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1. Compact resolvent of −∆ + q for q ≥ yε
2. Mellin transform functionals in B−1

3. Hilbert-Schmidt resolvent of −∆ + q for q � y2.

Evaluations of standard L-functions,

f −→ Λ(f, s) =

∫ ∞
0

ys−
1
2 f(iy)

dy

y
(for fixed s ∈ C, cuspform f)

for cuspforms for Γ = SL2(Z), are not continuous functionals on L2(Γ\H). [1] We can try to remedy this by
forming global automorphic Levi-Sobolev spaces

Hn(Γ\H) = Hilbert-space completion of C∞c (Γ\H) under |f |2Bn(−∆+1) = 〈(−∆ + 1)nf, f〉L2(Γ\H)

with the usual

∆ = y2
( ∂2

∂x2
+

∂2

∂y2

)
Compactly-supported automorphic distributions do lie in

H−∞(Γ\H) = colimn H
−n(Γ\H) (H−n(Γ\H) the Hilbert-space dual of Hn(Γ\H))

However, f → Λ(f, s) does not lie in H−∞(Γ\H).

A related problem is that the continuous spectrum of ∆ entails that (the Friedrichs extension of)
−∆ + 1 cannot have compact resolvent, so the injections Hn(Γ\H) → Hn−k(Γ\H) are not compact, and

H+∞(Γ\H) = limHn(Γ\H) is not a nuclear Fréchet space. [2]

These and other issues are addressed by considering perturbations −∆+ q of −∆ by potentials q ≥ 1 on Γ\H
with growth at infinity, and corresponding generalized Levi-Sobolev spaces [3]

Bn = Hilbert-space completion of C∞c (Γ\H) under |f |Bn(−∆+q) = 〈(−∆ + q)nf, f〉L2(Γ\H)

The perturbation −∆ + q has compact resolvent for q(x + iy) � yε for ε > 0. The L-function evaluation
functionals f → Λ(f, s) are in the Hilbert-space dual B−1 of B1 on vertical strips |σ − 1

2 | < α for
q(x+ iy)� y2α. For q(x+ iy)� y2, the resolvent of −∆ + q is not merely compact, but is Hilbert-Schmidt,
so B∞ = limnB

n is nuclear Fréchet.

[1] In effect, [Good 1986] solves (−∆ + λ)u = µs on H, with µs(f) =
∫∞
0 ys−

1
2 f(iy) dy/y for f ∈ C∞c (H), forms a

Poincaré series Fs,w from the free-space solution u, and meromorphically continues to obtain an automorphic form

Fs such that
∫
Γ\H f · Fs = Λ(f, s). Analytic behavior of such Poincaré series is non-trivial.

[2] Projective limits of Hilbert spaces with Hilbert-Schmidt transition maps are the most important class of nuclear

Fréchet spaces, by any definition, so we take this to be the definition of nuclear Fréchet. As usual, a chief application

is existence of genuine tensor products of nuclear Fréchet spaces, from which a Schwartz kernel theorem follows almost

immediately. E.g., see [Garrett 2012].

[3] This abstracted form of Levi-Sobolev spaces was considered at latest by the 1960s. For example, see [Pietsch 1966].
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1. Compact resolvent of −∆ + q for q ≥ yε

[1.0.1] Theorem: For a potential q with q(x+ iy)� yε in y ≥ 1 for some ε > 0, the Friedrichs extension

S̃ of the Schrödinger operator
S = −∆ + q

has compact resolvent (S̃ − λ)−1, so has discrete spectrum.

Proof: The argument is an easier variant of the compactness argument in [Lax-Phillips 1976], p. 206. Let

B1 = B1(−∆+q). By construction, the inverse S̃−1 of the Friedrichs extension S̃ of S maps continuously to

L2(Γ\H)→ B1, the latter topology finer than that of L2(Γ\H). Compactness of S̃−1 : L2(Γ\H)→ L2(Γ\H)
would follow from compactness of the inclusion B1 → L2(Γ\H). Standard perturbation theory would prove

that (S̃ − λ)−1 exists (as bounded operator) for λ off a set with accumulation point at most 0, and is a

compact operator there, and the spectrum of S̃ is inverses of non-zero elements of the spectrum of S̃−1.

The total boundedness criterion for relative compactness requires that, given ε > 0, the image of the unit
ball B in B1 in L2(Γ\H) can be covered by finitely-many balls of radius ε.

The usual Rellich-Kondrachev compactness lemma, asserting compactness of injections Hs(Tn) → Ht(Tn)
for s > t of standard Levi-Sobolev spaces on products of circles, will reduce the issue to an estimate on the
tail of Γ\H, which will follow from the B1 condition.

Given c ≥ 1, cover the image Yo of
√

3
2 ≤ y ≤ c+1 in Γ\H by small coordinate patches Ui, and one large open

U∞ covering the image Y∞ of y ≥ c. Invoke compactness of Yo to obtain a finite sub-cover of Yo. Choose a
smooth partition of unity {ϕi} subordinate to the finite subcover along with U∞, letting ϕ∞ be a smooth
function that is identically 1 for y ≥ c + 1. A function f in B1 on Yo is a finite sum of functions ϕi · f .
The latter can be viewed as having compact support on small opens in R2, thus identified with functions on
products T2 of circles, and lying in H1(T2), since

〈(−∆ + q)ϕif, ϕif〉 �i 〈(−∆E + 1)ϕif, ϕif〉 (with usual Euclidean Laplacian ∆E)

The Rellich-Kondrachev lemma applies to each copy of the inclusion map H1(T2) → L2(T2), so ϕi · B is
totally bounded in L2(Γ\H).

Thus, to prove compactness of the global inclusion, it suffices to prove that, given δ > 0, the cut-off c can
be made sufficiently large so that ϕ∞ ·B lies in a single ball of radius δ inside L2(Γ\H). Since 0 ≤ ϕ∞ ≤ 1,
it suffices to show

lim
c→∞

∫
y>c

|f(z)|2 dx dy
y2

−→ 0 (uniformly for |f |B1 ≤ 1)

We have ∫
y>c

|f(z)|2 dx dy
y2

≤ c−ε ·
∫
y>c

|f(z)|2 yε dx dy
y2

≤ c−ε ·
∫
y>c

|f(z)|2 (−∆ + yε)
dx dy

y2
≤ c−ε −→ 0 (as c→ +∞, for |f |B1 ≤ 1)

giving compactness. ///
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2. Mellin transform functionals in B−1

With potential q(x+ iy)� yα as y → +∞, a certain range of Mellin transform maps are in B−1(−∆ + q):

[2.0.1] Theorem: For 1
2 ≤ Re(s) < α

2 , the Mellin distribution

µs(f) = Λ(f, s) =

∫ ∞
0

ys−
1
2 f(iy)

dy

y
(for f ∈ C∞c (Γ\H))

is in the Hilbert-space dual B−1(−∆ + q) of B+1(−∆ + q).

Proof: First, an estimate on f ∈ C∞c (Γ\H) in terms of its B+1-norm is obtained from Plancherel applied
to the Fourier expansion of f(x+ iy) as a periodic function of x:

∞ > |f |2B1 =

∫
Γ\H

(−∆ + q)f · f dx dy

y2
≥
∫
y≥1

∫
Z\R

(−∆ + q)f · f dx dy

y2

�q

∫
y≥1

∫
Z\R

(−y2 ∂
2

∂x2
+ yα)f · f dx dy

y2
�
∫
y≥1

∑
n

(y2n2 + yα) · |cn(y)|2 dy
y2

≥
∫ ∞

1

∑
n

yα−1 (n2 + 1) |cn(y)|2 dy
y

Meanwhile, for f ∈ C∞c (Γ\H) a bound on µs(f) has a similar expression, as follows. By the functional
equation s↔ 1− s, take σ = Re(s) ≥ 1

2 . Use f(−1/z) = f(z):

|µs(f)| =
∣∣∣ ∫ ∞

0

ys−
1
2 f(iy)

dy

y

∣∣∣ =
∣∣∣ ∫ ∞

1

(ys−
1
2 + y

1
2−s) f(iy)

dy

y

∣∣∣ ≤ 2

∫ ∞
1

yσ−
1
2 |f(iy)| dy

y

For any δ > 0, by Cauchy-Schwarz-Bunyakowsky, and at the end remembering the earlier estimate,

|µs(f)| �
∫ ∞

1

yσ−
1
2 |f(iy)| dy

y
≤
∫ ∞

1

∑
n

yσ−
1
2 |cn(y)| dy

y

=

∫ ∞
1

∑
n

1

yδ
√
n2 + 1

· yσ−
1
2 +δ
√
n2 + 1 |cn(y)| dy

y

≤
(∫ ∞

1

∑
n

1

y2δ(n2 + 1)

dy

y

) 1
2 ·

(∫ ∞
1

∑
n

y2σ−1+2δ(n2 + 1) |cn(y)|2 dy

y

) 1
2

�δ

(∫ ∞
1

∑
n

y2σ−1+2δ(n2 + 1) |cn(y)|2 dy

y

) 1
2 �δ |f |B1 (for 2σ − 1 + 2δ ≤ α− 1)

When σ < α
2 , the condition 2σ − 1 + 2δ ≤ α − 1 holds for some δ > 0. The estimate on µs(f) holds for

f ∈ C∞c (Γ\H) and then by continuity for f ∈ B+1. ///
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3. Hilbert-Schmidt resolvent of −∆ + q for q � y2

When −∆ + q has Hilbert-Schmidt resolvent, all transition maps Bn(−∆ + q) → Bn−2(−∆ + q) in
the projective limit are Hilbert-Schmidt: for orthonormal basis {ui} of eigenfunctions for L2(Γ\H), with

eigenvalues λi > 0, the vectors ui/λ
n/2
i form an orthonormal basis for Bn = Bn(−∆ + q). With respect to

these orthonormal bases, the inclusions are simply multiplication maps∑
i

ci
ui

λ
n
2
i

−→
∑
i

ci · λ−1
i

ui

λ
n−2
2

i

Such a map is Hilbert-Schmidt if and only if ∑
i

(λ−1
i )2 < ∞

The resolvent of the Friedrichs extension of −∆+q has eigenvalues λ−1
i , and the Hilbert-Schmidt property is

the same inequality. In this situation B+∞ = limnB
n is nuclear Fréchet, giving a Schwartz kernel theorem.

[3.0.1] Theorem: −∆ + q has Hilbert-Schmidt resolvent for q(x+ iy)� y2 as y → +∞.

Proof: As in the proof of compactness of the resolvent, the fact that Hs(T2)→ Hs−2(T2) is Hilbert-Schmidt
reduces discussion to consideration of the geometrically simpler non-compact part of Γ\H. Specifically, it
suffices to consider the restriction S of −∆ + q to test functions on the tapering cylinder X = T1 × [1,∞),
with measure dx dy

y2 , and to take q(x+ iy) = y2.

Thus, the domain of S includes test functions onX vanishing to infinite order on the boundary ∂X = T1×{1}.
Let S̃ be the Friedrichs self-adjoint extension of S.

On this non-compact but geometrically simpler fragment of Γ\H, the circle group T acts, and commutes with

S and S̃. Thus, L2(X) decomposes orthogonally into components indexed by characters ψn(x) = einx of
T1 = R/2πZ. On the nth component, the differential equation for that component of a fundamental solution
ua at a is

δa = (−∆ + q)
(
einx ua(y)

)
= y2(n2 − ∂2

∂y2
+ 1)ua(y) = y2

(
− u′′a + (n2 + 1)ua

)
simplifying, conveniently, to a constant-coefficient equation

1

a2
δa = −u′′a + (n2 + 1)ua (with a > 1)

We can follow the usual prescription for piecing together ua from solutions e±cy to the corresponding
homogeneous equation −u′′ + (n2 + 1)u = 0, letting c =

√
n2 + 1 ≥ 1. That is, ua(y) must have moderate-

enough growth as y → +∞ so that it is in L2(X) with measure dx dy/y2, and go to zero as y → 1+, in
addition to being continuous but non-smooth enough at y = a to produce the required multiple of δa. Thus,
ua must be of the form

ua(y) =

{
Aae

cy +Bae
−cy (for 1 < y < a)

Cae
−cy (for a < y)

for some constants Aa, Ba, Ca, since ecy grows too rapidly as y → +∞. The conditions areAae
c +Bae

−c = 0 (vanishing at y → 1+)
Aae

ca +Bae
−ca = Cae

−ca (continuity at y = a)
−cCae−ca − (cAae

ca − cBae−ca) = 1
a2 (change of slope by 1

a2 at y = a)
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From the first equation, Ba = −e2c ·Aa, and the system becomes{
Aa(eca − e2ce−ca) = Cae

−ca (continuity at y = a)

−cCae−ca − cAa
(
eca + e2ce−ca

)
= 1

a2 (change of slope by 1
a2 at y = a)

Substituting Ca = Aa · (e2ca − e2c), from the first equation, into the second, gives

Aa ·
(
− c(e2ca − e2c)e−ca − c(eca + e2ce−ca

)
=

1

a2

simplifying to Aa = −e−ca/2ca2. Then

Ca = Aa · (e2ca − e2c) =
e2ce−ca − eca

2ca2

so

ua(y) = Ca · e−cy =
e2ce−ca − eca

2ca2
· e−cy (for y > a)

Since (c2 − ∂2

∂y2 )u = f is solved by

u(y) =

∫ ∞
1

a2 · ua(y) f(a) da

the symmetry of −∆ + q with respect to the measure dy/y2 implies that a2 · ua(y) is symmetric in y, a, and
the integral kernel for the resolvent is

a2 · ua(y) =


e2ce−ca − eca

2c
· e−cy (for y > a)

e2ce−cy − ecy

2c
· e−ca (for 1 < y < a)

The resolvent being Hilbert-Schmidt is equivalent to∫ ∞
1

∫ ∞
1

|a2 · ua(y)|2 da
a2

dy

y2
< ∞

By symmetry, it suffices to integrate over 1 < a < y <∞, and∫ ∫
1<a<y

|a2 · ua(y)|2 da
a2

dy

y2
=

∫ ∫
1<a<y

|e4ce−2ca − 2e2c + e2ca| · e−2cy

4c2
da

a2

dy

y2

� 1

n2 + 1

∫ ∫
1<a<y

(e4ce−2ca + 2e2c + e2ca) · e−2cy da

a2

dy

y2

Replacing y, a by y + 1, a+ 1, the integral becomes∫ ∫
0<a<y

(e−2ca + 2 + e2ca) · e−2cy da

(a+ 1)2

dy

(y + 1)2
�
∫ ∫

0<a<y

da

(a+ 1)2

dy

(y + 1)2

�
∫ ∞

0

da

(a+ 1)2
·
∫ ∞

0

dy

(y + 1)2
< ∞

Thus, the nth component of the integral kernel has L2 norm bounded by a uniform constant multiple of
1/(n2 + 1). The sum over n ∈ Z is finite, proving that the resolvent is Hilbert-Schmidt. ///
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