(*May 3, 2018*)

Self-dualities

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

For an abelian (locally compact, Hausdorff) topological group G, let G^{\vee} be the unitary dual, that is, the collection of continuous group homomorphisms of G to the unit circle in \mathbb{C}^{\times} . For compact totally disconnected G, since \mathbb{C}^{\times} contains no small subgroups, every element of G^{\vee} has image in roots of unity in \mathbb{C}^{\times} , which can be identified with \mathbb{Q}/\mathbb{Z} . Thus, for compact totally disconnected G,

 $G^{\vee} \approx \operatorname{Hom}^{o}(G, \mathbb{Q}/\mathbb{Z})$ (continuous homomorphisms)

where $\mathbb{Q}/\mathbb{Z} = \operatorname{colim} \frac{1}{N}\mathbb{Z}/\mathbb{Z}$ is *discrete*. As a topological group, $\mathbb{Z}_p = \lim \mathbb{Z}/p^{\ell}\mathbb{Z}$. It is also useful to observe that \mathbb{Z}_p is a limit of the corresponding quotients of itself, namely,

$$\mathbb{Z}_p \approx \lim \mathbb{Z}_p / p^{\ell} \mathbb{Z}_p$$

Indeed, more generally, every abelian totally disconnected topological group G has the property that

$$G \approx \lim_{K} G/K$$

where K ranges over compact open subgroups of G. Also, as a topological group,

$$\mathbb{Q}_p = \bigcup \frac{1}{p^{\ell}} \mathbb{Z}_p = \operatorname{colim} \frac{1}{p^{\ell}} \mathbb{Z}_p$$

Because of the *no small subgroups* property of the unit circle in \mathbb{C}^{\times} , every continuous element of \mathbb{Z}_p^{\vee} factors through *some* limitand

$$\mathbb{Z}_p/p^\ell \mathbb{Z}_p \approx \mathbb{Z}/p^\ell \mathbb{Z}$$

Thus,

$$\mathbb{Z}_p^{\vee} = \operatorname{colim}\left(\mathbb{Z}_p/p^{\ell}\mathbb{Z}_p\right)^{\vee} = \operatorname{colim}\frac{1}{p^{\ell}}\mathbb{Z}_p/\mathbb{Z}_p$$

since $\frac{1}{p^{\ell}}\mathbb{Z}_p/\mathbb{Z}_p$ is the dual to $\mathbb{Z}_p/p^{\ell}\mathbb{Z}_p$ under the pairing

$$\frac{1}{p^{\ell}}\mathbb{Z}_p/\mathbb{Z}_p \times \mathbb{Z}_p/p^{\ell}\mathbb{Z}_p \approx \frac{1}{p^{\ell}}\mathbb{Z}/\mathbb{Z} \times \mathbb{Z}/p^{\ell}\mathbb{Z} \ni \left(\frac{x}{p^{\ell}} + \mathbb{Z}\right) \times \left(y + p^{\ell}\mathbb{Z}\right) \longrightarrow xy + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$$

The transition maps in the colimit expression for \mathbb{Z}_p^{\vee} are inclusions, so

$$\mathbb{Z}_p^{\vee} = \operatorname{colim} \frac{1}{p^{\ell}} \mathbb{Z}_p / \mathbb{Z}_p \approx \left(\operatorname{colim} \frac{1}{p^{\ell}} \mathbb{Z}_p \right) / \mathbb{Z}_p \approx \mathbb{Q}_p / \mathbb{Z}_p$$

Thus,

$$\mathbb{Q}_p^{\vee} = \left(\operatorname{colim} \frac{1}{p^{\ell}} \mathbb{Z}_p\right)^{\vee} = \operatorname{lim}(\frac{1}{p^{\ell}} \mathbb{Z}_p)^{\vee}$$

As a topological group, $\frac{1}{p^{\ell}}\mathbb{Z}_p \approx \mathbb{Z}_p$ by multiplying by p^{ℓ} , so the dual of $\frac{1}{p^{\ell}}\mathbb{Z}_p$ is isomorphic to $\mathbb{Z}_p^{\vee} \approx \mathbb{Q}_p/\mathbb{Z}_p$. However, the inclusions for varying ℓ are not the identity map, so for compatibility take

$$\left(\frac{1}{p^{\ell}}\mathbb{Z}_p\right)^{\vee} = \mathbb{Q}_p/p^{\ell}\mathbb{Z}_p$$

Thus,

$$\mathbb{Q}_p^{\vee} = \lim \mathbb{Q}_p / p^{\ell} \mathbb{Z}_p \approx \mathbb{Q}_p$$

because, again, any abelian totally disconnected group is the projective limit of its quotients by compact open subgroups.

The same argument applies to $\widehat{\mathbb{Z}} = \lim \mathbb{Z}/N\mathbb{Z}$ and finite adeles $\mathbb{A}_{\text{fin}} = \operatorname{colim} \frac{1}{N}\widehat{\mathbb{Z}}$, proving the self-duality of \mathbb{A}_{fin} . ^[1] That is, $\widehat{\mathbb{Z}}^{\vee} \approx \mathbb{A}_{\text{fin}}/\widehat{\mathbb{Z}}$, and so on.

Similarly, the same argument applies over an arbitrary finite extension k_v of \mathbb{Q}_p , but now the pairing is composed with the local *trace* from k_v to \mathbb{Q}_p and the dual lattice to the local integers \mathfrak{o}_v is (by definition) the *inverse different* \mathfrak{d}_v^{-1} , in general strictly larger than the local integers. Let's execute the argument:

Let \mathfrak{m}_v be the maximal ideal in \mathfrak{o}_v . As a topological group, $\mathfrak{o}_v = \lim \mathfrak{o}/\mathfrak{p}^\ell$, for any number field k giving rise to the local field extension k_v/\mathbb{Q}_p , and k having integers \mathfrak{o} . However, we do not need to refer to any global object, as the question is local. That is, more to the point, \mathfrak{o}_v is a limit of the corresponding quotients of itself,

$$\mathfrak{o}_v \approx \lim \mathfrak{o}_v / \mathfrak{m}_v^\ell$$

Also, as a topological group,

$$k_v = \bigcup \mathfrak{m}_v^{-\ell} = \operatorname{colim} \mathfrak{m}_v^{-\ell}$$

Every continuous element of \mathfrak{o}_v^{\vee} factors through *some* limit and, so

$$\mathfrak{o}_v^{\vee} = \operatorname{colim}\left(\mathfrak{o}_v/\mathfrak{m}_v^\ell
ight)^{\vee} = \operatorname{colim}\mathfrak{m}_v^{-\ell}/\mathfrak{d}_v^{-1}$$

since $\mathfrak{m}_v^{-\ell}/\mathfrak{d}_v^{-1}$ is the dual to $\mathfrak{o}_v/\mathfrak{m}_v^{\ell}$ under the pairing

$$\mathfrak{m}_{v}^{-\ell}/\mathfrak{d}_{v}^{-1} \times \mathfrak{o}_{v}/\mathfrak{m}_{v}^{\ell} \ni (x+\mathfrak{d}_{v}^{-1}) \times (y+\mathfrak{m}_{v}^{\ell}) \longrightarrow xy+\mathfrak{d}_{v}^{-1} \longrightarrow \operatorname{tr}_{k_{v}/\mathbb{Q}_{p}}(xy)+\mathbb{Z}_{p} \in \mathbb{Q}_{p}/\mathbb{Z}_{p} \subset \mathbb{Q}/\mathbb{Z}_{p}$$

by additive approximation.

The transition maps in the colimit expression for \mathfrak{o}_v^{\vee} are inclusions, so

$$\mathfrak{o}_v^{\vee} = \operatorname{colim} \mathfrak{m}_v^{-\ell} / \mathfrak{d}_v^{-1} \approx \left(\operatorname{colim} \mathfrak{m}_v^{-\ell} \right) / \mathfrak{d}_v^{-1} \approx k_v / \mathfrak{d}_v^{-1}$$

Thus,

$$k_v^{\vee} = \left(\operatorname{colim} \mathfrak{m}_v^{-\ell}\right)^{\vee} = \operatorname{lim}(\mathfrak{m}_v^{-\ell})^{\vee}$$

As a topological group, $\mathfrak{m}_v^{-\ell}$ is non-canonically isomorphic to \mathfrak{o}_v by multiplying by a power of a local parameter, so the dual of \mathfrak{m}_v^{ℓ} is isomorphic to $\mathfrak{o}_v^{\vee} \approx k_v/\mathfrak{d}_v^{-1}$. However, these isomorphisms are not *natural*, and, commensurately, the inclusions for varying ℓ are *not* identity maps, so for compatibility take

$$\left(\mathfrak{m}_v^\ell\right)^\vee = k_v/\mathfrak{m}_v^\ell\mathfrak{d}_v^{-1}$$

Thus,

$$k_v^{\vee} = \lim k_v / \mathfrak{m}_v^{\ell} \mathfrak{d}_v^{-1} \approx k_v$$

because an abelian totally disconnected group is the limit of its quotients by compact open subgroups.

^[1] The traditional notation $\widehat{\mathbb{Z}}$ does also refer to $\operatorname{Hom}^{o}(\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$, but is often thought of differently, and needs to be topologized.