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We will restrict out attention to the simplest possible case, namely G = SL2(R), Γ = SL2(Z), and right
K = SO(2)-invariant functions on Γ\G. That is, we neglect the finite primes and holomorphic automorphic
forms. Let N be the subgroup of G consisting of upper-triangular unipotent matrices, and P the parabolic
subgroup consisting of all upper-triangular matrices. For simplicity we give K total measure 1, rather than
2π. This will account for some discrepancies between formulas below and their analogues in other sources.

For a locally integrable function f on Γ\G the constant term cP f of f (along P ) is defined to be

cP f(g) =

∫
N∩Γ\N

f(ng) dn

As usual, a (locally integrable) function f on Γ\G is a cuspform if for almost all g ∈ G

cP f(g) = 0

1. Pseudo-Eisenstein series

While cuspforms are mysterious, a completely not-mysterious type of automorphic form is constructed
directly from functions ϕ ∈ C∞c (N\G) by forming the incomplete theta series or pseudo-Eisenstein

series [1]

Ψϕ(g) =
∑

P∩Γ\Γ

ϕ(γg)

[1.0.1] Remark: Note that P ∩ Γ differs from N ∩ Γ just by {±12}, which are both in the center of Γ and
are in K. Since our interest for the moment is only in right K-invariant functions, everything here will be
invariant under {±12}.

[1.0.2] Lemma: The series for an incomplete theta series is absolutely and uniformly convergent for g in
compacts, and yields a function in C∞c (Γ\G).

Proof: Given ϕ ∈ C∞c (N\G/K, let C be a compact set in G so that N · C contains the support of ϕ. Fix
a compact subset Co of G in which g ∈ G is constrained to lie. Then a summand ϕ(γg) is non-zero only if
γg ∈ N · C, which is to say

γ ∈ Γ ∩N · C · g−1

which requires that
γ ∈ Γ ∩N · C · C−1

o

[1] In 1966 Godement called these incomplete theta series, but more recently Moeglin-Waldspurger strengthened the

precedent of calling them pseudo-Eisenstein series
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If this held, then
(N ∩ Γ) · γ ⊂ Γ ∩N · C · C−1

o

and then
(N ∩ Γ) · γ ∈ (N ∩ Γ)\Γ ∩ (N ∩ Γ)\(N · C · C−1

o )

The second term on the right-hand side is compact, since (N ∩ Γ)\N is compact. The first term on the
right-hand side is discrete, since N ∩ Γ is a closed subgroup. Thus, the right hand side is compact and
discrete, so is finite. Thus, the series is in fact locally finite, and defines a smooth function on Γ\G/K.

To show that it has compact support in Γ\G, proceed similarly. That is, for a summand ϕ(γg) to be non-
zero, it must be that g ∈ Γ · C, which implies Γ · g ⊂ Γ · C, and Γ · g ∈ Γ\(Γ · C). The right-hand side is
compact, being the continuous image of a compact set under the continuous map G → Γ\G, proving the
compact support. ///

[1.0.3] Remark: We will make incessant use of the lemma that for a countably-based locally compact
Hausdorff topological group G, and for a Hausdorff space X on which G acts transitively, X is homeomorphic
to the quotient of G by the isotropy group of a chosen point in X. And we will use standard integration
theory on quotients such as Γ\G and N\G, etc.

Let 〈, 〉 be the complex bilinear form

〈f1, f2〉 =

∫
Γ\G

f1(g) f2(g) dg

with respect to a fixed right G-invariant measure on Γ\G.

[1.0.4] Proposition: A locally integrable automorphic form f is a cuspform if and only if 〈f,Ψϕ〉 = 0 for
all pseudo-Eisenstein series Ψϕ, with ϕ ∈ C∞c (N\G).

Proof: Since Ψϕ has compact support on Γ\G, as long as f is locally integrable the integral makes sense.

On one hand, by unwinding the sum defining the theta series,

〈f,Ψϕ〉 =

∫
Γ\G

∑
γ∈N∩Γ\Γ

f(g)ϕ(γg) dg =

∫
N∩Γ\G

f(g)ϕ(g) dg

=

∫
N\G

∫
N∩Γ\N

f(ng)ϕ(ng) dn dg =

∫
N\G

ϕ(g)

∫
N∩Γ\N

f(ng) dn dg =

∫
N\G

cf(g)ϕ(g) dg

where the next-to-last inequality is obtained from the fact that ϕ is left N -invariant. Certainly if cf = 0
then this integral vanishes for all ϕ. On the other hand, cf is locally integrable on N\G, and if it were
non-zero on a set of positive measure, then (by density of C∞c in C0

c) there would be some ϕ which would
make this integral non-zero. ///

[1.0.5] Corollary: The square-integrable cuspforms are the orthogonal complement of the (closed) space
spanned by the pseudo-Eisenstein series in L2(Γ\G). ///

[1.0.6] Remark: It is immediate that the pseudo-Eisenstein series are not cuspforms: if Ψϕ is not identically
zero, then

0 < 〈Ψϕ,Ψϕ〉

since the inner product is the integral of a not-identically-zero non-negative smooth function. That is, if Ψϕ

is not identically zero then it is certainly not a cuspform.
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2. Fourier-Laplace-Mellin transforms

Recall that Fourier inversion for Schwartz functions on the real line asserts that

f(x) =

∫ ∞
−∞

f̂(ξ) e2πiξx dξ

where the Fourier transform f̂ of f is

f̂(ξ) =

∫ ∞
−∞

f(x) e−2πiξx dx

Replacing ξ by ξ/(2π) gives the variant identity

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(t) e−itξ dt

)
eiξx dξ

Now suppose that F ∈ C∞c (0,+∞), and take f(x) = F (ex). Then let y = ex (and r = et in the innermost
integral) and rewrite the identity as

F (y) =
1

2π

∫ ∞
−∞

(∫ ∞
0

F (r) r−iξ
dr

r

)
yiξ dξ

We define a related transform [2] MF of F by

MF (iξ) =

∫ ∞
−∞

F (r) r−iξ
dr

r

or (for complex s)

MF (s) =

∫ ∞
−∞

F (r) r−s
dr

r

Then the previous identity gives the inversion formula

F (y) =
1

2π

∫ ∞
−∞
MF (iξ)yiξ dξ

If we view ξ as being the imaginary part of a complex variable s, and rewrite the latter integral as a complex
path integral, then it becomes (since dξ = −i ds)

F (y) =
1

2πi

∫ 0+i∞

0−i∞
MF (s)ys ds

(where the integral is along the obvious vertical line).

[2.0.1] Remark: It is very important to know that for f ∈ C∞c (R) the Fourier transform f̂(ξ) extends to

an entire function in ξ which is of rapid decay on horizontal lines. [3] Then certainly the same is true for
the transform MF of F ∈ C∞c (0,+∞). In this case, for any real σ, the inversion formula yields

F (y) =
1

2πi

∫ σ+i∞

σ−i∞
MF (s)ys ds

[2] In these coordinates, this is called a Mellin transform, but it is a Fourier transform.

[3] More can be said about decay of Fourier/Mellin transforms: see the Paley-Wiener theorem.
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[2.0.2] Remark: The fact that the integral defining the Fourier transform f̂ does not converge for all f in
L2(R) is a portent of what happens generally: integral formulas are valid only on a small but dense subspace
of a (concrete) Hilbert space of functions, and the maps are extended by Hilbert-space isometry to the whole
space. Of course, this presumes that we have shown that the integral expression does give an isometry.

3. Recollection of facts about Eisenstein series

We review some basic features of the (spherical) Eisenstein series for SL2(Z), and the causal mechanisms.
Rather than use explicit formulas, easily possible here, we use methods which will scale upward as well as
possible. Let

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
be the usual G-invariant Laplacian on H = G/K in upper half-plane coordinates. Because

∆(ys) = s(s− 1) · ys

we have
∆Es = s(s− 1) · Es

And since ∆ commutes with the map f → cP f , we see that cPEs is a function u(y) of y satisfying the
Eulerian equation

y2 ∂2

∂ y2
u(y) = s(s− 1)u(y)

For s 6= 1/2 this has the two linearly independent elementary solutions ys and y1−s. So, for some
meromorphic functions as and cs,

cPEs = as y
s + cs y

1−s

In fact, a direct computation shows that the first of the two summands is entirely elementary, and in
particular as = 1. That is,

cP Es = ys + cs y
1−s

Following the Selberg-Bernstein method of analytic continuation, for example, we find

[3.0.1] Theorem: The equations

∆w = s(s− 1) · w
(
y
∂

∂y
− (1− s)

)
cw = (2s− 1) · ys

uniquely determine w = Es, and imply that it has a meromorphic continuation and functional equation

E1−s = c1−sEs

(This is non-trivial!)

Granting the unique characterization of the Eisenstein series, the functional equation is readily obtained, as
follows. One can check directly that c−1

1−sE1−s satisfies those equations as well, so by uniqueness

c−1
1−sE1−s = Es

which is the functional equation. Continuing in this vein, applying the functional equation twice gives

csc1−s = 1

Since Es̄ = Es, we have cs = cs and |c 1
2 +it|2 = 1. For real t. In particular, cs does not vanish on that line.
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From the spectral formula below expressing pseudo-Eisenstein series in terms of Eisenstein series, poles of
Es sufficiently far to the right can be made to play a role in the decomposition of L2(Γ\G).

[3.0.2] Remark: If we imagine that (for example) we can arrange to have Mϕ(so) = 1 while ϕ is adjusted
so that Mϕ( 1

2 + it) → 0 (and all other residue terms go to 0), then we would conclude from the previous
paragraph that all negative-order terms of all poles of Eisenstein series (if not cancelled in some manner)
are in the closure of the space spanned by the pseudo-Eisenstein series. That is, (if we can arrange things
as required) these residues of Eisenstein series are in L2(Γ\G) and are orthogonal to cuspforms.

4. Decomposition of pseudo-Eisenstein series

We restrict out attention to right K-invariant functions on Γ\G. Invoking the Iwasawa decomposition, we
have

G = N ·Ao ·K

with Ao consisting of elements

my =

(√
y 0

0
√

1/y

)
Define a function

a : G→ Ao

by sending g ∈ G to the element a(g) ∈ Ao so that

g ∈ N · a(g) ·K

Then a left N -invariant right K-invariant function on G can be identified with a function on

N\G/K ≈ Ao ≈ (0,+∞)

by the map

g → a(g) =

(√
y 0

0
√

1/y

)
→ y

We will use the Laplace transform and inversion formula to decompose the pseudo-Eisenstein series.

Let ϕ ∈ C∞c (N\G/K). By the inversion formula

ϕ(ay) =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s)ys ds

or

ϕ(g) =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s)a(g)s ds

Then the pseudo-Eisenstein series is expressible as

Ψϕ(g) =
1

2πi

∑
γ∈(Γ∩N)\Γ

∫ σ+i∞

σ−i∞
Mϕ(s)a(γg)s ds

The case that σ = 0 might seem to be the natural spectral decomposition. However, with σ = 0 the double
integral (sum and integral) is not absolutely convergent, and the two integrals cannot be interchanged.
(And we’ll subsequently decide that the ‘correct’ line is σ = 1/2). But for σ > 0 sufficiently large, say

5



Paul Garrett: Spectral Theory for SL2(Z)\SL2(R)/SO2(R) (January 4, 2012)

σ > 1, relatively elementary estimates show that the double integral is absolutely convergent, so (by Fubini’s
theorem) the two integrals can be interchanged:

Ψϕ(g) =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s)

∑
γ∈(Γ∩N)\Γ

a(γg)s ds

The inner sum is (two times) the usual (spherical) Eisenstein series

Es(g) =
∑

γ∈(Γ∩P )\Γ

a(γg)s =
∑

γ∈(Γ∩P )\Γ

Im(γz)s

where we let Γ act as usual on the upper half-plane, and we know the identity

Im(

(
a b
c d

)
z) =

y

|cz + d|2

where z = x+ iy. That is, for σ > 1,

Ψϕ(g) =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s)Es(g) (σ = Re(s) > 1)

If we grant the meromorphic continuation of the Eisenstein series, then we can move the vertical line of
integration to the left, say to the line σ = 1/2. (Preference for this particular vertical line will be clear
shortly.) Of course, this uses the fact that integrals over small horizontal line segments

[
1

2
+ it, σ + it]

go to zero as t → ±∞. And this is slightly complicated by the fact that we are actually looking at
meromorphic function-valued functions. Granting these two sorts of things for the moment, we obtain

Ψϕ(g) =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es(g) +
∑
so

ress=so(Es · Mϕ(s))

By luck the 1/2πi from the Laplace inversion formula exactly cancels the 2πi in the residue formula.

[4.0.1] Remark: We also need to know that Es has no pole on the line Re(s) = 1/2.

And we’d prefer to have McP (Ψϕ) enter, not just Mϕ, because we would want whatever integral formulas
we have to be expressed in terms of the automorphic forms themselves, not in terms of the auxiliary functions
from which they’re made. To this end, we need a standard unwinding trick:

[4.0.2] Proposition: For f ∈ C∞c (Γ\G/K)∫
Γ\G

Es(g) f(g) dg =McP (f)(1− s)

Proof: We use the fairly standard unwinding trick (which is certainly legitimate for Re(s) > 1 and for
f ∈ C∞c (Γ\G), ∫

Γ\G
Es(g) f(g) dg =

∫
Γ\G

∑
γ∈P∩Γ\Γ

a(γg)s f(g) dg =

∫
P∩Γ\G

a(g)s f(g) dg
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=

∫
N(P∩Γ)\G

∫
N∩Γ\N

a(ng)s f(ng) dn dg =

∫
N(P∩Γ)\G

a(g)s cP f(g) dg

Note that cP f is not generally in C∞c (N\G). Nevertheless, the absolute convergence of the initial integral
(and of the sum defining the Eisenstein series) assures that the last integral is absolutely convergent for
Re(s) > 1. Thus, in the case that f is right K-invariant, using the fact that

d(nmyk) = y−1 dn
dy

y
dk

with Haar measures dn and dk on N and K, respectively, this becomes

McP f(1− s)

and the integral defining the latter converges absolutely at first for Re(s) > 1. Then this identity holds also
for the analytically continued Eisenstein series since it is continuous and f is in C∞c (Γ\G). ///

On the other hand, we also have

[4.0.3] Proposition: For an pseudo-Eisenstein series Ψϕ,∫
Γ\G

Es(g) Ψϕ(g) dg =Mϕ(1− s) + csMϕ(s)

Proof: Use the known form of the constant term of the Eisenstein series

cPEs = a(g)s + cs a(g)1−s

and the properties of the pseudo-Eisenstein series observed earlier:∫
Γ\G

Es(g) Ψϕ(g) dg =

∫
N\G

cPEs(g)ϕ(g) dg

This is ∫
N\G

(a(g)s + csa(g)1−s)ϕ(g) dg

which immediately yields the proposition. ///

This allows us to understand the constant term of pseudo-Eisenstein series without direct computation:

[4.0.4] Corollary:
McPΨϕ(s) =Mϕ(1− s) + c1−sMϕ(s)

Proof: Compare the two computations of the last two propositions. ///

Then the integral part of the expression of Ψϕ in terms of Eisenstein series can be rearranged to

Ψϕ−(residual part) =
1

4πi

∫ 1
2 +i∞

1
2−i∞
Mϕ(s)Es+Mϕ(1−s)E1−s ds =

1

4πi

∫ 1
2 +i∞

1
2−i∞
Mϕ(s)Es+Mϕ(1−s) c1−sEs ds

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

(Mϕ(s) + c1−sMϕ(1− s))Es ds =
1

4πi

∫ 1
2 +i∞

1
2−i∞
McPΨϕ(s)Es ds =

1

4πi

∫ 1
2 +i∞

1
2−i∞
〈Ψϕ, E1−s〉Es ds
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That is, an pseudo-Eisenstein series is expressible as an integral of Eisenstein series Es on the line
Re(s) = 1/2, plus a sum of residues:

Ψϕ − (residual part) =
1

2πi

∫ 1
2 +i∞

1
2 +i0

McPΨϕ(s)Es ds =
1

2πi

∫ 1
2 +i∞

1
2 +i0

McPΨϕ(s)Es ds

5. Interlude: the constant function

In the case of SL2(Z), we know by various means that there is a single pole of Es in the half-plane Re(s) ≥ 1/2
at s = 1, and it is simple, so

Ψϕ(g) =
1

2πi

∫ 1
2 +i∞

1
2 +i0

McPΨϕ(s)Es(g) +Mϕ(1) · ress=1Es(g)

The coefficient Mϕ(1) is

Mϕ(1) =

∫ +∞

o

ϕ(my) y−1 dy

y
=

∫
N\G

ϕ(g) dg

since a right Haar measure on G is given by

d(nmyk) = y−1 dn · dy
y
· dk

for Haar measure dn on N and Haar measure dk on K. Rearranging, we have

Mϕ(1) =

∫
N\G

ϕ(g) dg =

∫
N\G

∫
N∩Γ\N

ϕ(ng) dn dg

=

∫
N\G

ϕ(ng)

∫
N∩Γ\N

1 dn dg =

∫
N∩Γ\G

ϕ(g) dg

since the natural volume of (N ∩ Γ)\N is 1 and ϕ is left N -invariant. Then, winding up, we have

Mϕ(1) =

∫
Γ\G

∑
γ∈(N∩Γ\Γ

ϕ(g) dg =

∫
Γ\G

Ψϕ(g) dg = 〈Ψϕ, 1〉

That is, Mϕ(1) is the inner product of Ψϕ with the constant function 1 (which is square-integrable).

[5.0.1] Remark: This would cause a person to speculate that the residue of the Eisenstein series Es at s = 1
should be a constant function, depending upon the normalization of measures. Of course this presumes that
the rest of the expression decomposing Ψϕ in terms of Eisenstein series is for some reason orthogonal to the
constant functions. This is certainly not clear a priori.
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6. Plancherel for the continuous spectrum

Ignoring constants for a moment, for f ∈ C∞c (Γ\G), using the expression for Ψϕ in terms of Eisenstein series,

〈Ψϕ, f〉 =
〈 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, E1−s〉 · Es ds, f
〉

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, E1−s〉 · 〈Es, f〉 ds

This proves that f → (s → 〈f,Es〉) is an inner-product-preserving map from the Hilbert-space span of the
pseudo-Eisenstein series to L2( 1

2 + iR).

Functions u(t) = 〈Ψϕ, E 1
2−it
〉 satisfy

u(−t) = 〈Ψϕ, Es〉 = 〈Ψϕ, csE1−s〉 = cs〈Ψϕ, E1−s〉 = cs · u(t)

We claim that any u ∈ L2( 1
2 +iR) satisfying u(−t) = cs u(t) is in the image. First, claim that, for compactly-

supported u satisfying u(−t) = cs u(t)

Φu =
1

4πi

∫ 1
2 +i∞

1
2−i∞

u(t) · E 1
2 +it dt 6= 0

It suffices to show cPΦu is not 0. With s = 1
2 +it, the relation implies u(−t)E1−s = u(t)cs ·E1−s/cs = u(t)Es.

Then

Φu =
1

4πi

∫ 1
2 +i∞

1
2−i∞

u(t) · Es dt =
1

2πi

∫ 1
2 +i∞

1
2 +0

u(t) · Es dt

The constant term of Φu is

cPΦu =
1

2πi

∫ 1
2 +i∞

1
2 +0i

u(t)·(ys+csy1−s) dt =
1

2πi

∫ 1
2 +i∞

1
2 +0i

u(t)y
1
2 +it+u(−t)y 1

2−it dt =

√
y

2πi

∫ 1
2 +i∞

1
2−i∞

u(t) eit log y dt

This Fourier transform does not vanish for non-vanishing u.

Since the Es integrate to 0 against cuspforms, an integral Φu of them does, also. Thus, Φu is in the
topological closure of pseudo-Eisenstein series Ψϕ with test-function data ϕ. Thus, given u, there is ϕ such
that 〈Ψϕ,Φu〉 6= 0. Then

0 6= 〈Ψϕ,Φu〉 =
1

4πi

∫ 1
2 +i∞

1
2−i∞

u(t) · 〈Ψϕ, E1−s〉 dt

Thus, the functions s→ 〈Ψϕ, Es〉 are dense in the space of L2( 1
2 + iR) functions u satisfying u(−t) = cs u(t).

Thus, there is an isometry

{cuspforms}⊥ ∩ L2(Γ\G)K ≈ {u ∈ L2(Γ\G/K) : u(−t) = cs · u(t)}
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