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The basic representation theory of totally disconnected groups here incorporates some novelties. We consider
smooth representations on vectorspaces over arbitrary fields in characteristic zero. Integrals are replaced with
invariant or equivariant functionals, and no infinite sums appear unless all but finitely-many summands are
zero.

In particular, the fact that ideas regarding Jacquet modules and the double coset method (regarding
intertwining operators) can be developed in this generality is useful in applications. Since we are interested in
such things as Jacquet modules, we more generally consider the notions of isotype and co-isotype. Spherical
representations and admissibility, at the end, may seem mysterious at this point, but these are essential later.
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1. Algebraic concepts regarding representation theory

All vectorspaces are over a field k. Let G be a group.

Let V be a k-vectorspace and π a group homomorphism π : G→ GL(V ) where GL(V ) = GLk(V ) = Autk(V )
is the group of k-linear automorphisms of V . Such (π, V ) is a representation of G (over the field k). Or,
say that V is a representation space for G, or that V is a representation of G (with π merely implied),
or that π is a representation of G on V , etc. We may write gv for π(g)(v).

The trivial representation of G (over k) is the one-dimensional k-vectorspace k itself with the action
gv = v for all g ∈ G and v ∈ V . This representation will be denoted by k or 1.

Let (π1, V1) and (π2, V2) be two representations of G. A k-linear map f : V1 → V2 is a G-morphism (or
intertwining operator or G-homomorphism) if

f(π1(g)(v)) = π2(g)(f(v))

for all v ∈ V1 and g ∈ G. Suppressing the π’s, this condition is

f(gv) = gf(v)

A quotient representation is a G-morphism so that the underlying vectorspace map is surjective. A
subrepresentation is a G-morphism so that the underlying vectorspace map is injective. As usual, identify
subrepresentations and quotient representations with their images.

A representation (π, V ) of G is irreducible if it contains no proper subrepresentation, i.e., contains no
subrepresentation other than {0} and the whole V . This condition is equivalent to the non-existence of a
proper quotient.

Let E be a field extension of k. A representation (π, V ) of G on a k-vectorspace V naturally gives rise to a
representation π ⊗k E of G on V ⊗k E) defined by extension of scalars

(π ⊗k E)(g)(v ⊗ 1) = π(g)v ⊗ 1

The representation (π, V ) is irreducible over E when the extended representation (π ⊗k E, V ⊗k E) of G
is irreducible, as a representation over E.

A representation (π, V ) on a k-vectorspace k is absolutely irreducible if it is irreducible over an algebraic
closure k̄ of k.

The direct sum π1⊕π2 of two representations (π1, V1) and (π2, V2) of G has vectorspace V1⊕V2 with g ∈ G
acting by

g(v1 ⊕ v2) = gv1 ⊕ gv2 = π1(g)(v1)⊕ π2(g)(v2)

The (internal) tensor product π1 ⊗ π2 of two representations (π1, V1) and (π2, V2) of G has vectorspace
V1 ⊗ V2 = V1 ⊗k V2 with g ∈ G acting by

g(v1 ⊗ v2) = gv1 ⊗ gv2 = π1(g)(v1)⊗ π2(g)(v2)

The (external) tensor product π1⊗π2 of two representations (π1, V1) and (π2, V2) of two groups G1, G2

has vectorspace V1 ⊗ V2 with g1 × g2 ∈ G1 ×G2 acting by

(g1 × g2)(v1 ⊗ v2) = g1v1 ⊗ g2v2 = π1(g1)(v1)⊗ π2(g2)(v2)

Let V ∗ be the k-linear dual of V , i.e., the space of k-linear maps V → k. The linear dual or linear
contragredient representation (π∗, V ∗) of G on V ∗ is defined by

(π∗(g)λ)(v) = λ(π(g−1)v)
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Often the natural bilinear map
V × V ∗ −→ k

will be denoted by angular brackets
v × λ −→ 〈v, λ〉

Given a G-homomorphism
ϕ : (π1, V1) −→ (π2, V2)

the adjoint map
ϕ∗ : (π∗2 , V

∗
2 ) −→ (π∗1 , V

∗
1 )

is
ϕ∗(λ2)(v1) = λ2(ϕ(v1))

The (matrix-) coefficient function
cvλ = cπv,λ

of a vector v ∈ V and λ ∈ V ∗ is a k-valued function on G defined as

cvλ(g) = 〈π(g)v, λ〉

We have the simple properties

Rgcvλ = cπ(g)v,λ Lgcvλ = cv,π∗(g)λ

Let (π, V ) be a representation of a group G, and let K be a subgroup of G. The set of K-fixed vectors in
V is

V K = {v ∈ V : π(θ)v = v, ∀θ ∈ K}

The isotropy group of a vector v ∈ V is

Gv = {g ∈ G : π(g)(v) = v}

Let H be a subgroup of a group G, and let (π, V ) be a representation of G. The restriction representation

(ResGH π, V ) = ResGH (π, V )

is the representation of H on the k-vectorspace V obtained by letting

(ResGH π)(h)(v) = (πh)(v)

Let (π, V ) be a representation of G, and K a subgroup of G. A vector v ∈ V is K-finite when the k-span
of the vectors π(θ)v (for θ ∈ K) is finite-dimensional.

A representation (π, V ) of G is finitely-generated when there is a finite subset X of V so that every
element of V can be written in the form∑

i

ci π(gi)xi (for some ci ∈ k, gi ∈ G, and xi ∈ X)

We claim that a finitely-generated representation has an irreducible quotient, from Zorn’s Lemma. We claim
that there exist maximal elements among the set of G-subrepresentations, ordered by inclusion. To prove
this, show that for an ascending chain

V1 ⊂ V2 ⊂ . . .
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of proper submodules the union is still a proper submodule. If not, then each x in a finite set X of generators
for V lies in some Vi(x). Let j be the maximum of the finite set of i(x), x ∈ X. Then X ⊂ Vj , so V = Vj ,
contradiction. ///

2. Totally disconnected spaces and groups

A topological space X is totally disconnected when, for every x 6= y in X there are open sets U, V so that
U ∩ V = ∅, U ∪ V = X, and x ∈ U, y ∈ V .

In particular, a totally disconnected space is Hausdorff. The sets U, V in the definition are not only open
but also closed.

We claim that at every point x of a locally compact totally disconnected space X there is a local basis consisting
of compact open sets. To see this, take an open set V containing x and so that the closure V̄ is compact.
The boundary

∂V = V̄ ∩ (X − V )

is closed, so is compact. For y ∈ ∂V , there are open (and closed) sets Uy and Vy so that Uy ∩ Vy = ∅ and
Uy ∪ Vy = X, and y ∈ Vy and x ∈ Uy. Take a finite subcover Vy1 , . . . , Vyn of ∂V . The set

V − (
⋃
i

V̄yi) = V̄ − (
⋃
i

Vyi)

is both open and closed, and, being a closed subset of the compact set V̄ in a Hausdorff space, is compact.
///

Next, we claim that a locally compact totally disconnected topological group G has a basis at 1 = 1G consisting
of compact open subgroups. To prove this, let V be a compact open subset of G containing 1, by the previous
paragraph. Let

K = {x ∈ G : xV ⊂ V&x−1V ⊂ V }

It is clear that K is a subgroup of G, and

K = (
⋂
v∈V

V v−1) ∩ (
⋂
v∈V

V v−1)−1

shows that K is the continuous image of compact sets, so is compact. What remains to be shown is that K
is open.

To the latter end, it certainly suffices to show that the compact-open topology on G constructed from the
‘original’ topology on G is the original topology on G. That is, show that, for compact C in G and for open
V in G, the set

U = UC,V = {x ∈ G : xC ⊂ V }

is open in G. Take U is non-empty, and x ∈ U . For all points xy ∈ xC for y ∈ C, there is a small-enough
open neighborhood Uy of 1 so that the open neighborhood xUyy of xy is contained in V . By continuity of
the multiplication in G, there is an open neighborhood Wy of 1 so that WyWy ⊂ Uy. The sets xWyy cover
xC; let xWy1y1, . . . , xWynyn be a finite subcover. Put W =

⋂
iWyi . Then xW is a neighborhood of x and

xW · C ⊂ xW ·
⋃
i

Wyiyi

and
xWWyiyi ⊂ xWyiWyiyi ⊂ xUyiyi

Thus, U is open. ///
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3. Smooth representations of totally disconnected groups

Let G be a locally compact, Hausdorff topological group with a countable basis, and totally disconnected.
Take this to mean that G has a local basis at the identity consisting of compact open subgroups.

Consider representations of G on vectorspaces over a field k of characteristic zero. For many purposes,
the precise nature of k is irrelevant. On the other hand, some more refined results will require k = C or
R. Nevertheless, for certain applications, e.g., to families of representations, it is useful to have general
groundfields. Thus, in the sequel, speak of measures and integrals in situations more general than those
condoned by the conservative criterion that demand our groundfield be R or C.

A representation (π, V ) of G is a smooth representation when, for all v ∈ V , the isotropy group Gv is
open. Because of the total-disconnectedness, this condition is equivalent to

V =
⋃
K

V K

where K runs over compact open subgroups of G and V K is the subspace of K-fixed vectors in V .

From the definitions, any G-subrepresentation of a smooth representation is again smooth. Therefore,
a G-homomorphism of smooth representations is defined to be any G-homomorphism of (smooth) G-
representations. That is, the smoothness is not a property directly possessed by morphisms, but by the
representations.

Generally, given an arbitrary representation π of G on a vectorspace V , the subspace

V∞ = {v ∈ V : Gv is open}

is the subspace of smooth vectors. Clearly V∞ is G-stable, so the restriction π∞ of π to

π∞ : G −→ GL(V∞)

is a G-subrepresentation of V .

For a smooth representation (π, V ) of G, the (smooth) dual or (smooth) contragredient (π̌, V̌ ) of π is
the representation of G on the smooth vectors in the linear dual V ∗. In other words,

(π̌, V̌ ) = ((π∗)∞, (V ∗)∞)

There is the usual natural map

(π, V ) −→ (ˇ̌π, ˇ̌V ) (by v(λ) = λ(v))

When this map is surjective, π is said to be reflexive.

A smooth representation (π, V ) of G is irreducible if it contains no proper subrepresentation, i.e., contains
no subrepresentation other than {0} and the whole V . (Again, a G-stable subspace is necessarily a smooth
representation of G). That is, irreducibility here is no more than the algebraic irreducibility mentioned
previously.

4. Test functions and distributions

Let X be a totally disconnected space. That is, given x 6= y in X there are open sets U, V in X so that
x ∈ U, y ∈ V , and X = U ∪ V . For present purposes suppose that X is locally compact and has a countable
basis.

5



Paul Garrett: Smooth Representations of T.D. Groups (March 12, 2012)

Fix a field k of characteristic zero. Let W be a k-vectorspace. A W -valued function f on X is locally
constant when for all x ∈ X there is an open neighborhood U of x so that for y ∈ U f(y) = f(x). This
condition would be that of continuity if W had the discrete topology. However, we do not give W the discrete
topology, nor any other topology.

The space
D(X,W ) = C∞c (X,W )

of W -valued test functions on X is the k-vectorspace of compactly-supported, locally constant W -valued
functions on X. In particular, the test function space (over k), D(X) = D(X, k), has a k-basis consisting of
the characteristic functions of compact open subsets of X.

Observe the natural isomorphism of k-vectorspaces

D(X)⊗k W −→ D(X,W ) (given by (f ⊗ w)(x) = f(x)w)

Let W ∗ be the k-linear dual Homk(W,k) of W . The space D∗(X,W ∗) of W ∗-valued distributions on X
is the k-linear dual to the space D(X,W ) of W -valued test functions on X. That is, it is the space of all
k-linear maps from D(X,W ) to k.

More generally, extending the previous notation and ideas, refer to

Homk(D(X,W ),W ′)

as the space of Homk(W,W ′)-valued distributions on X. Write

D∗(X,Homk(W,W ′)) = Homk(D(X,W ),W ′)

for this space, justified by the natural isomorphism

Homk(V ⊗W,W ′) ≈ Homk(V,Homk(W,W ′))

The lack of topological requirements is appropriate, for the following reason. In many applications, the
k-vectorspace W is a union W =

⋃
iWi of finite-dimensional k-vectorspaces Wi, where Wi ⊂ Wi+1. For

each finite list U = U1, . . . , Un of mutually disjoint open sets in X each having compact closure, and for each
index i, let F (U , i) be the collection of Wi-valued functions which are 0 off U1 ∪ . . . ∪ Un, and are constant
on each Ui. This F (U , i) is a finite-dimensional k-subspace of D(X,W ). The assumption that X is totally
disconnected implies that D(X,W ) is the union of all such F (U , i).

The support of a distribution u ∈ D∗(X,Homk(W,W ′)) is the smallest closed subset C = spt(u) of X so
that if f ∈ D(X,W ) has support not meeting C, then u(f) = 0 ∈ W ′. That is, if spt(u) ∩ spt(f) = ∅, then
u(f) = 0.

For example, the k-vectorspace of distributions u ∈ D∗(X) with spt(u) a single point {x0} consists of scalar
multiples of the functional f → u0(f) = f(x0). Indeed, given f in D(X, k) = D(X), let U be any small-
enough compact neighborhood of x0 so that f is constant on U . Let chU be the characteristic function of
U . Then f − f(x0)chU is 0 on a neighborhood of x0, so u(f − f(x0)chU ) = 0. That is,

u(f) = u(f(x0)chU ) = f(x0)u(chU )

This equality holds for any small-enough U (depending upon f), giving the desired result.

For two totally disconnected spaces X,Y , it is easy to exhibit a natural isomorphism

C∞c (X)⊗k C∞c (Y ) ≈ C∞c (X × Y ) (by f ⊗ g → Ff⊗g with Ff⊗g(x× y) = f(x)g(y))
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5. Integration on totally disconnected groups

Let G be a totally disconnected, locally compact topological group G. Construct a Haar integral for test
functions on G taking values in an arbitrary characteristic-zero field k. More precisely, construct invariant
distributions.

For certain applications (e.g., to study of parametrized families of representations), it is necessary to be
able to consider more general groundfields. Write invariant distributions as integrals because the notation is
suggestive.

By now we know that there is a local basis at 1 ∈ G consisting of compact open subgroups.

For f ∈ C∞c (G) = C∞c (G, k) = D(G), the local constancy assures that for every x ∈ spt(f) there is a
compact open subgroup Kx so that f(x′) = f(x) for x′ ∈ xKx. Since spt(f) is compact, it is covered by
finitely-many of these Kx, say x1Kx1

, . . . , xnKxn
. And if y ∈ xiKxi

then

yKxi ⊂ xKxi ·Kxi = xKxi

Thus, f is uniformly locally constant: that is, letting K =
⋂
i Kxi

, for any x, for x′ ∈ xK we have
f(x′) = f(x). In other words, f is right K-invariant.

Thus, given f ∈ C∞c (G), for sufficiently small compact open subgroup K it is true that f is right K-invariant.
A symmetrical argument also shows that a given test function f is left K-invariant for small-enough K.

Therefore, for small-enough K, there are group elements xi and ci ∈ k so that

f(g) =
∑
i

ci chK(gxi)

where chX is the characteristic function of a subset X of G.

We want to make a right-invariant integral on D(G) = C∞c (G). That is, we want u ∈ D∗(G) right
translation invariant in the following sense. For a function f on G and for g, h ∈ G, the right-translation
action of g ∈ G on f is

Rgf(h) = f(hg)

The dual or contragredient right translation action of g ∈ G on an element u ∈ D∗(G) is

(R∗gu)(f) = u(Rg−1f) = u(R−1
g f)

The g−1 occurs to have associativity
R∗gh = R∗gR

∗
h

The requirement of right translation invariance is that, for all g ∈ G,

R∗gu = u

The previous observations show that the values of u on all chK (with K a compact open subgroup) completely
determine u, if u exists. Further, for K ′ ⊂ K are two compact open subgroups,

chK(g) =
∑

x∈K′\K

chK′(gx)

Thus,
u(chK) = [K : K ′]u(chK′) (where [K : K ′] is the index)

7



Paul Garrett: Smooth Representations of T.D. Groups (March 12, 2012)

Since the intersection of any two compact open subgroups is again such, the k-vectorspace of all such
distributions u is at most one-dimensional.

The assumption that k is of characteristic zero is used to prove existence of a non-zero functional. Fix a
compact open subgroup K0 of G. Take f ∈ D(G) and let X = spt(f). For a compact open subgroup K of
G sufficiently small so that f is left K-invariant and K ⊂ K0, and define

uK(f) = [K0 : K]−1
∑

x∈K\X

f(x)

As in the uniqueness discussion, the value uK(f) does not depend upon K for K sufficiently small. Therefore,
put

u(f) = lim
K

uK(f) (K compact open subgroup shrinking to {1})

The sense of this limit is the following reasonable one. For a k-valued function K → cK on compact open
subgroups, define limK cK to be the element c ∈ k so that, for some compact open subgroup K1, K ⊂ K1

implies cK = c.

To check the right G-invariance:

uK(Rgf) = [K0 : K]−1
∑

x∈K\Xg−1

f(xg) = [K0 : K]−1
∑

x∈K\X

f(x) (replacing x by xg−1)

The assumption on the characteristic allows division by the index [K0 : K].

There is a choice of right G-invariant distribution u so that for a compact open subgroup U of G the value
u(chU ) is in Q. Indeed, the construction gives some fixed compact open subgroup K0 measure 1, the smaller
compact open subgroup K = K0 ∩ U has measure 1/[K0 : K], and so U has measure

meas (U) = [U : U ∩K0]/[K0 : U ∩K0] ∈ Q

Write

u(f) =

∫
G

f(g) dg

and refer to right Haar measure (i.e., right translation invariant measure), without specifying u from the
one-dimensional space of invariant distributions, not to mention that we have in no way indicated how to
integrate more general types of functions.

Given a (right translation) invariant u ∈ D∗(G), we can compatibly integrate vector-valued functions
f ∈ D(G,W ) for any k-vectorspace W , as follows. Recall the isomorphism

D(G)⊗W −→ D(G,W ) (given by (f ⊗ w)(g) = f(g)w)

Define
u(f ⊗ w) = u(f)w

Writing this as integrals, it is ∫
G

(f ⊗ w)(g) dg =

(∫
G

f dg

)
w

This gives W -valued integrals of W -valued test functions.

Symmetrically, make a left-invariant ‘integral’, i.e., construct u ∈ D∗(G) left translation invariant in the
following sense. For a function f on G and for g, h ∈ G, define the left-translation action of g ∈ G on f
by

Lgf(h) = f(g−1h)
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The dual or contragredient left translation action of g ∈ G on an element u ∈ D∗(G) is

(L∗gu)(f) = u(Lg−1f) = u(L−1
g f)

The g−1 occurs to have the associativity
L∗gh = L∗gL

∗
h

A symmetrical argument to that above shows that the k-vectorspace of left-invariant distributions on C∞c (G)
is one-dimensional.

When a left-invariant distribution is also right-invariant, the group G is unimodular (relative to
the groundfield k). Certainly abelian groups are unimodular. The choice of groundfield can affect
unimodularity of a group, although many groups in applications will be unimodular (or not) for all
groundfields. The classical notion of unimodularity for literal Haar measures is an instance of our present
one, in effect with k = R.

Let u be a non-zero right translation invariant distribution on D(G). Since left translations commute
with right translations, L∗gu is again a right invariant distribution. By the uniqueness shown above, this
distribution is a scalar multiple of u. The modular function δ = δG of the group is the k×-valued function
defined on G first by the heuristic

δ(g) =
d(gx)

dx
(where dx is right Haar measure)

and then precisely by the formula
δ(g) · u = L∗g−1u

It is immediate that δ is a group homomorphism G → k×. Further, δ is locally constant on G: take any
f ∈ D(G) with uf 6= 0, and let K be a compact open subgroup of G so that Lhf = f for h ∈ K. That there
is such K follows from the local constancy and compact support of f . Then

δ(gh)u(f) = (L∗(gh)−1u)(f) = (L∗h−1L∗g−1u)(f) = (L∗g−1u)(Lhf) = δ(g)u(f) (for g ∈ G, h ∈ K)

Again, in integral notation, the previous definition of the modular function gives the following: for h, g ∈ G

δ(h)

∫
G

f(g) dg = δ(h)u(f) = (L∗h−1u)(f) = u(Lhf) =

∫
f(h−1g) dg =

∫
f(g)d(hg)

Thus,
d(hg)/dg = δ(h)

We claim that, when u is a right-invariant distribution, the distribution

v(f) = u(δ−1
G f)

is left-invariant. That is, as an integral,

f −→
∫
G

f(x)
1

δ(x)
dx

is left-invariant. The heuristic is that

dx

δ(x)
= left Haar measure

Indeed, letting δ = δG,

v(Lgf) = u(δ−1Lgf) = u(δ−1(g)Lg(δ
−1f)) = δ−1(g)u(Lg(δ

−1f)) = δ−1(g) δ(g)u(δ−1f) = v(f)
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Since δ is locally constant, δf is again a test function.

For G is compact, f(g) = 1 is in C∞c (G), and for all g ∈ G (with right G-invariant distribution u)

δ(g)u(f) = (L∗gu)(f) = u(L−1
g f) = u(f)

since Lgf = f for all g ∈ G. Thus, for compact G the modular function δ is trivial. Thus, compact groups
are unimodular.

Now consider the effect that the anti-automorphism g → g−1 of the group G has on a (right) invariant
distribution. Specifically, for f ∈ C∞c (G), let

f̌(g) = f(g−1)

Claim that, for a right G-invariant distribution u on C∞c (G),

u(f) = u(δ−1
G f̌)

To see this, first note that
u((Lgf )̌ ) = u(Rg(f̌)) = u(f̌)

Thus, f → u(f̌) is a left-invariant distribution. On the other hand, f → u(δ−1
G f) is a left-invariant

distribution, and unique up to a scalar. Up to a constant, this proves the asserted identity. For the constant,
let f be the characteristic function of a compact open subgroup K of G. Then f̌ = f , and δG is identically
1 on K, so the constant is 1, proving the desired equality.

Let H,G be two groups. It is easy to verify the natural isomorphism

Φ : C∞c (G)⊗ C∞c (H) ≈ C∞c (G×H) (by Φ(f ⊗ ϕ)(g × h) = f(g)ϕ(h))

A similar isomorphism exists more generally:

D(G,V )⊗D(H,W ) ≈ D(G×H,V ⊗W )

In particular, every right G×H-invariant distribution on D(G×H) is u⊗ v, where u, v are right invariant
distributions on G,H. We have a trivial Fubini Reciprocity

(u⊗ v)(f ⊗ ϕ) = uf ⊗ vϕ (for f, ϕ in D(G,V ),D(H,W ) )

6. Averaging maps and test functions on quotients

Let X be a locally compact totally disconnected space. Again, a function f on X is locally constant if, for
all x in the support of the function f , there is a neighborhood U of x so that for y ∈ U we have f(x) = f(y).

Let H be a totally disconnected group acting continuously on the left on X. A function f on X is compactly-
supported left modulo H when H\(H · spt(f)) is compact in H\X.

Let (σ, V ) be a smooth representation of H. Define a space C∞c (H\X,σ) of V -valued equivariant test
functions by taking the locally constant, V -valued functions f compactly supported left modulo H, and so
that for all h ∈ H and x ∈ X

f(hx) = σ(h)f(x)

When X = X1 × X2 and H = H1 × H2 with Hi acting on Xi (and H1 acting trivially upon X2 and H2

acting trivially upon X1), there is the natural product action

(h1, h2)(x1, x2) = (h1x1, h2x2)

10
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Let σi be a smooth representation of Hi, and let

σ = σ1⊗σ2

be the external tensor product representation of H1 ×H2. We have a natural isomorphism

C∞c (H1\X1, σ1)⊗ C∞c (H2\X2, σ2) ≈ C∞c (H\X,σ) (by f1 ⊗ f2 → Ff1⊗f2 )

with the latter defined by
Ff1⊗f2(x1, x2) = f1(x1)⊗ f2(x2)

The proof is easy:

Let Y be a closed subset of a locally compact totally disconnected topological group Ω in which H is a
closed subgroup. Let H act on Y by left multiplication. Let Z be a totally disconnected locally compact
space upon which H acts trivially. Take X of the special form X = Y ×Z. Fix a non-zero right H-invariant
distribution uH on D(H), and as usual write

u(f) =

∫
H

f(h) dh

Define an averaging map
α : C∞c (X)⊗ V −→ C∞c (H\X,σ)

by

α(f ⊗ v)(x) =

∫
H

f(hx)σ(h)−1v dh

By the lemma on the topology of quotients, for all x ∈ X and f ∈ C∞c (X) the function on H given by
h→ f(hx) is in C∞c (H), so this makes sense.

[6.0.1] Lemma: With X = Y × Z as above, the averaging map α from C∞c (X) ⊗ V to C∞c (H\X,σ) is a
surjection.

Proof: Since
C∞c (H\Y × Z, σ) ≈ C∞c (H\Y, σ)⊗ C∞c (Z)

we can restrict our attention to the simpler case that X = Y is a closed subset of a totally disconnected
locally compact topological group Ω, of which H is a closed subgroup.

Given F ∈ C∞c (H\X,σ), for each x in the support of F take a compact open subgroup K(x) of Ω so that
F (x′) = F (x) for all x′ ∈ xK(x). Since σ is smooth this is possible. Since F has compact support left
modulo H, there are finitely-many K(xi) so that the open sets HK(xi) cover the support of F . Let K be
the compact open subgroup of Ω which is intersection of the K(xi), and let Ξ be a set of representatives for
the finite set H\spt(F )/K. One computes that

α(chξKF )(x) = uH(chH∩ξKξ−1)F (x) · chHξK(x)

Let
µξ = uH(chH∩ξKξ−1)

Since the groundfield k has characteristic zero, and since each H ∩ ξKξ−1 is a non-empty (compact) open
subgroup of H, no µξ vanishes. By construction,

α
∑
ξ∈Ξ

µ−1
ξ chξK F =

∑
ξ∈Ξ

χHξK · F = F

11
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///

Now describe a very general construction of smooth representations. Given a totally disconnected locally
compact group G acting on the right on X, with H acting on the left (i.e., G ×H acts, so the two actions
commute). Let G act on functions on X by right translations. Then C∞c (H\X,σ) is a smooth representation
space for G. Such representations play a fundamental role in the sequel.

7. Invariant distributions on quotients: a mock-Fubini theorem

The more traditional discussion of G-invariant measures on quotients H\G with H a closed subgroup
is supplanted by discussion of G-invariant distributions on D(H\G, σ) with σ an irreducible smooth
representation of H.

As in the simpler case treated earlier, define a space of σ∗-valued equivariant distributions as the k-linear
dual to the test function space D(H\G, σ):

D∗(H\G, σ∗) = Homk(D(H\G, σ), k)

The group G acts on D(H\G, σ) by right translations

(Rgf)(g′) = f(g′g)

The dual action of G on distributions is

(R∗gu)(f) = u(R−1
g f)

We are interested in G-invariant integrals for functions in D(H\G, σ). This refers to distributions rather
than measures and integrals.

[7.0.1] Proposition: For (σ,W ) be an irreducible smooth representation of H, D∗(H\G, σ∗) has a G-
invariant element if and only if σ is the one-dimensional (hence irreducible) smooth representation

σ =
δH

δG
∣∣
H

where the δ’s are the modular functions. Suppose this condition is met. Let w be a right G-invariant
distribution on D(G), v a right H-invariant distribution on D(H), and let α be an averaging map

α : D(G)⊗ σ −→ D(H\G, σ)

given via v as in the previous section. There is a unique right G-invariant distribution u on D(H\G, σ)
normalized by the condition u ◦ α = w.

Proof: We have already shown that, up to scalar multiples, there is a unique right G-invariant distribution

w : D(G) −→ k

Let
α : D(G)⊗ σ −→ D(H\G, σ)

be the averaging map

α(f ⊗ w)(g) =

∫
H

f(hg)σ(h)−1(w) dh

12
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as above.

For every right G-invariant u ∈ D∗(H\G, σ∗), u ◦ α is a right G-invariant distribution in D∗(G). The map
u → u ◦ α is a k-linear map which, because of the surjectivity of the averaging map α, has trivial kernel.
Thus, the space of right G-invariant distributions on D(H\G, σ) is at most one-dimensional.

Use Lg notation for left translations, Rg for right. One computes directly that

α(Lhf ⊗ w) = (δHσ
−1)(h)α(f ⊗ w)

Recall that f → v(δ−1
H f) is left invariant, by definition of the modular function.

For f ∈ D(G) and h ∈ H

(u ◦ α)(Lhf) = u(α(Lhf)) = (δHσ
−1)(h)u(α(f))

On the other hand, as just recalled, the right G-invariance of u ◦ α implies the left G-invariance of

f −→ (u ◦ α)(δ−1
G f)

Therefore, by a similar computation,

(u ◦ α)(Lhf) = (u ◦ α)(δ−1
G (h)Lh(δ−1

G f)) = δG(h)(u ◦ α)(f)

Applying the k-linear averaging map α to the analogous identity from the previous paragraph,

(u ◦ α)(Lhf) = (δHσ
−1)(h) (u(αf))

Combining these two equalities, if u is not 0 (as a distribution),

δH · σ−1 = δG

That is, the asserted condition is necessary.

Now verify sufficiency of the condition. Let w be a (non-zero) right G-invariant distribution on D(G). Given
f ∈ D(H\G, σ) choose f0 ∈ D(G) so that αf0 = f , invoking the surjectivity of the averaging map α. Define
uf = wf0. We must show that this does not depend upon choice of f0.

One way of doing this is to define a family of maps

sU : D(H\G, σ) −→ D(G)

which are nearly one-sided inverses to α, i.e., so that for given f in D(H\G, σ)

(α ◦ sU )f = f

for U sufficiently large, and then define

uf = lim
U

(w ◦ sU )f

Specifically, let U vary over (non-empty) compact open subsets of G, and define

sUf = v(chU∩H)−1 chU f

The normalizing constant v(chU∩H) appears because

α(chU f) = v(chU∩H) f

13
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when U is sufficiently large so that spt(f) ⊂ H · U .

Let V be a compact open subset of G containing a compact open subset V . Keep in mind the fact noted
above that

v(f) = v(δ−1
H f̌) (where f̌(h) = f(h−1))

For fixed f ∈ D(H\G, σ) and for V large-enough depending upon the support of f ,

w ◦ sU f = w ◦ sU ◦ α ◦ sV f =

∫
G

∫
H

chU (hg) chV (g) f(g) dh dg

Changing the order of integration, replacing g by h−1g and h by h−1, turns this into∫ ∫
chU (g) chV (hg) f(g) δ−1

G (h)δH(h)σ(h) dh dg = w(sV αsU (f))

if the condition relating σ and the modular functions is met. That is, if this condition is met, then

wsUf = wsUαsV f = wsV αsUf = wsV f

That is, the limit exists. ///

8. Hecke (convolution) algebras

The test function space C∞c (G) = C∞c (G, k) has a convolution product given by

(f1 ∗ f2)(g) =

∫
G

f1(gh−1)f2(h) dh

with right Haar measure. For a compact open subgroup K of G, the Hecke algebra of level K is

H(G,K) = H(G,K)k = compactly-supported left and right K-invariant

k-valued functions on G

The full Hecke algebra of G is

HG = H(G) = H(G)k =
⋃
K

H(G,K)

Fix a right Haar measure dg on G. Each H(G,K) is a convolution algebra with the convolution multiplication
in C∞c (G). Define

eK = chK/meas (K)

It is easy to check that eK is the unit in H(G,K).

For a smooth representation (π, V ) of G on a k-vectorspace V , η ∈ HG acts on v ∈ V by

ηv = π(η)(v) =

∫
G

η(g) π(g)(v) dg

Because of the compact support and local constancy the previous integral is actually a finite sum∑
i

ci π(gi)(v) (with ci ∈ k and gi ∈ G)

14
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Indeed, fix v ∈ V and take a small-enough compact open subgroup K such that v ∈ V K and η is right
K-invariant. By integration, letting X be the support spt(η) of a function η,

π(η)v =

∫
G

η(g)π(g)v dg =
∑

x∈X/K

∫
K

η(xθ)π(xθ)v dθ =
∑
x

η(x)π(x)v meas (xK)

Since X = spt(η) is compact, the sum over x is finite.

The map η → π(η) is a k-algebra homomorphism from HG (with convolution) to endomorphisms of V (with
composition), proven by direct computation: using right Haar measures,

π(f ∗ F )v =

∫ ∫
f(gh−1)F (h)π(g)v dh dg =

∫ ∫
f(gh−1)F (h)π(g)v dg dh

=

∫ ∫
f(g)F (h)π(gh)v dg dh =

∫
f(g)π(g)F (h)π(h)v dg dh = π(f)π(F )v

by Fubini’s theorem (these are finite sums) and changing variables replacing g by gh. ///

9. Smooth H-modules versus smooth G-representations

Let K be a compact open subgroup of G, and define an element of the Hecke algebra H by

eK = chK/meas (K) (with right Haar measure)

The property of smoothness of a G-representation (π, V ) assures that for all v ∈ V there is a small-enough
K so that π(eK)v = v. In this spirit, a module V over the ring HG is smooth when for every finite subset
X of V there is a small-enough compact open subgroup K so that eKx = x for all x ∈ X.

The elements eK in H are idempotents in H, and for K ′ ⊂ K

eK ∗ eK′ = eK′ ∗ eK = eK

This follows by direct computation: in

(eK ∗ eK′)(g) =

∫
G

eK(gh−1) eK′(h)dh

the integrand is zero unless h ∈ K ′ and gh ∈ K, i.e., unless h ∈ K ′ and g ∈ K since K ′ ⊂ K, in which case
it is

meas (K ′)−1 meas (K)−1

The integral of this over K ′ is meas (K)−1. Thus, eK , as claimed.

Now we claim that smooth H-modules are in bijection with smooth G-representations, by

(π, V ) −→ H-module with ηv = π(η)v

We have already seen how to get smooth H-modules from smooth G-representations (as indicated). We need
to recover the G-representation from the H-module.

Generalizing previous notation, for a compact open subset X of G, let

eX = meas (X)−1 chX (with right Haar measure)
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For v in an H-module V with K a small-enough compact open subgroup so that eKv = v, and for g ∈ G,
put πV (g)v = egKv.

First, check that K may be made smaller without altering egK(v). It suffices to show that, for K ′ ⊂ K,

egK′ ∗ eK = egK

This is a direct computation. Second, check that πV is a group homomorphism: this too is a direct
computation.

Next, it is easy to check that G-homomorphisms and HG-module homomorphisms are interchanged under
this bijection between smooth G-representations and smooth HG modules (both over a field k).

In particular, under this bijection, irreducible G-representations are simple HG-modules, and vice-versa.

10. Central characters and relative Hecke algebras

Let Z be a closed subgroup of the center of G. In applications, it may be appropriate to take Z smaller than
the whole center.

For present purposes, a (one-dimensional) character ω on Z is a locally constant group homomorphism
ω : Z → k×.

A smooth representation (π, V ) has central character ω when

π(z)v = ω(z) · v (for z ∈ Z and v ∈ V )

Fix a character ω of the closed subgroup Z of the center of G. Let Hω(Z\G,K) be the collection of left and
right K-invariant k-valued functions f on G so that f(zg) = ω(z)f(g) for all z ∈ Z and g ∈ G, and so that
f is compactly-supported modulo Z. Define

Hω(Z\G) =
⋃
K

Hω(Z\G,K)

This is the relative Hecke algebra for the central character ω.

There is a relative convolution ? on Hω(Z\G),

(f ? ϕ)(g) =

∫
Z\G

f(gh−1)ϕ(h)dh (right Haar measure on Z\G)

Since
h −→ f(gh−1)ϕ(h)

is Z-invariant, compactly-supported on Z\G, and locally constant on Z\G, the integral is a finite sum.

It is straightforward that the averaging map α : H(G)→ Hω(G) given by

(αf)(g) =

∫
Z

ω(z) f(z−1g) dz

is not only surjective (as proven above more generally), but is also a convolution algebra homomorphism.

The images αeK of the idempotents
eK = chK/meas (K)
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in the Hecke algebra H(G) are easily seen to be idempotents in the relative Hecke algebra Hω(G). A module
V over the ring Hω(G) is smooth if, for every finite subset X of V there is a compact open subgroup K of
G so that (αeK)x = x for all x ∈ X.

A smooth G-representation (π, V ) with central character ω−1 gives rise to a smooth Hω(G)-module, as
follows. define

π(f)v =

∫
Z\G

f(g)π(g)v dg (for f ∈ Hω(G) and v ∈ V )

Note that the V -valued function
g −→ f(g)π(g)v

is indeed Z-invariant.

As in the earlier simple case where Z = {1}, there is converse: every smooth Hω(G)-module gives rise to a
smooth G-representation with central character ω−1. The smooth G-representations with central character
ω−1 are in bijection with smooth H(G)-modules. The proof is analogous to that given above for Z = {1}.

11. Schur’s Lemma

We use the hypothesis that G has a countable basis. Further, assume that the groundfield k is uncountable
and algebraically closed. This includes the case k = C. The important corollary here, that irreducibles have
central characters, is not obviously true without some such hypothesis. This is already demonstrable for
finite-dimensional representations of finite abelian groups, for example.

[11.0.1] Theorem: Let (π, V ) be an irreducible smooth representation of G on a k-vectorspace V , where
k is an uncountable and algebraically-closed field. Let T ∈ Endk(V ) be a k-linear map commuting with all
maps π(g) with g ∈ G. Then T is a scalar, that is, multiplication by an element of k.

Proof: (Jacquet) Since G has a countable basis, H has countable dimension over k. Irreducibility implies
that, for v 6= 0 in V , H · v = V , so V is of countable k-dimension. Further, an H-endomorphism T is
completely determined by Tv for one v 6= 0, since T (ηv) = ηT (v) for η ∈ H. Thus, the ring D of H-
endomorphisms of V has countable k-dimension. As V is irreducible,for all T ∈ D both the kernel and image
of T are H-submodules, so can be only 0 or V . Thus, D is a division ring with k in its center.

Since k is algebraically closed, non-scalar T ∈ EndG(V ) is necessarily transcendental over k. Therefore, for
T ∈ D not a scalar the elements

Sλ = (T − λ)−1

in D (with λ varying over k) are linearly independent over k, by uniqueness of partial fraction expansions
in k(T ). As k is uncountable, this would yield an uncountable set of linearly-independent elements of D,
contradiction. ///

[11.0.2] Corollary: With uncountable and algebraically closed groundfield k, an irreducible smooth
representation of a group G with countable basis has a central character, necessarily a smooth k×-valued
representation.

Proof: By Schur’s Lemma, each π(z) with z ∈ Z is a scalar. Since π is a group homomorphism, so is ω.
For continuity, fix v 6= 0 in V K with K a compact open subgroup of G. For h ∈ K ∩ Z and z ∈ Z

ω(zh)v = ω(z)ω(h)v = ω(z)π(h)v = ω(z)v

Thus, ω is locally constant, and is continuous. ///
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12. Left, right, and biregular representations

The right regular representation of G on V = C∞c (G) is

(Rgf)(h) = f(hg)

The left regular representation of G on V = C∞c (G) is

(Lgf)(h) = f(g−1h)

The g−1 appears, rather than just g, so that g →  Lg is a group homomorphism (rather than anti-
homomorphism).

The biregular representation of G×G is the action of G×G on V = C∞c (G) by

(πbi(g × g′)f)(h) = f(g′−1hg) or (πbi(g × g′)f)(h) = f(g−1hg′)

In practice, the left translation Lg and right translation Rg operators are applied to all functions on
G. Certainly these translations make sense with no particular hypotheses on the functions involved.
Concommitantly, the terminology is often used in an imprecise way, referring to any f → Rgf , f → Lgf as
right and left regular representations, etc., without concern for the nature of the function f .

13. An elementary dualization identity

Let π and σ be two smooth representations of G. Let k denote the trivial representation of G.

[13.0.1] Proposition: There is a natural k-isomorphism

HomG(σ ⊗ π, k) ≈ HomG(σ, π̌)

given by ϕ→ Φϕ where

Φϕ(v)(w) = ϕ(v ⊗ w) (for v ∈ σ and w ∈ π)

The reverse map is given by ϕΦ ← Φ where

ϕΦ(v ⊗ w) = Φ(v)(w)

Proof: Once the maps are given, only some small details remain to be checked. ///

14. Induced representations c-IndGH σ and duals IndGH σ̌δHδ
−1
G

Let (σ,W ) be a smooth representation of a closed subgroup H of G. As before, let C∞c (H\G, σ) be the
space of W -valued functions f on G compactly-supported left-modulo H, locally constant, and so that

f(hg) = σ(h) f(g) (for h ∈ H and g ∈ G)

The compact-induced representation (π, V ) = indGH σ has representation space

V = C∞c (H\G, σ)
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and has the right translation action of G

((πg)f)(g′) = f(g′g) = (Rgf)(g)

It is easy to check that this is a smooth representation of G.

The induced representation (π, V ) = IndGH σ has representation space V consisting of uniformly locally
constant W -valued functions f on G satisfying

f(hg) = σ(h) f(g) (for h ∈ H and g ∈ G)

This has the right translation action

((πg)f)(g′) = f(g′g) = (Rgf)(g′) (for g ∈ G)

It is easy to check that this is a smooth representation of G. The uniform condition is that for f in this
space of functions there be a compact open subgroup Θ so that

f(gθ) = f(g) (for all g ∈ G and for all θ ∈ Θ)

Let u be a right G-invariant distribution on indGH δH/δG, unique up to scalar multiples, whose existence and
uniqueness noted earlier, in discussion of G-invariant distributions on spaces

D(H\G, σ) = indGHσ

Let
α : D(G)⊗ σ −→ D(H\G, σ)

be an averaging map as before.

[14.0.1] Proposition: Let δH , δG be the modular functions of H,G. The induced representation

IndGH σ̌δHδ
−1
G is naturally isomorphic to the smooth dual of the compact-induced representation indGH σ,

by the map described as follows. For f ∈ indGH σ and F ∈ IndGH σ̌δHδ
−1
G , put

ϕ(g) = F (g)(f(g))

and define the pairing
〈f, F 〉 = u(g −→ F (g)(f(g)))

Then f → 〈f, F 〉 is the smooth linear functional attached to F , and all smooth linear functionals on indH
G σ

are given by such an expression.

Proof: First, claim that the function ϕ above is in indGHδHδ
−1
G . Since F is uniformly locally constant and f

is locally constant and compactly-supported left modulo H, ϕ is locally constant and compactly-supported
left modulo H. And, F is σ̌-valued and f is σ-valued, so ϕ(g) ∈ k. Further,

ϕ(hg) = F (hg)(f(hg)) = (δHδ
−1
G )(h)σ∗(h)F (g) (σ(h)f(g))

= (δHδ
−1
G )(h)F (g)σ(h−1)σ(h)f(g) = (δHδ

−1
G )(h)F (g)f(g) = (δHδ

−1
G )(h)ϕ(g)

It is easy to check that
λF : f −→ 〈f, F 〉

is a smooth functional. Therefore, the functionals λF form a k-linear subspace of the smooth dual of indGH σ.
That F → λF is a G-homomorphism is also apparent.
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To check that F → λF is injective, choose x ∈ G so that F (x) 6= 0 and K a compact open subgroup so that
F is right K-invariant. Let v ∈ σ so that F (x)v 6= 0, and define f ∈ indGH σ by

f(g) = α(chxK ⊗ v) (α the averaging map)

Then
〈f, F 〉 = u(chxK) = meas (xK) 6= 0 (chX characteristic function of X)

For surjectivity, prove surjectivity to each (indGHσ)K , for compact open subgroups K. Fix a set of
representatives xi for H\G/K and let fi be the characteristic function of xiK. Take λ ∈ (indGHσ)K . Define
µi ∈ V̌ by

µi(v) = λ(α(fi ⊗ v)) (for v ∈ V )

It is easy to check that this is a smooth functional on V . Define

F (hxiθ) = (σ̌δHδ
−1
G )(h)µi

It is routine that under the pairing F recovers the given functional λ. ///

15. Frobenius Reciprocity

Let H be a closed subgroup of G. Let σ be a smooth representation of H and let π be a smooth representation
of G.

[15.0.1] Theorem: Frobenius Reciprocity: There is a natural k-vectorspace isomorphism

HomG(π, IndGHσ) −→ HomH(ResGHπ, σ) (by Φ→ ϕΦ)

where
ϕΦ(v) = Φ(v)(1G)

and the inverse is Φϕ ← ϕ where
Φϕ(v)(g) = ϕ(Rgv)

Proof: Once the formulas are written the proof is easy. One should check that the Φ’s are G-homomorphisms
and that the ϕ’s are H-homomorphisms, and that they do map to the indicated spaces. ///

[15.0.2] Remark: There is the hazard that, for π given as a collection of functions with smoothness in terms

of compact open subgroups of G, the restriction ResGH π is probably not describable in terms of smoothness
conditions from H.

16. Compact induction as a tensor product

We describe compactly-induced representations as tensor products.

Let σ be a smooth representation of a closed subgroup H of G. Give HH = C∞c (G) the natural right
HH -module structure

(η ζ)(g) =

∫
H

η(gh−1)ζ(h) dh

Form the tensor product

HG ⊗HH
σ (a HG-module by η(f ⊗ v) = (η · f)⊗ v)
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The comparison of this module-theoretic induction with the group-theoretic is not entirely trivial, as left-right
issues and normalization-of-measures issues arise.

Let δH , δG be the modular functions on H,G, respectively. That is, in terms of the right G-invariant
functional

f −→
∫
G

f(g) dg

written as an integral ∫
G

f(x−1g) dg = δG(x)

∫
G

f(g) dg

and similarly for H. For a function f on G, let

f̌(g) = f(g−1)

The needed map is not quite the obvious averaging map, but

β(f ⊗ v)(g) =

∫
H

f̌(hg)

δG(hg)

δG(h)

δH(h)
dh =

1

δG(g)

∫
H

f̌(hg)
dh

δH(h)

While the latter expression is simpler, some aspects of the structure are better revealed in the former.

[16.0.1] Proposition: The map α induces an isomorphism

β : HG ⊗HH
V −→ indGH (σ ⊗ δH

δG
)

Proof: It is a matter of changing variables in the integral to see that the image β(f ⊗v) lies in the indicated
compact-induced representation space.

Surjectivity is proven in the same manner as earlier for simpler averaging maps. It remains to show that the
map factors through the smaller tensor product over HH (i.e., not merely over the field k), i.e., that

β(fζ ⊗ v) = β(f ⊗ ζv)

We also must show that the induced map respects the HG-module structure. And, finally, show that this
induced map is a vectorspace isomorphism.

To prove that the induced map respects the HG-module structure it suffices to take H = {1} and σ trivial,
since the HH -action and HG-actions commute in any case, one being on the left and the other on the right.
This simplifies the appearance of the formulas considerably. Take η, f ∈ HH . For g ∈ G the definition of β
simplifies to

β(f)(g) = f̌(g)/δG(g)

Then

β(η ∗ f)(g) =
1

δG(g)

∫
G

η(g−1h−1)f(h) dh

=
1

δG(g)

∫
G

f̌(h−1)η(g−1h−1) dh =
1

δG(g)

∫
G

f̌(gh−1)η(h−1) dh

by replacing h by hg−1. Recalling that sending h to h−1 turns a right-invariant integral into a left-invariant
one, replacing h by h−1 turns the above into

1

δG(g)

∫
G

f̌(gh)η(h)
dh

δG(h)
=

∫
G

η(h)
f̌(gh)

δG(hg)
dh
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=

∫
G

η(h) (βf)(gh) dh

confirming that the HG-module structure is respected. The appearance of δG is unavoidable.

Now verify that β factors through the smaller tensor product HH ⊗HH
σ. Take ζ ∈ HH and f ∈ HG. Then

β(f ∗H ζ ⊗ v)(g) =

∫
H

(f ∗H ζ )̌(yg)

δH(y)
σ(y−1)v dy =

∫
H

∫
H

f(g−1y−1x−1)

δH(y)
ζ(x)σ(y−1)v dy dx

=

∫
H

∫
H

f̌(xyg)

δH(y)
ζ(x)σ(y−1)v dy dx =

∫
H

∫
H

f̌(yg)

δH(x−1y)
ζ(x)σ(y−1x)v δH(x−1) dy dx

by replacing y by x−1y, using the definition of δH . This is

∫
H

∫
H

f̌(yg)

δH(y)
σ(y−1) ζ(x)σ(x)v dy dx =

∫
H

f̌(yg)

δH(y)
σ(y−1) ζv dy = β(f ⊗ (ζv))

where ζv = σ(ζ)v. Thus, the map factors through the tensor product HG ⊗HH
σ as asserted.

It remains to prove injectivity of the induced map β, i.e., to show that the kernel of the averaging map β is
spanned by the collection of differences

(fζ ⊗ v)− (f ⊗ ζv) (in C∞c (G)⊗k V )

Fix a compact open subgroup K of G. Fix a set of representatives xi for H\G/K, and let fi be the
characteristic function of xiK. For f a left-and-right K-invariant element of C∞c (G), the difference

(fζ ⊗ v)− (f ⊗ ζv)

is a finite linear combination of elements of the form

(f ⊗ (δH(σh)v))− (δH(h)−1L−1
h f ⊗ v) (for h ∈ H)

Thus, every element of the image of C∞c (G)K ⊗ V in C∞c (G)⊗HH
V can be written as a finite sum∑

i

fi ⊗ vi (for some 0 6= vi ∈ V )

Since the supports of the functions β(fi⊗vi) are disjoint, the averages β(fi⊗vi) must be linearly independent.
(One may check directly that each is not identically zero.) This proves injectivity. ///

17. Iterated induction

Let Q be a closed subgroup of H and H a closed subgroup of G. Let (σ, V ) be a smooth representation
of Q. We claim that compact-induction and induction of representations are compatible with iteration, i.e.,
that we have natural isomorphisms

indGH(indHQσ) ≈ indGQσ IndGH(IndHQσ) ≈ IndGQσ

The proof of the second immediately reduces to that of the first, granting the fact, already proven, that

(indGQσ)̌ ≈ IndGQ σ̌δQ/δG
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From the previous section, compact induction is the same as taking a tensor product, so, with suitable
module structures,

indGH(indHQσ) ≈ H(G)⊗H(H) (H(H)⊗H(Q) σ) ≈ H(G)⊗H(Q) σ ≈ indGQσ

We are granting that even for certain rings without units

A⊗B (B ⊗C V ) ≈ A⊗C V

This holds for idempotented rings A,B,C: a ring R not necessarily possessing a unit is idempotented when,
for every finite subset X of R, there is an idempotent element e of R so that ex = x = xe for all x ∈ X.
This property holds for these Hecke algebras.

18. Isotypes and co-isotypes (Jacquet modules)

Let (π, V ) be an irreducible smooth representation of G, and let (σ,W ) be an arbitrary smooth representation
of G.

The π-isotype σπ in σ is the smallest G-subrepresentation of σ so that every G-homomorphism π → σ
factors through it. Because of the arrow-theoretic nature of this definition, uniqueness is clear.

Existence follows from a different description, as

σπ =
∑
ϕ

ϕ(Vπ)

where ϕ is summed over HomG(π, σ). The multiplicity of π in σ is dimk HomG(π, σ).

The π-co-isotype σπ of σ is the smallest quotient of σ so that every G-homomorphism ϕ : σ → π factors
through σπ. This definition yields uniqueness of the co-isotype.

We give another description to prove existence of the co-isotype. Let Q be the intersection of the kernels of
all G-homomorphisms ϕ : σ → π. Then

Wπ = W/Q (with the obvious quotient map)

The co-multiplicity of π in σ is dimk HomG(σ, π).

Writing σπ for the isotype and σπ for the co-isotype is not so standard, but is consistent and reasonable.
When π is the trivial representation (i.e., on a one-dimensional k-space), use the earlier notation WG = πG

for the isotype of the trivial representation.

Consider the special case that π is one-dimensional, especially that π is the trivial representation. As usual,
write χ instead of π for a one-dimensional smooth representation, and view χ as k×-valued:

χ : G −→ k×

In this case, we can explicitly construct the χ-co-isotype of a representation (σ, V ), as follows. Let Q be the
k-subspace of σ spanned by differences σ(g)w − χ(g)w for w ∈W and g ∈ G. Note that Q is a G-subspace.
We claim that the quotient W/Q is the χ-co-isotype. Certainly G acts trivially on this quotient: for g ∈ G
and w ∈W

σ(g)w +Q = χ(g)w + (σ(g)w − χ(g)w) +Q = χ(g)w +Q

On the other hand, by construction, for ϕ a G-homomorphism to χ, certainly all the elements spanning Q
map to 0.
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Consider a totally disconnected group P with a normal subgroup N . Fix a one-dimensional smooth
representation

χ : N −→ k×

of N , and assume that the action of P stabilizes χ, i.e.,

χ(pnp−1) = χ(n) (for all p ∈ P and n ∈ N)

Given a smooth representation (σ,W ) of P , again let Q be the k-subspace of V spanned by differences
χ(n)v − σ(n)v for n ∈ N and v ∈ V . Then Q is N -stable and P -stable, so the co-isotype W/Q is a
P -representation, as well as being acted-upon trivially by N .

With the further hypothesis that N is the union of an ascending chain of compact open subgroups, viewed
as a representation of P , the trivial N -co-isotype is a (generalized) Jacquet module. The implications of
these hypotheses on N are discussed below.

19. Representations of compact G/Z

Let Z be a closed subgroup of G inside the center of G, and suppose that G/Z is compact. Consider
representations (π, V ) with central character ω : Z → k×, i.e., so that

π(z)v = ω(z)v (for all v ∈ V and z ∈ Z)

This generality is useful, but the simpler situation that G itself is compact and Z is trivial might be
contemplated to see more clearly what’s going on.

[19.0.1] Proposition: Every finitely-generated smooth representation (π, V ) of G with central character ω
(for Z) is finite-dimensional.

Proof: Take a compact open subgroup K small enough so that a (finite) set X of generators for V lies
inside V K . Let Y be a choice of a set of representatives for G/ZK; since G/Z is compact, Y is finite. The
set of all vectors π(g)v with v ∈ X and g ∈ G is contained in the span of the finite set of vectors π(y)x for
y ∈ Y and x ∈ X. ///

[19.0.2] Corollary: Every irreducible smooth representation of G having a central character for Z is finite-
dimensional ///

[19.0.3] Proposition: Let f : M → N be a surjective G-homomorphism of two G-representation spaces,
both with central character ω (for Z). Suppose there is a compact open subgroup K of G so that MK = M
and NK = N (as is the case if M,N are finitely-generated). There is a G-homomorphism ϕ : N → M so
that f ◦ ϕ is the identity map idN on N .

prLet n be the cardinality of G/ZK. Let ψ : N → M be any k-vectorspace map so that f ◦ ψ = idN : take
any k-vectorspace N1 in M complementary to the kernel of f , and let ψ be the inverse of the restriction of
f to N1. Define

ϕv =
1

n

∑
h∈G/ZK

h−1ψhv

The hypotheses assure that this ϕ is independent of the choice of representatives for G/ZK, and it is
immediate (by changing variables in the sum) that this averaged-out version of ψ is a G-homomorphism
providing a one-sided inverse to f . ///

[19.0.4] Corollary: Let f : M → N be an injective G-homomorphism of two G-representation spaces, both
with central character ω (for Z). Suppose that there is a compact open subgroup K of G so that MK = M
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and NK = N (as is the case if M,N are finitely-generated). There is a G-homomorphism ϕ : M → N so
that ϕ ◦ f is the identity map idM on M . In particular, every G-submodule of N has a complementary
submodule.

Proof: Let Q = N/fM be the quotient, and q : N → Q the quotient map. The previous proposition yields
ψ : Q→ N so that q ◦ ψ = idQ. Since N = fM ⊕ ψQ and fM ≈ M , N/ψQ is naturally isomorphic to M ,
and the composition

N −→ N/ψ ≈ M

is the desired ϕ. ///

[19.0.5] Corollary: (Complete Reducibility) Every smooth representation of G with central character ω
(for Z) is a direct sum of irreducible smooth representations (each with central character ω for Z).

Proof: This will follow from the previous and from Zorn’s Lemma.

First, show that a finite-dimensional smooth representation M contains a non-zero irreducible. Since M is
finite-dimensional it is finitely-generated, so has an irreducible quotient q : M → Q. By the above discussion,
there is a G-subspace M ′ of M so that as G-spaces M ≈M ′ ⊕Q. Thus, M contains the irreducible Q.

Let M = ⊕αMα be a maximal direct sum of (necessarily finite-dimensional) irreducibles inside N , and
suppose that M 6= N . Take x ∈ N not lying in M , and let X be the G-subspace of N generated by x. Then
X is finitely-generated, so is finite-dimensional, and has a non-zero irreducible quotient Q. From above,
there is a copy Q′ of Q inside X and X = Q′ ⊕X ′ for some X ′. By the maximality of M , Q must be inside
M already. Apply the same argument to X ′, so by induction on dimension conclude that X was 0. ///

20. Exactness of isotype, co-isotype (Jacquet) functors

The first result here is a slight generalization of the exactness of both isotype and co-isotype functors for
compact groups. The second result is related but somewhat different, showing that certain other special
co-isotype functors (Jacquet functors) are also exact. The methods of proof are related, although this may
not be superficially visible.

Fix a totally disconnected group G and let π be an irreducible smooth representation of G. Let Z be a closed
subgroup of G contained in the center of G, and suppose G/Z is compact. Suppose π has central character
ω, i.e., when restricted to Z is equal to its ω-isotype.

The case that G is compact and Z = {1} is of most interest, but the slightly greater generality is inexpensive
and useful.

Consider the two functors
Fπ : W →Wπ Fπ : W −→ Wπ

taking a smooth representation (σ,W ) of G to (respectively) the π-isotype Wπ and π-co-isotype Wπ of W .

Claim that for G/Z compact and for π having a central character ω (for Z) the isotype functors Fπ and Fπ
take short exact sequences

0 −→ M ′ −→ M −→ M ′′ −→ 0

of G-representations having central character ω to exact sequences

0 −→ M ′
π −→ Mπ −→ M ′′

π −→ 0

0 −→ M ′π −→ Mπ −→ M ′′π −→ 0

(respectively.) That is, Fπ and Fπ are exact on the category of G-representations with central character ω
for Z.
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When G itself is compact we may take Z = {1}, and consider the whole category of smooth representations
of G. The assertion follows directly from the fact that in this situation all submodules admit complementary
submodules.

For the special but important case of Jacquet modules, use notation conforming to anticipated applications:
N is a locally compact totally disconnected group assumed to be the union of an ascending chain of compact
open subgroups, and ψ is a smooth one-dimensional representation ψ : N → k×. The first hypothesis implies
that every compact subset of N is contained in some compact open subgroup. With these hypotheses on N
and ψ call Fψ a (generalized) Jacquet (co-isotype) functor.

Proof: Jacquet co-isotype functors Fψ are exact.

Proof: Fix a smooth representation (σ,W ) of N . To prove the assertion we need an alternative
characterization of the ψ-co-isotype, as follows.

Let u be a fixed right N -invariant distribution on C∞c (N). First, check that u is also left invariant, i.e.,
that N is unimodular. Given f ∈ C∞c (N) and n ∈ N , take a compact open subgroup K of N large enough
to contain both n and the support of f . As K is open in N , u restricted to C∞c (K) is a right K-invariant
distribution, unique up to constants. As earlier, K is unimodular, so

u(Lnf) = u(f)

This proves the unimodularity of N .

Having fixed a right Haar integral, as usual there is an associated action of the Hecke algebra H(N) on W
via ‘integrating’ σ

σ(ϕ)w =

∫
G

ϕ(g)σ(g)w dg (for ϕ ∈ C∞c (N))

As before, define

eK = chK/u(chK) = chK/meas (K) (for compact open subgroup K of N)

For K ⊂ K ′,
eK ∗ eK′ = eK′ ∗ eK = eK′

Even though ψ itself is not in C∞c (N), any product ψeK is in C∞c (N), and for K ⊂ K ′ an easy computation
shows that

(ψeK) ∗ (ψeK′) = (ψeK′) ∗ (ψeK) = ψeK′

Therefore,

ker σ(ψ−1eK) ⊂ ker σ(ψ−1eK′)

Claim that the kernel Q of the map W →Wψ to the ψ-co-isotype Wψ is

Q =
⋃

ker σ(ψ−1eK) =
⋃

ker σ(ψ−1chK)

On one hand, given an element ψ(n)w − σ(n)w, take a compact open subgroup K large enough so that
n ∈ K. Then

σ(ψ−1chK)(ψ(n)w − σ(n)w) = ψ(n)

∫
K

ψ(h−1)σ(h)w dh−
∫
K

ψ(h−1)σ(hn)w dh

= ψ(n)

∫
K

ψ(h−1)σ(h)w dh− ψ(n)

∫
K

ψ(h−1)σ(h)w dh = 0
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replacing h by hn−1 in the second integral. Since the variant definition of the trivial co-isotype is that it is
the quotient of W by the span of such elements ψ(n)w − σ(n)w,

Q ⊂
⋃

ker σ(ψ−1chK)

On the other hand, suppose that for some compact open subgroup K∫
K

ψ(h−1)σ(h)w dh = 0

Let K ′ be a small-enough compact open subgroup inside K so that w ∈WK′ and ψ(K ′) = {1}. Then

0 =

∫
K

ψ(h−1)σ(h)w dh =
∑

x∈K/K′
ψ(x−1)meas (xK ′)σ(x)w

As N is unimodular, this is

0 =

∫
K

ψ(h−1)σ(h)w dh = meas (K ′)
∑

x∈K/K′
ψ(x−1)σ(x)w

Therefore, with n = [K : K ′],

w = w − 0 = w − 1

n
meas (K ′)−1

∫
K

ψ(h−1)σ(h)w dh = w − 1

n

∑
x∈K/K′

ψ(x−1)σ(x)w

=
1

n

∑
x∈K/K′

w − ψ(x−1)σ(x)w =
1

n

∑
x∈K/K′

ψ(x−1) · (ψ(x)w − σ(x)w)

This shows the opposite inclusion.

This completes the alternative characterization of the Jacquet ψ-co-isotype. Now prove the exactness of the
Jacquet co-isotype functor, denoted by J .

Let

0 −→ M ′
f

−→
M

g

−→
M ′′ −→ 0

be a short exact sequence, and Q,Q′, Q′′ the kernels of the maps of M,M ′,M ′′ to their respective co-isotypes
Mψ,M

′
ψ,M

′′
ψ . Each such kernel is spanned by elements of the form ψ(n)x − nx, where n × x → nx is the

action of n ∈ N upon x in M,M ′, or M ′′.

Thus, fQ′ ⊂ Q and gQ ⊂ Q′′. That is, this co-isotype functor really is a functor, in that we have well-defined
maps

J f : JM ′ −→ JM and J g : JM −→ JM ′′

Further, the surjectivity of J g is immediate from this and from the surjectivity of g.

For the injectivity of J f , suppose that J fm′ = 0 ∈ JM . Invoke the above variant characterization of the
co-isotype: for some large-enough compact open subgroup K

0 =

∫
K

ψ(n−1)n(fm′) dn

Since f is an N -homomorphism,

f

∫
K

ψ(n−1)nm′ dn = 0
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Therefore, ∫
K

ψ(n−1)nm′ dn

is in the kernel of f , so is 0. Thus, m′ ∈ Q′, giving injectivity of J f .

Finally, prove exactness at the middle joint. By remarks just above, from the definition (or by construction,
for one-dimensional ψ),

J g ◦ J f = 0

On the other hand, suppose J gm = 0. For some large enough compact open subgroup K of N∫
K

ψ(n−1)n (gm) dn = 0

Since g is an N -homomorphism,

g

∫
K

ψ(n−1)nmdn = 0

By the exactness of the original sequence, there is m′ ∈M ′ so that

fm′ =

∫
K

ψ(n−1)nmdn

Changing by the measure of K, and writing more economically,

fm′ = (ψ−1eK)m

Therefore,
(ψ−1eK)fm′ = (ψ−1eK) ∗ (ψ−1eK)m = (ψ−1eK)m

by an elementary and direct computation used before. In other words,

(ψ−1eK)(fm′ −m) = 0

That is, fm′ −m ∈ Q. This proves that the kernel of J g is contained in the image of J f . ///

21. Spherical representations: elementary results

These are the most important representations for applications. However, the present general discussion is
insufficient for finer study of spherical representations of totally disconnected groups G. Indeed, we can do
nothing further with spherical representations without assuming G is p-adic reductive.

Suppose for this section that G is unimodular, and fix a compact open subgroup K in G. The K-spherical
Hecke algebra is H(G,K). Consider k-algebra homomorphisms

Λ : H(G,K) −→ k

where H(G,K) has the convolution algebra structure. In an H(G,K)-module M , say that m ∈ M is an
H(G,K)-eigenvector with eigenvalue Λ when there is a k-algebra homomorphisms

Λ : H(G,K)→ k

so that
ηm = Λ(η)m (for η ∈ H(G,K))
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A K-spherical vector in a smooth representation π of G is a vector 0 6= v ∈ πK which is an eigenvector
for H(G,K) with some eigenvalue Λ.

A K-spherical function is a k-valued function on G which is left and right K-invariant and which is an
eigenvector for H(G,K) under the right-translation action of G on k-valued functions on G. Usually it is
further required that a spherical function assume the value 1 at 1G. To emphasize this normalization say
that ϕ is a normalized spherical function.

A K-spherical representation of G is an irreducible (smooth) representation π of G with a (non-zero)
k-spherical vector.

[21.0.1] Lemma: Let v 6= 0 be a K-spherical vector in a K-spherical representation π of G. Then

πK = k · v

Proof: As usual, let
eK = chK/meas (K)

The irreducibility of π implies that

H(G) · v = π (with H(G) is the full Hecke algebra)

Therefore, for any w ∈ πK there is η ∈ H(G) so that ηv = w. Then

w = eKw = eK ∗ ηv = eK ∗ η ∗ eKv = Λ(eK ∗ η ∗ eK)v ∈ k · v

This is the desired result. ///

Let
〈, 〉 : π × π̌ −→ k

be the canonical k-bilinear pairing, and let

cvλ(g) = c(v, λ)(g) = 〈π(g)v, λ〉

be the coefficient function, as usual.

[21.0.2] Lemma: Let π be a smooth representation of G with a K-spherical vector v 6= 0. Let λ ∈ (π̌)K

be a smooth functional such that λv 6= 0. The k-valued function f on G defined by

ϕ(g) = cvλ(g) = 〈π(g)v, λ〉

is a K-spherical function.

Proof: Let Λ be the eigenvalue of v. The left and right K-invariance follows from the K-invariance of v
and λ, by elementary properties of the coefficient functions. From Rgϕ = c(π(g)v, λ), by integrating, for
η ∈ H(G,K),

Rηϕ = c(π(η)v, λ) = c(Λ(η) · v, λ) = Λ(η) · c(v, λ) = Λ(η)ϕ

Note that there is some λ′ ∈ π∗ with λ′v 6= 0. Then

(π∗(eK)λ′)(v) = λ′(eKv) = λ′v 6 = 0

and π∗(eK)λ′ is certainly in π̌. ///
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[21.0.3] Lemma: Assume a given G Haar measure so that meas (K) = 1. Given a k-algebra homomorphism
Λ : H(G,K)→ k, there is at most one K-spherical function ϕ such that ϕ(1) = 1 and

Rηϕ = Λ(η)ϕ

for all η ∈ H(G,K). In particular,

ϕ(g) = Λ(eKgK) (foreKgK = chKgK/meas (KgK))

Proof: We have
ϕ(g) = (Rgϕ)(1) = (ReKgK

ϕ)(1) = Λ(eKgK)ϕ(1)

which proves uniqueness and the asserted formula. ///

Recall the notation η̌(g) = η(g−1).

[21.0.4] Corollary: Let ϕ be a spherical function with eigenvalue Λ and with ϕ(1) = 1. For η ∈ H(G,K),

η ∗ ϕ = ϕ ∗ η = Λ(η̌)ϕ

Proof: Half of this is a direct computation:

(ϕ ∗ η)(g) =

∫
G

ϕ(gh−1)η(h) dh =

∫
G

ϕ(gh)η(h−1) dh =

∫
G

ϕ(gh)η̌(h) dh = Rη̌ϕ

using unimodularity in the change of variables h → h−1. From the definition of the spherical function it
follows that

Rη̌ϕ = Λ(η̌)ϕ

For the other half of the proof, note that

(η ∗ ϕ)(g) =

∫
η(gh−1)ϕ(h) dh =

∫
η(h−1)ϕ(hg) dh

so that η ∗ ϕ is a finite sum of left translates of ϕ. By the uniqueness of K-spherical functions above,

(η ∗ ϕ) = (η ∗ ϕ)(1)× ϕ

and

(η ∗ ϕ)(1) =

∫
η(h−1)ϕ(h) dh =

∫
η(h)ϕ(h−1) dh = (ϕ ∗ η)(1) = Λ(η̌)

by the first computation. ///

[21.0.5] Proposition: (Godement) Let Λ : H(G,K) → k be a k-vectorspace map. Define a k-valued
function ϕ on G by

ϕ(g) = Λ(eKgK)

Then Λ is a k-algebra map if and only if the functional equation∫
K

ϕ(g1θg2) dθ = ϕ(g1)ϕ(g2) × meas (K)

holds. If this does hold, the ϕ is the unique normalized K-spherical function associated to Λ.
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Proof: Suppose the functional equation holds. The functions eKgK certainly span H(G,K) over k. We
have

(eKgKϕ)(h) =

∫
KgK

ϕ(hx) dx /meas (KgK) =

∫
K

∫
K

ϕ(hθ1gθ2) dθ1 dθ2 /meas (K)2 =

∫
K

ϕ(hθg) dθ

meas (K)

since ϕ is right K-invariant. This is

ϕ(h)ϕ(g) = Λ(eKgK)ϕ(h)

by definition of ϕ and by the functional equation. Thus, Rηϕ = Λ(η)ϕ. Then

Λ(η1 ∗ η2)ϕ = Rη1∗η2ϕ = Rη1Rη2ϕ = Λ(η1)Λ(η2)ϕ

Thus, ϕ is an eigenfunction and Λ is a k-algebra homomorphism, and then also ϕ(1) = 1.

On the other hand, suppose that Λ is a k-algebra homomorphism and ϕ a normalized eigenvector. Reversing
the above computation,∫

K

ϕ(g1θg2) dθ/meas (K) =

∫
K

∫
K

ϕ(g1θ1g2θ2) dθ1 dθ2 /meas (K)2

=

∫
K

ϕ(g1x) dx = (ReKg2K
ϕ)(g1) = (ReKg1K

ReKg2K
ϕ)(1) = (ReKg1K∗eKg2K

ϕ)(1)

= Λ(eKg1K ∗ eKg2K)ϕ(1) = Λ(eKg1K ∗ eKg2K) = Λ(eKg1K) Λ(eKg2K) = ϕ(g1)ϕ(g2)

by definition of ϕ. ///

The preceding proposition proves the bijection of normalized spherical functions and k-algebra homomor-
phisms of H(G,K) to k. Finally, prove that spherical representations and normalized spherical functions are
in bijection. Fix an algebra homomorphism

Λ : H(G,K) −→ k

and let ϕ(g) = Λ(eKgK) be the associated normalized spherical function. Let

V = { finite sums
∑
i

ciRgiϕ : gi ∈ G, ci ∈ k}

Let G act on V by right translations, denoted by π.

[21.0.6] Proposition: The representation (π, V ) is a K-spherical representation with associated eigenvalue
given simply by Λ. Further, any K-spherical representation with eigenvalue Λ is isomorphic to π.

prBy construction, π is smooth. Given 0 6= f ∈ V , take g0 ∈ G so that f(g0) 6= 0, and write

f(g) =
∑
i

ci ϕ(ggi)

Computing as in the previous proposition,

(π(eKg0K)f)(g) =

∫
K

f(gθg0) dθ =
∑
i

ci

∫
K

ϕ(gθg0gi) dθ =
∑
i

ci ϕ(g)ϕ(g0gi) meas (K)

by the functional equation of ϕ. This is

ϕ(g) f(g0) meas (K)
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Thus, ϕ ∈ H(G)f . That is, every non-zero H(G)-submodule of π contains ϕ, so must be all of π. Therefore,
π is irreducible. It is easy to see that Λ is the eigenvalue associated to π.

Let σ be another K-spherical representation with eigenvalue Λ. Let 0 6= v be a K-spherical vector, and take
λ ∈ σ̌K so that λv = 1. As above, cvλ is a normalized spherical function. By the uniqueness of normalized
spherical functions, cvλ = ϕ, the normalized spherical function attached to Λ.

For η ∈ H(G) and w ∈ σ(η)v,
cwλ = cσ(η)v,λ = π(η) cvλ

by elementary properties of coefficient functions. Therefore, w → cwλ gives a non-zero G-homomorphism
σ → π. Since these two representations are irreducible, this must be an isomorphism. ///

22. Admissibility

A smooth representation (π,K) of G is admissible when, for every compact open subgroup K of G, the
K-fixed vector space V K is finite-dimensional. All further assertions in this section, follow directly from the
complete reducibility of smooth representations of compact totally disconnected groups.

[22.0.1] Proposition: An equivalent characterization of admissibility is that, for a fixed compact open

subgroup K of G, every irreducible smooth representation δ of K has finite multiplicity in ResGKπ.

Proof: Suppose πK
′

is finite-dimensional for all compact open subgroups K ′. Let K be a fixed compact open
subgroup and δ an irreducible (smooth) representation of K. We know δ is finite-dimensional. Let v1, . . . , vn
be a k-basis. Since δ is smooth, each isotropy group Kvi is open, and the finite intersection K ′ =

⋂
i Kvi is

a compact open subgroup inside K. Then K ′ contains another compact open subgroup K ′′ which is normal
in K: let K act (on the left) on the space K/K ′ of cosets kK ′, and take K ′′ to be the subgroup of K fixing
every coset kK ′. Then K ′′ acts trivially on the representation space of δ, so πδ is contained in the set πK

′′

of K ′′-fixed vectors.

For the converse, suppose that K is a fixed compact open subgroup and that for every irreducible δ of K the
δ-isotype in π is of finite multiplicity. Given a smaller compact open subgroup K ′ , without loss of generality
shrink it to be inside K, and (as in the previous paragraph) to be normal in K. The K ′-fixed vectors πK

′
of

π all lie inside the sum of the δ-isotypes, summed over irreducibles δ so that δ|K′ contains a K ′-fixed vector.
By complete reducibility, the trivial representation 1 of K ′ occurs inside δ|K′ if and only if HomK′(δ|K′ , 1)
is non-trivial. By Frobenius Reciprocity,

Hom′K(δ|K′ , 1) ≈ HomK(δ, IndKK′1)

Since K ′\K is finite, IndKK′1 is finite-dimensional, so there are only finitely-many (isomorphism classes of)

irreducibles δ occuring in IndKK′1. Thus, the space πK
′

is finite-dimensional. ///

Since an irreducible δ of K is necessarily finite-dimensional, admissibility of a representation π is equivalent
to the assertion that the δ-isotypic subspace in π is finite-dimensional, for all irreducibles δ of K.

Proofs of the following are left to the reader, as they are but further exercises in application of the smooth
representation theory of compact (totally disconnected) groups.

Subrepresentations and quotient representations of admissible representations are admissible.

The (smooth) dual (i.e., (smooth) contragredient) of an admissible representation is admissible.

Admissible π is reflexive: the inclusion of π into its (smooth) double dual ˇ̌π is an isomorphism.

An admissible representation is irreducible if and only if its smooth dual is irreducible.
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