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1. Compact resolvent of —A + ¢ for ¢ > 3¢
2. Mellin transform functionals in B!
3. Hilbert-Schmidt resolvent of —A + ¢ for ¢ > 2.

Evaluations of standard L-functions,

[ — Alf,s) = / Yo7 fiy) % (for fixed s € C, cuspform f)
0

for cuspforms for I' = SLy(Z), are not continuous functionals on L2(I'\$). [l We can try to remedy this by
forming global automorphic Levi-Sobolev spaces

H"™(T'\$) = Hilbert-space completion of C°(T'\$) under |f|2%n(7A+1) = ((A+ D", flr2r\»)

with the usual o2 e
Y I
A=y (8902 + 6y2)
Compactly-supported automorphic distributions do lie in
H=>(T\#$) = colim, H "(I'\H) (H~™(T'\$) the Hilbert-space dual of H"(T'\$))

However, f — A(f,s) does not lie in H=>°(I'\$).

A related problem is that the continuous spectrum of A entails that (the Friedrichs extension of)
—A + 1 cannot have compact resolvent, so the injections H™(I'\$)) — H"~*(T'\$)) are not compact, and
Ht>°(T'\$) = lim H*(T'\$H) is not a nuclear Fréchet space. [2]

These and other issues are addressed by considering perturbations —A 4 ¢ of —A by potentials ¢ > 1 on T\ $
with growth at infinity, and corresponding generalized Levi-Sobolev spaces 3]

B" = Hilbert-space completion of C2°(I'\$) under |flpn(—atq) = (A +¢)"f, fr2m\»)

The perturbation —A + ¢ has compact resolvent for q(x + iy) > y° for € > 0. The L-function evaluation
functionals f — A(f,s) are in the Hilbert-space dual B! of B! on vertical strips |0 — %| < «a for
q(x +iy) > y?*. For q(x +iy) > y?, the resolvent of —A + ¢ is not merely compact, but is Hilbert-Schmidt,
so B> = lim,, B" is nuclear Fréchet.

[ In effect, [Good 1986] solves (—A + A)u = ps on §, with pus(f) = [5° ys_% f(iy) dy/y for f € CS°(H), forms a
Poincaré series Fs 4 from the free-space solution u, and meromorphically continues to obtain an automorphic form
Fs such that fp\ﬁ f+-Fs = A(f,s). Analytic behavior of such Poincaré series is non-trivial.

2] Projective limits of Hilbert spaces with Hilbert-Schmidt transition maps are the most important class of nuclear
Fréchet spaces, by any definition, so we take this to be the definition of nuclear Fréchet. As usual, a chief application
is existence of genuine tensor products of nuclear Fréchet spaces, from which a Schwartz kernel theorem follows almost
immediately. E.g., see [Garrett 2012].

31 This abstracted form of Levi-Sobolev spaces was considered at latest by the 1960s. For example, see [Pietsch 1966].
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1. Compact resolvent of —A + ¢ for ¢ > i°

[1.0.1] Theorem: For a potential ¢ with g(z +iy) > y° in y > 1 for some € > 0, the Friedrichs extension

S of the Schrodinger operator
S = —-A+gq

has compact resolvent (§ — X)L, so has discrete spectrum.

PT’OOf The argument is an easier variant of the compactness argument in [LaX—PhllhpS 1976], p. 206. Let
Bl = BL(—A+q). By construction, the inverse S~1 of the Friedrichs extension S of S maps continuously to
L2(T'\$) — B!, the latter topology finer than that of L2(I'\§). Compactness of S~1 : L2(T'\§) — L2(T'\$)
would follow from compactness of the inclusion B! — L2(T'\$). Standard perturbation theory would prove
that (S — A)~! exists (as bounded operator) for A off a set with accumulation point at most 0, and is a
compact operator there, and the spectrum of S is inverses of non-zero elements of the spectrum of S-1.

The total boundedness criterion for relative compactness requires that, given € > 0, the image of the unit
ball B in B! in L?(T'\$) can be covered by finitely-many balls of radius e.

The usual Rellich-Kondrachev compactness lemma, asserting compactness of injections H*(T") — H'(T")
for s > t of standard Levi-Sobolev spaces on products of circles, will reduce the issue to an estimate on the
tail of T'\$, which will follow from the B! condition.

Given ¢ > 1, cover the image Y, of § <y < c+1inT'\$ by small coordinate patches U;, and one large open
U, covering the image Y, of y > ¢. Invoke compactness of Y, to obtain a finite sub-cover of Y,. Choose a
smooth partition of unity {¢;} subordinate to the finite subcover along with U, letting ¢ be a smooth
function that is identically 1 for y > ¢+ 1. A function f in B! on Y, is a finite sum of functions ¢; - f.
The latter can be viewed as having compact support on small opens in R?, thus identified with functions on
products T? of circles, and lying in H'(T?), since

(A +qQ)oif,0if) <i (AT +1)@if, 0if) (with usual Euclidean Laplacian AF)

The Rellich-Kondrachev lemma applies to each copy of the inclusion map H!(T?) — L2?(T?), so ¢; - B is
totally bounded in L?(T'\$).

Thus, to prove compactness of the global inclusion, it suffices to prove that, given § > 0, the cut-off ¢ can
be made sufficiently large so that ¢ - B lies in a single ball of radius ¢ inside L?(I'\$)). Since 0 < ¢, < 1,
it suffices to show

dx d
lim / If(2)]? x2y — 0 (uniformly for |f|m: < 1)
=00 Juse Y
We have dr d dr d
x dy _ x dy
[ rer et < oo [ jpepye S
y>c Y y>c Yy
e 9 o dz dy .
<t fRPF(FA+y°) —5— < ¢ — 0 (as ¢ — +o0, for | flgs: < 1)
y>c
giving compactness. ///
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2. Mellin transform functionals in 8!

With potential ¢(z + iy) > y“ as y — 400, a certain range of Mellin transform maps are in B~1(—A + q):

[2.0.1] Theorem: For % < Re(s) < &, the Mellin distribution

nel(f) = Alf,s) = / h ys—%fuy)%y (for f € C*(T\)

is in the Hilbert-space dual B~1(—A + ¢) of BT1(—-A + q).

Proof: First, an estimate on f € C2°(I'\$) in terms of its B+1-norm is obtained from Plancherel applied
to the Fourier expansion of f(x 4+ iy) as a periodic function of x:

dx d dx d
OO>|f2%1=/F\(A+q)f 7 Ledy />1/Z\R Atqf Tl

— dy
>4 + / n? + en(y)]? =
/y>1 /Z\]R nd 8932 Yy f y>1z Yy ) - len(y)] 2

> [TX ) el

Meanwhile, for f € C°(T'\$) a bound on ps(f) has a similar expression, as follows. By the functional
equation s <> 1 — s, take o = Re(s) > 3. Use f(—1/z) = f(z):

= | [Tt 2 = | ot et sin ] <2 [T 2

For any 6 > 0, by Cauchy-Schwarz-Bunyakowsky, and at the end remembering the earlier estimate,
1., dy o o1 dy
mhl < [ i < [0S v e
1 T

= —_ . Y772 n2+1|c
/1 En N % len(y)

1

d > 3
/Z 25n12+1 v /Z@f” R 1) fen(y)? )

o} d 1
<5 (/ Z Y270 (0% 1) |en(y))? ;y) s |f]ee (for20 —1+2<a-1)
1 n

When o < g, the condition 20 — 1+ 2§ < o — 1 holds for some § > 0. The estimate on ws(f) holds for
f € C*(T'\$) and then by continuity for f € BT 1
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3. Hilbert-Schmidt resolvent of —A + q for ¢ > 1

When —A + ¢ has Hilbert-Schmidt resolvent, all transition maps B"(—A + ¢) — B"2(—A + ¢q) in
the projective limit are Hilbert-Schmidt: for orthonormal basis {u;} of eigenfunctions for L?(I'\$)), with
eigenvalues A\; > 0, the vectors ui/)\?/Z form an orthonormal basis for B" = B"(—A + ¢). With respect to
these orthonormal bases, the inclusions are simply multiplication maps

Ug —
Yal o Yaa

% i

Us
n—2
2

A'L

Such a map is Hilbert-Schmidt if and only if

The resolvent of the Friedrichs extension of —A 4 ¢ has eigenvalues )\i_l, and the Hilbert-Schmidt property is
the same inequality. In this situation B7°° = lim,, B" is nuclear Fréchet, giving a Schwartz kernel theorem.

[3.0.1] Theorem: —A + ¢ has Hilbert-Schmidt resolvent for g(x + iy) > y? as y — +oc.

Proof: As in the proof of compactness of the resolvent, the fact that H*(T?) — H*~2(T?) is Hilbert-Schmidt
reduces discussion to consideration of the geometrically simpler non-compact part of T'\$). Specifically, it
suffices to consider the restriction S of —A + ¢ to test functions on the tapering cylinder X = T! x [1, 00),

with measure d’;;f@', and to take g(x + iy) = y>.

Thus, the domain of S includes test functions on X vanishing to infinite order on the boundary X = T x {1}.
Let S be the Friedrichs self-adjoint extension of S.

On this non-compact but geometrically simpler fragment of '\ §), the circle group T acts, and commutes with
S and S. Thus, L?(X) decomposes orthogonally into components indexed by characters 1, (z) = €® of
T! = R/27Z. On the n*" component, the differential equation for that component of a fundamental solution
U, at a is

2

u = (B4 )(u)) = 920~ 5+ Dualy) = 92—+ (0 + D)

simplifying, conveniently, to a constant-coefficient equation
=0, = —u,+ (n? + 1)u, (with a > 1)

We can follow the usual prescription for piecing together u, from solutions et to the corresponding
homogeneous equation —u” + (n? + 1)u = 0, letting ¢ = v/n2 + 1 > 1. That is, u,(y) must have moderate-
enough growth as y — +oo so that it is in L?(X) with measure dx dy/y?, and go to zero as y — 17, in
addition to being continuous but non-smooth enough at y = a to produce the required multiple of d,. Thus,
ug, must be of the form

ua(y) = {Aaecy + Bee™® (for 1 <y <a)
“ Coe™ Y (for a < y)

for some constants A,, B,, Cy, since eV grows too rapidly as y — +o0o. The conditions are
Aqe€+ Bae ¢ =0 (vanishing at y — 1)
Age® + Bye ¢ = Cpe @ (continuity at y = a)

—cCue™ — (cAqe® — cBye™*) = 5 (change of slope by % at y = a)

4
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620

From the first equation, B, = —e““ - A,, and the system becomes

Ag(ef — e2¢ec) = Cpe@ (continuity at y = a)
—cChue™ — cA, (eca + eQCe’C‘I) = 1 (change of slope by % at y = a)

Substituting C, = A, - (e2** — €2¢), from the first equation, into the second, gives

1
Aa . <7 0(6260, o 626)6760’ o C(eca + 6206700,) — an
simplifying to A, = —e~°*/2ca?. Then
9 9 che—ca — eca
_ ca c\ __
C’a—Aa-(e —6)—7
S0 )
B e2ce—ca _ pca B
Ug(y) = Cq-e™¥ = € Y (for y > a)
Since (¢ — %)u = f is solved by

the symmetry of —A + ¢ with respect to the measure dy/y? implies that a? - u,(y) is symmetric in y, a, and
the integral kernel for the resolvent is

chefca _ ,ca

2c
e?cefcy _ ,C

ey
2c

e~ (fory > a)

e (forl<y<a)

The resolvent being Hilbert-Schmidt is equivalent to

R e da dy
2 2
[ e wmr 5 <

By symmetry, it suffices to integrate over 1 < a < y < oo, and

// |a2 » ( ) da dy // 4c —200, _ 2c + ean' —2cy da dy
a
1<a<y 1<a<y y2

// —2ca _|_2620 _|_62ca) . ef2cy @ d7y
”2 +1 <a<y a® y?

Replacing y,a by y + 1,a + 1, the integral becomes

_ _ da dy da dy
(6 2ca 42 + €2ca) e 2cy < //
//O<a<y (CL + 1)2 (y + 1)2 0<a<y (CL + 1)2 (y + 1)2

e [T [
o (a+1)2 Jo (y+1)2

Thus, the n'" component of the integral kernel has L? norm bounded by a uniform constant multiple of
1/(n? +1). The sum over n € Z is finite, proving that the resolvent is Hilbert-Schmidt. ///
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