, so L2(M) has a basis of
∆̃-eigenfunctions.

In fact, ∆̃-eigenfunctions are in H∞(M). Local versions of the standard Sobolev inequalities/imbeddings,
in effect on T2, show that H∞(M) = C∞(M), so ∆̃-eigenfunctions are C∞, and evaluation of ∆̃ on them is
simply evaluation of ∆. Thus, the spectrum of ∆ is purely discrete.
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