
(January 15, 2015)

Satake parameters versus unramified principal series

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[From 1999. Edited 2015.]

We show that the Satake parameters attached to a spherical representation π via Satake’s isomorphism
(1963, IHES) can also be evaluated via the character χ into whose associated unramified principal series the
spherical representation π imbeds. This seems to be “well-known”, but also apocryphal.

Let G be a reductive p-adic group defined over an ultrametric local field k. Let P be a minimal parabolic
(defined over k), with unipotent radical N and choice of Levi component M . For all of these groups G, P ,
N , M , use the symbols G, P , N , M to refer to their k-valued points.

With N the normalizer of M in G, the (spherical) Weyl group W is

W = N /M

Let K be a special maximal compact subgroup of G. The spherical Hecke algebra HG,K of G (with
respect to K) is

HG,K = {left and right K-invariant C-valued compactly-supported functions f on G }

The subgroup
Mo = M ∩K

is the unique maximal compact subgroup of M , is normal in M , and

M/Mo ≈ Zr

where r is the k-rank of G (and of M). The spherical Hecke algebra HM,Mo
of M with respect to Mo is

acted upon by the Weyl group W in the obvious manner: for f ∈ HM,Mo , w ∈W , m ∈M ,

fw(m) = f(w−1mw)

where w−1mw is computed in M/Mo by replacing w by a pre-image of it in N . Let

HW
M,Mo

= { W -invariant elements of HM,Mo
}

The Satake transform
S : HG,K −→ HM,Mo

is

(Sf)(m) = δ(m)−1/2
∫
N

f(nm) dn = δ(m)1/2
∫
N

f(mn) dn

where δ(m) is the modular function
δ(m) · dn = d(mnm−1)

with Haar measure dn on (unimodular) N . Satake’s theorem is that S maps to the W -invariant subalgebra
HW
M,Mo

, and is an isomorphism

S : HG,K ≈ HW
M,Mo

The quotient M/Mo is isomorphic to Zr, and the full spherical Hecke algebra HM,Mo is a finitely-
generated commutative C-algebra. For example, for G = GLn it is C[x1, . . . , xn] and for G = Spn is is
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C[x1, . . . , xn, x
−1
1 , . . . , x−1n ]. For G = GL(n), the Weyl group W is isomorphic to the symmetric group on n

letters, permuting generators mapping to xi. For Spn, W is isomorphic to signed permutations on n letters.

Satake further observes that HM,Mo
is integral over the Weyl-group-invariant subring HW

M,Mo
, so HW

M,Mo
is

commutative and Noetherian itself, and every algebra homomorphism

λ′ : HW
M,Mo

−→ C

extends (not uniquely) to an algebra homomorphism of the full spherical Hecke algebra

λ̃′ : HM,Mo −→ C

Thus, by Satake’s isomorphism, the spherical Hecke algebra HG,K of G is Noetherian and commutative.
Commutativity is more elementary for classical groups, but Noetherian-ness is more substantial.

A (K-) spherical representation of G is an irreducible smooth representation π of G with a non-zero
K-fixed vector vo. A K-fixed vector in any representation of G is called a spherical vector. Using the
commutativity of HG,K , the subspace of all K-fixed vectors in an irreducible representation is at most one-
dimensional. Thus, in a spherical representation the subspace of spherical vectors is exactly one-dimensional.

A spherical representation π of G gives an algebra homomorphism

λπ : HG,K −→ C

by its action on a non-zero spherical vector:

π(η)vo = λπ(η) · vo

where the action of HG,K on the representation space of π is the usual

π(η)v =

∫
G

η(g)π(g)v dg

Satake’s isomorphism S has an inverse S−1, so for any such λπ, there is the composition

λ′π = λπ ◦ S−1 : HW
M,Mo

−→ C

which extends (not uniquely) to an algebra homomorphism

λ̃′π : HM,Mo −→ C

Depending upon the choice of generators mi for the quotient M/Mo, the Satake parameters attached to
π are the images λ̃′π(chm1Mo

), . . . , λ̃′π(chmrMo
) of characteristic functions chmiMo

of the sets miMo.

An algebra homomorphism
µ : HM,Mo

−→ C

gives rise to an Mo-spherical representation σ = σµ of M , which by Schur’s Lemma and the abelian-ness of
M/Mo is necessarily one-dimensional, given by

σµ(m) = µ(mMo)

This σ is unramified, meaning that it is trivial on Mo. Further, since σ is one-dimensional, it would be
referred to simply as an unramified character.
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Summing up, a spherical representation π of G gives rise to an algebra homomorphism

λπ : HG,K −→ C

which by Satake’s isomorphism gives an algebra homomorphism

λ′π : HW
M,Mo

−→ C

which extends to an algebra homomorphism

λ̃′π : HM,Mo
−→ C

which gives rise to an unramified character

σπ = σλ̃′
π

: M −→ M/Mo −→ C×

Since the extension λ̃′π is ambiguous by the action of W , σπ is likewise ambiguous.

On the other hand, from the theorem of Borel-Casselman-Matsumoto, a spherical representation π has an
injection

π To IndGP χδ
1/2

to an unramified principal series IndGP χδ
1/2, meaning that the character χ = χπ on M is trivial on Mo (and

is extended to P = MN by being required to be trivial on N).

The Weyl group acts upon unramified characters of M by

χw(m) = χ(wmw−1)

For χ generic (in a sense which does not concern us too much here), the corresponding unramified principal
series is irreducible, and

IndGP χ
wδ1/2 ≈ IndGP χδ

1/2

Thus, generically, the choice of unramified principal series into which a spherical representation imbeds is
ambiguous by elements of W , and the unramified character χπ is likewise ambiguous.

Thus, to a spherical representation π of G we have attached two unramified characters, σπ and χπ, both of
which are usually ambiguous by action of W .

Small Apocryphal Theorem: The two characters associated above to a spherical representation π are
the same (modulo the action of the spherical Weyl group W ). That is, in the notation above, and modulo
the action of W ,

χπ = σπ

Proof: Imbed the spherical representation π in an unramified principal series iχ = IndGP χδ
1/2. Let ϕ be

the canonical spherical vector in this unramified principal series, namely

ϕ(pk) = ϕ(p) = (χδ1/2)(p)

for p ∈ P and k ∈ K, using a p-adic Iwasawa decomposition G = PK. Also by an Iwasawa decomposition,
the vectorspace of K-spherical vectors in this unramified principal series is one-dimensional. Thus, ϕ spans
the subspace of spherical vectors. Thus, for η ∈ HG,K ,

iχ(η)ϕ = λπ(η) · ϕ
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for the algebra homomorphism λπ attached to π. Since the action here is explicit, by the right regular
representation, we can express this as an integral:

iχ(η)ϕ(g) = λπ(η) · ϕ(g) =

∫
G

η(h) · ϕ(gh) dh

To determine λπ(η), since ϕ(1) = 1, it suffices to compute the integral when g = 1. Thus,

λπ(η) = iχ(η)ϕ(1) =

∫
G

η(h) · ϕ(h) dh

It is an exercise to show that (up to normalizing constant), for any compactly-supported complex-valued
measuable function f on G ∫

G

f(g) dg =

∫
P

∫
K

f(p−1k) dp dk

where both measures are right Haar measures. Replacing p by p−1 transforms this to∫
G

f(g) dg =

∫
P

∫
K

f(pk) δ(p)−1 dp dk

where again (as above) δ is the modular function on P . Thus,

λπ(η) =

∫
G

η(h) · ϕ(h) dh =

∫
P

∫
K

η(pk)ϕ(pk) δ(p)−1 dp dk

Normalizing the measure on K to be 1, using the right K-invariance of the integrand,

λπ(η) =

∫
G

η(h) · ϕ(h) dh =

∫
P

η(p)ϕ(p) δ(p)−1 dp

Restricted to P , ϕ is just χδ1/2, so this is

λπ(η) =

∫
P

η(p)χδ1/2(p) δ(p)−1 dp =

∫
P

η(p)χδ−1/2(p) dp

Break up the Haar measure on P in terms of the Haar measures on M and N , with P = NM : for suitable
function f on P , ∫

P

f(p) dp =

∫
M

∫
N

f(nm) dn dm

The order in f(nm) does matter. Then

λπ(η) =

∫
M

∫
N

η(nm)χδ−1/2(nm) dn dm =

∫
M

∫
N

η(nm)χδ−1/2(m) dn dm

=

∫
M

χ(m) ·
(
δ−1/2(m)

∫
N

η(nm) dn

)
dm =

∫
M

χ(m) (Sη)(m) dm

That is, σπ can be evaluated on images Sη of elements η of HG,K under the Satake map by using the same
character χπ that occurs in an unramified principal series iχ into which π imbeds. This is what was to be
proven. ///
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