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I first saw this sketched in [Siegel 1939]. [1] The off-hand manner with which Siegel invokes it suggests that
such mechanisms were well-known at that time.

Let Cn be the cone of positive-definite symmetric real n-by-n matrices, and V the real vector space of
symmetric real n-by-n matrices. The standard pairing 〈〉 : V × V → R is 〈v, w〉 = tr (vw). We claim that,
for y ∈ Cn,

∫

V

ei〈x,ξ〉 det(y − ix)−s dx =






c(s) · e−〈y,ξ〉 (det ξ)s−n+1
2 (for ξ ∈ Cn)

0 (for ξ 6∈ Cn)

where dx is the product of usual Lebesgue measures on the coordinates xij with i ≤ j, with

c(s) =
1

Γ(s) Γ(s − 1
2 ) Γ(s − 2

2 ) Γ(s − 3
2 ) . . . Γ(s − n−1

2 ) (2π)n πn(n−1)

Proof: The gamma function Γn(s) attached to the cone Cn is [2]

Γn(s) =

∫

Cn

e−tr ξ (det ξ)s dξ

(det ξ)
n+1

2

with dξ the product of the usual Lebesgue measure on the usual coordinates ξij with i ≤ j. The measure

dξ/(det ξ)
n+1

2 is invariant under the action ξ → AξA⊤ of A ∈ GLn(R) on Cn. An element y ∈ Cn has a
unique square root

√
y in Cn. Note that

tr (
√

yξ
√

y) = tr (yξ) = 〈y, ξ〉

Replacing ξ by
√

yξ
√

y in the integral defining Γn(s), using the invariance of the measure dξ/(det ξ)
n+1

2 ,

Γn(s) = (det y)s

∫

Cn

e−〈y,ξ〉 (det ξ)s dξ

(det ξ)
n+1

2

By analytic continuation, [3] for x ∈ V

Γn(s) = (det y − ix)s

∫

Cn

e−〈y−ix,ξ〉 (det ξ)s dξ

(det ξ)
n+1

2

[1] Siegel used this device to compute the archimedean factor in the Euler factorization of the big Bruhat cell

contributions to Fourier coefficients of Eisenstein series. By the 1970s the device was well-known in the theory of

Siegel modular forms and holomorphic automorphic forms of other sorts. However, this simple special idea is often lost

among weightier issues, motivating the present recollection of it. The review [Gross 1998] of [Farault-Koranyi 1994]

gives a quick survey of related ideas, and the latter book-length treatment contains much more.

[2] As in [Farault-Koranyi 1994], a completely parallel treatment applies to the other homogeneous cones: positive-

definite n-by-n hermitian matrices, positive-definite n-by-n quaternion matrices, the light-cone x2
0 > x2

1 + . . . + x2
n,

and the exceptional cone. The discussion can be made intrinsic by expressing cones in terms of Jordan algebras, as

do various papers of M. Köcher, E.B. Vinberg, and others. However, the list of cones is very short, and the overhead

involved in using Jordan algebras is considerable. Nevertheless, one should compare [Farault-Koranyi 1994].

[3] The analytic continuation is in z = x + iy in the Siegel upper half-space, with y ∈ Cn and x ∈ V . The analogous

analytic continuation to the corresponding tube domains formed from the other cones play corresponding roles in the

computations for those cones.
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That is,
Γn(s)

(det(y − ix))s
=

∫

Cn

ei〈x,ξ〉 · e−〈y,ξ〉 (det ξ)s dξ

(det ξ)
n+1

2

View the integral as an inverse Fourier transform on V of the function

ϕy(ξ) =






e−〈y,ξ〉 (det ξ)s− n+1
2 (for ξ ∈ Cn)

0 (for ξ 6∈ Cn)

With Fourier transform on V normalized to

f̂(ξ) =

∫

V

e−i〈x,ξ〉 f(x) dx

and inverse transform

f∨(x) =

∫

V

ei〈x,ξ〉 f(ξ) dξ

The constant in Fourier inversion is given by

(2π)−nπ−
n(n−1)

2 · f(x) =

∫

V

ei〈x,ξ〉 f̂(ξ) dξ =

∫

V

e−i〈x,ξ〉 f∨(x) dx

Thus, since

φ∨
y (x) =

Γn(s)

det(y − ix)s

by Fourier inversion ( Γn(s)

det(y − ix)s

)
̂ (ξ) = (2π)−nπ−n(n−1)

2 · ϕy(ξ)

That is, ∫

V

e−i〈x,ξ〉 (det(y − ix))−s dx =
1

Γn(s) (2π)nπ
n(n−1)

2

· ϕy(ξ)

Further, this gamma function Γn(s) is expressible in terms of the classical gamma function

Γ(s) =

∫ ∞

0

e−t ts
dt

t

as follows. Let
f : Cn−1 × R

n−1 × C1 −→ Cn

by

f(y, v, t) =

(
1 v
0 1

) (
y 0
0 t

) (
1 0

v⊤ 1

)
=

(
y + vtv⊤ tv

tv⊤ t

)
(with R

n−1 as column vectors)

Thus,

Γn(s) =

∫

Cn−1×Rn−1×C1

e−tr (y+vtv⊤+t) (det y)s ts
dy tn−1 dv dt

(det y)
n+1

2 t
n+1
2

=

∫

Rn−1

e−v⊤v dv ·
∫

Cn−1

e−tr y (det y)s− 1
2

dy

(det y)
(n−1)+1

2

·
∫ ∞

0

e−t ts+(n−1)−n+1
2 −n−1

2 +1 dt

t

= π(n−1)/2 · Γ(s) · Γn−1(s − 1
2 )

2
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By induction,

Γn(s) = πn(n−1)/2 Γ(s) Γ(s − 1
2 ) Γ(s − 2

2 ) Γ(s − 3
2 ) . . . Γ(s − n−2

2 ) Γ(s − n−1
2 )

Thus, we have determined the constant c(s), and have computed the asserted Fourier transform

∫

V

e−i〈x,ξ〉 (det(y − ix))−s dx =
1

Γ(s)Γ(s − 1
2 ) . . . Γ(s − n−1

2 ) (2π)nπn(n−1)
ϕy(ξ)
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