(February 26, 2015)
Standard archimedean integrals for GL(2)

Paul Garrett garrett@math.umn.edu http;/www.math.umn.edu/ garrett/

Basics involving I'(s), B(a, B), etc.
Holomorphic discrete series

Spherical Whittaker functions for GLy(R)
Spherical Mellin transforms for GLo(R)
Spherical Rankin-Selberg integrals for GLy(R)
Moment integrals for discrete series of GLy(R)
Spherical Whittaker functions for GLy(C)
Spherical Mellin transforms for G Lo (C)

e Appendix: explicit Iwasawa decompositions

e Appendix: I'(s) -T'(1 — s) = 7/sin7s

e Appendix: Duplication: I'(s) - T'(s + 1) = 21725 . /w - T'(2s)

ONoOIRWND

1. Basic identities involving I'(s), B(«, 3), etc.
We take the Gamma function I'(s) to be defined by Euler’s integral

I'(s) = /000 tSet v (for Re(s) > 0)

Integration by parts proves the functional equation
I(s+1) = s-T(s)
For 0 < s € Z, this relation and induction show the connection to factorials,
I'(n) = (n—1)! (forn=1,2,...)

From the functional equation, we get a meromorphic continuation of I'(s) to the entire complex plane, except
for poles at non-positive integers —n. The poles are simple, with residue (—1)"/n! at —n.

The identity

° dt r
/ e — = () (for y > 0 and Re(s) > 0)
0 t y®
for y > 0 first follows for Re(s) > 0 by replacing ¢ by ¢/y in the integral. Then
e dt r
/ e t® 5 = z(f) (for Re(z) > 0 and Re(s) > 0)
0

by complex analysis, since both sides are holomorphic in s and agree on the positive reals.
The latter identity allows non-obvious evaluation of a Fourier transform. Namely, let

z®-e* (for z >0)

f@) = {0 (for x < 0)

For Re(«) > —1 this function is locally integrable at 0, and in any case is of rapid decay at infinity. We can
compute its Fourier transform:

/ "2 £(5) dp = /OO o—2mikT ot —u dx _ /00 2O+ g w(142mi€) dx _ I + 1)
R 0 x 0 T (1 + 2mig)att
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Further, Fourier inversion gives the non-obvious

/ 2rite 1 Qe = 1 fa*.em® (for z >0)
R (1 + 2mi&)at! Nla+1) |0 (for z < 0)
For a € Z, the same conclusion can be reached by evaluation by residues.

Next, we recall the argument that expresses Euler’s beta integral in terms of gamma functions, as

[(a)T(0)

B(a,b) = /0 21 (1 —2)tdr = Tt

Indeed, replacing x by H—Ll =1- in the integral gives

1
t+1

1 e8] a— — o a
/Oxa_l(l_x)b_ldx:/o (H%) 1(1_ti1)b1(tft1)2 :/0 ta(ﬁ) +b%

Use the gamma identity in the form

1\ 1 e du
B D —u(t+1) 5 &2
(t + 1) I'(s) /0 ¢ -

to rewrite the beta integral further as

1 /OO /00 ua+b 1@ e—u(t—i—l) dl@ _ 1 /OO /00 ’U,b 19 e e—t @diu — F(a) F(b)
Tla+b) Jo Jo u t Tla+b) Jo Jo t u T(a+0b)

as claimed. /]

A similar sort of integral, with one more factor, is Euler’s integral representation for hypergeometric
functions, namely,

1
FlaBiyiz) = —— " ) / P71 - 2P (1 - 22) 0 da

B(ﬂ? Y B
where B is the beta function

[(a)T(0)

B(a,b) = /0 21 (1—2)tde = (@t

This F is the o F; hypergeometric function, whose series definition is

n

abz ala+1)b(b+1) 22 = (@)n (b)y 2
Fla,f7:2) = c 1! cle+1) ot T 2:% () n!

The notation (a), is the Pockhammer symbol.

2. Holomorphic discrete series

Whittaker functions W(g) for holomorphic discrete series for GL2(R) are completely elementary. For the
holomorphic discrete series of weight 0 < x € Z, the Whittaker function corresponding to the lowest K-type
is essentially an exponential function, namely,

W(g ?) = y% e 2 (for y > 0)

2
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The extension of this to the whole group is

z 0\ (1 z\ (y 0\ [ cosf sinf\, _ omiz 5 2wy | iKkd X
W<(O z) (O 1) (0 1) (—sin@ cos9>) = wiz)e yre c (fory >0,z € RY)

where the central character w must be compatible with k, in the sense that

w -1 0 o efri/-c
0o -1,/

That is, the central character must have the same parity, as a character, as the weight x has, as an integer.

Mellin transforms of holomorphic discrete series Whittaker functions are easy to evaluate, with the exponent
s — % rather than s, as usual, to have the functional equations s — 1 — s rather than s — —s. Namely,

regardless of the parity of k,

K s—3 Y 0 dy /OO s—% (y O> dy
sen . 2 W = = 2. 2 W -
/]RX En(y)” -l (0 1> [yl 0 ol 0 1/ y

o0 K d K
=2 [ it g TG
0

y )

| x

The archimedean integral arising in the Rankin-Selberg convolution L-function for two holomorphic cuspforms
of the same weight k is similarly easy to evaluate explicitly:

s—1 W y 0 W y O dy s—1+4k ,—4n dy —(s—1+k)
Y ( ) ( ) / y e = = (4r T(s—1+k

3. Spherical Whittaker functions for G Ls(R)

First, we want integral representations of Whittaker functions for spherical principal series with trivial central
character for G = GL2(R). As usual, define subgroups

piy e )

For 1 € C, let I,, be the ut" (naively normalized) spherical principal series of G with trivial central character,
by definition consisting of the collection of all smooth functions f on G such that

fooa) = x)Slo)  (or x(s) = lafal withp = (§ ) € Prand g € )

Computation of the Fourier expansion of Eisenstein series suggests presenting the Whittaker function as an
image under an intertwining operator from I, to the Whittaker space

Wh = {f on GLy(R) : f(ng) =¢¥(n)- f(g) for alln € N, g € G} (where ((1) af) = e2miz)

Such an intertwining amounts to taking a Fourier transform, as follows. Let the spherical function be

Al ) (Ll 0N = Gy

—sinf cosf

3
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with ¢rivial central character. This spherical function gets mapped to the Whittaker space by an intertwining

nf —2mix
Wri(g) = /R e o (wyn, g) de

For diagonal elements m, = (g (1)>, we can explicitly determine the Iwasawa decomposition of w,nzmy,

namely (see the appendix)

wgmy = (Y7 ) (LU0 T e e r = VAT

—z/r y/r

w8 5) = L) (e ) o

The spherical-ness is simply right K-invariance, and we are assuming trivial central character, so this

simplifies to
nf (Y 0 _ —2mix ‘yl g 1
W, (O 1) = /Re (y2+xz> dx (for Re(u) > 3)

Replace x by zy to obtain the useful integral representation

Therefore,

n 0 — —2mix 1
W#f(g 1) = |y|1 M,/Re 2 ymdﬂf (for Re(/‘)>%)

It is awkward that Re(pu) > % is necessary for absolute convergence, since the unitary principal series have
Re(p) = 3, in the naive normalization. However, we can rearrange the integral to a form that shows the
meromorphic continuation, and explains the normalization constant at the same time. Namely, using the

identity involving I'(s),

1— o0 ,
|y|17u/6727r7;xy 12 dr — |y‘ #// e*Qﬂ'ifﬂytHe*t(l+zz) dxﬁ
R (L+a2)m L(p) Jr Jo t

Replace x by = - % to obtain

1— 0
L(p) 0 R t

Taking the Fourier transform of the Gaussian in z, this is

M /Oo eV g ot dt
L) Jo t

Replacing t by «|y| - ¢ gives

wai (v 0 h Jy['/? /Ooe—ﬂ\y\(%ﬂ)t#—%ﬂ
o 1) = W, t

This last integral converges nicely for any complex pu.

A less naive normalization of the parametrization of the principal series Iﬁf replaces p by p+ %, taking

I = Inf
1 M+%
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And a less naive normalization of the Whittaker function not only shifts p, but also gets rid of the I'() and
m#, by taking

1
p+3) o

i /L+%

41
W Yy 0 — F(IJ‘—’_ %) e—27rix |y| Hta d
B 0 1 TH R x2 -|—y2

Note that, in this normalization,

W, =

That is,

8

o0
_ \y|1/2/ o lul(2 ) g O
O t

One might further make a comparison to classical special functions.

4. Spherical Mellin transforms for G Ly(R)

The Hecke-Maafl integral representation of L-functions attached to waveforms already requires that we
understand archimedean local integrals, namely, Mellin transforms of Whittaker functions, given by

> s nf (Y 0 dﬁ
fom( )
where Wf}f is the Whittaker function of the p!* (naively normalized) spherical principal series Iﬂf. As with

holomorphic discrete series, we will later renormalize the exponent of y to s — %, as a global normalization

to give L-functions functional equation s — 1 — s rather than s — —s. The integral representation obtained
above by consideration of an intertwining operator from Iﬁf to the Whittaker space gives us what we need:

* 0 dy * omi y \", dy
san Y et A / s / e 2mix ( ) dr =2
/0 ¥ (0 1) y o Ve z? +y? Y

The obvious thing to do is to interchange the order of integration, and apply the gamma identity, obtaining

/ /OO e 2mim g stu ( - 1 2># dy de — 1 /OO/ /OO e 2mi st yu e t@+y?) dy dx dt
R Jo =ty y L) Jo JrJo y t
Replace y by y/v/t . .

L/ / / o~ 2mix str/_L = e—tm2 efyZ @dxﬂ

L) Jo JrJo Y t
Replace y by /y

1 / / / e~ 2miz ySJrT“ 175 eta? oy dy dx at _ L5Y) / / e 2miT 15 =t gy dt
20(pn) Jo  Jr Jo Yy t 20(p) Jo Jr t

Then replace x by x - % and take the Fourier transform of the Gaussian

st 00 ) _ L st [e%S) s
T )/ /672#”}%15M 7 o dz@ = s )/ e T t%@
20(p)  Jo Jr t 20 (p 0 t

Replace ¢ by 1/t and then by ¢ - 72

VAL () m _/OO ettt at _ e L(=5*) .
2T (1) 0 t 2T ()
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That is, in a naive normalization,
1
> s nf [ Y 0 dy ThTET s+ s+1—
W _ T p(steyp(stlos

The less naive normalization replaces p by p + %, s by s — %, and uses

F(,U,-f—%) an
7T”+% ”+2

> s—1 dy 1 —s S+p S—H
0 |y| 2W 0 1 y:§'7r F(Q)F(Q)

Note the nature of the product of gammas, specifically, the symmetry in £u.

W, =

This gives

5. Spherical Rankin-Selberg integrals for G Ly(IR)

Let VVl’ff and W2f be spherical Whittaker functions for the p** and v*" spherical principal series for G Ly(R)
in the naive normalization. The local Rankin-Selberg integral is

oo
s—1 nf (Y 0 nf [ Y 0 df:l/
I L (I

The exponent s — 1 arises naturally from unwinding an Eisenstein series with a functional equation s — 1—s.
Also, one might complex conjugate the second Whittaker function, but this would only complex-conjugate
the parameter v (and replace y by —y, but the function is even). Replace the Whittaker functions by their
integral representations, letting ¢(x) = > and apply the gamma identity:

> s—1 1— @(my) 1—v E(uy) @
/R/R/ R e e s

; / Oo / OO/ / / Ty ) Ty o o) Y g dEdT
= — Y Y(zy)the v(uy) TV e —Zdrdu — —
L) Tw) Jo Jo JrJrJo (=) () Y t T

Replace x by « - % and u by u - % and take the Fourier transforms of the Gaussians, giving

7r /OO /Oo /Oo sty =3 o=t o=V () =3 T oy (F) dy dt dr
L)) Jo Jo Jo y t T

Replace y by \/y and then replace y by y/ 72, to obtain

+
WMVS/// s+1“‘/t“2eey(+)”267—d—@d—7
t T

Replace y by y/(77 1 +t71):

7T,u+u—s T st+l—pu—v > > tu—% —t 1 u—% -7 @ dl
2F F ( 2 ) € 1 1\ 8+l—p—v T € t
(N) (V) 0 0 (; + ?) 2 T

_ Yo s+1 ,u v / / =3 o (t7) 7 TV_% e_,,_ﬁdl
2T(u) T(v) t+ )T t T

qHtv—s stu—v 1 stv—p dt dr
= F(S+17“7U)/ / t— 2 e_ —SMTT e_T —_— —
2T(u) T(v) 2 o Jo t-l—T)Hi b
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Replace t by t7

htr—s RO (e RTI 1 dt dr
2T () T(v) 2 o Jo (tr + 7)== t T

71_M+l/—s 1w oo o0 shp—v - 1 s— 1+u+u dt dr
= ST T )/ / L e T
(W) L(v) o Jo (t+1) 2 b

Replace 7 by 7/(t + 1):

ptv—s 0o L o B
e Y e w L-

T

2T (p) T(v) (t+1)s t T
7TM+V75 o0 stu—v 1 dt
— F s+l—p—v F s—=14pu+v / == had
rGTe) 2 T T ey

As usual,

/ootwr” y 1 B / / s+“ v e 7x(1+t) dt dI
t+1)3t B t oz

[ e e e D(4=2) D(==h)
T2 e Te
t «x L'(s)

Thus, the whole is

qhtr—s ]_—\(S—HZL—V)P(S—,L2L+u)]_—\(s+1—2p—v)]_—‘(s—l-g,u—i-y)

2T T(v) I(s)
That is, with the naive normalization,
[T (e (5 V) Y = s D(S424) (=) D(Hgeet) p(=tyess)
0 A0 1 0 1) y 2T (p) T(v) I'(s)

For the less naive normalization, replace u by —i— s and v by v —|— =, and recall the renormalization

F(,U/—f—%) an

W, =
© 7'r“+% ;L+2

Then the local Rankin-Selberg integral is

[ (3 2wy 0) - mior T(HA) D(Sh) Do) Ttk
o 0 1 0 1)y 2 I(s)

Note the pleasing symmetry in the parameters £x and +v. The extra 2 in the denominator can be
rationalized away in several different ways.

6. Moment integrals for discrete series of G Ly(R)

In the study of moments of L-functions, we encounter local moment integrals such as

oo 0 dx dy dy'
1t /ztw(y > ( )/ _J
/0 /O ] 01 Dy —y) )( Tr a0 y o

where the W’s are Whittaker functions for irreducibles of GLy(R) or GLy(C), with 1 (z) = €2™* as usual,
and where we have made the simplest useful choice 1/(1 4 22)*/2? of archimedean data. By Diaconu’s
computations, these integrals are not generally elementary, except for holomorphic discrete series of GLa(R),

7
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where we can evaluate them as follows. For holomorphic discrete series with lowest weights both equal to k,
the local moment integral is

oo oo /
it 1—it o 5/2 2Ty /K/26727ry’ /* ) x dix@diy
/0 /O vy Ty y L)Y e

_ /OO /Oo/yit-&-g y/—it-s-%e—(2w+2mm)ye—(27r—2m'x)y’ da @LQ/
o Jo JR (L+a2)w/2 y y

Using the gamma identity in both y and 3/, this gives

1 1 dx
20)~ (1+5) D4t “\r —it ad / R .
( 77) (Z + 2) ( i+ 2) R (1—|—Z1‘)lt+§ (1_i$)—zt+§ (1+$2)w/2

Because of the simple choice of data, this is

~Q+0) i B i B 1 , 1
(2m) [(at + 2) [(—it + 2)/R (11 iz)"t5+5  (1—iz) #1515 dx

This is the inner product on R of two functions whose Fourier transforms we essentially know from the
gamma identity. That is, we know

/62’”&;0{ 1 far.e™ (forz>0)
R (14 27i&)ett > T(a+1) |0 (for z < 0)

Thus, replace z by 27z in the given integral, to have

K K 1 1
2m)7F (Gt + =) (=it + — ooy —w—w d
@m) TG+ DT+ D) [ e ey

By the Plancherel identity,

1 1 1 e B 2= (@D (a4 B +1)
- . dr = e P e dx =
R (14 2miz)otl (1 — 2miz)B+1 MNa+1)T(B+1) Jr Fa+1)T(B+1)

In the case at hand,

K w K w
o+ zt+2+2 and [+ zt—|—2+2

Thus, the whole integral is

K K 2~ (5Fw) Tk + w)
2m) " T(it + =) D(—it + ) =~ .
(@m) (it + ) I 2)F(zt+g+%)r(—zt+g+%)

Thus, for weight x holomorphic discrete series on GL2(R), and with the simplest choice of data,

(hbw) L@t +5) D(—it + §) T'(k +w)

(moment integral) = (27)~" -2~ - 5
Plit+5+2)T(—it+ 5+ %)

From the asymptotic result

I'(s)

1
I'(s+a) Is|

= ol

) (for a fixed)

for fixed w and for s = % + 4t this moment integral has simple asymptotics, namely

(moment integral) ~ (constant)-¢~*

8
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To clarify the dependence upon w, use the duplication formula
[(s)-T(s+1) =272 . /x.T(2s)

to rewrite
K+w

PO = g T

Thus, the exponential depending on w disappears, and

Nk+w) = T(2-

(moment integral) = (27)7 "% . ~— .

VA TGt )it + HT(5+ %) T(5+ 5 +13)
2 Pit+5+2)T(—it+ 5+ %)

7. Spherical Whittaker functions for G L,(C)

First, we want integral representations of Whittaker functions for spherical principal series with trivial central
character for G = GL2(C). As usual, let

pify il )

For compatibility with global normalizations, take additive character and norm on C to be
" 1 =z _ p2mi(e+T) \a| — |a . &|
0 1 c

where the norm on the right-hand side is the usual norm on R. For u € C, let I, be the pt? (naively
normalized) spherical principal series of G with trivial central character, by definition consisting of the
collection of all smooth functions f on G such that

fp-9) = x() - f(9) (for x(p) = |a/d|¢ with p = (g 2) € P,and g € G)

As over R, computation of the Fourier expansion of Eisenstein series suggests presenting the Whittaker
function as an image under an intertwining operator from I, to the Whittaker space

Wh = {f on GL3(C) : f(ng) =(n)- f(g) for alln € N, g € G}

Such an intertwining amounts to taking a Fourier transform, as follows. Let the spherical function be
Y5 ) k) = [yt = f 0,keU(?2
90( 0 1 )—|y|(c—y (Ofy> VS ())
with ¢rivial central character. This spherical function gets mapped to the Whittaker space by an intertwining

Whi(g) = /C W) p(wo s g) de

where the measure is twice the usual measure on C, for compatibility with the normalization of the character.
g (1)> with y > 0, we can explicitly determine the Iwasawa decomposition
of wongymy, namely (see the appendix)

WoNgmy = (yér *)< u/r xﬁ) w, (where r = \/2Z +y?)

For diagonal elements m, = (

T —x/r y/r

9
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(5 1) = Lo () (L ) v

The spherical-ness is right U(2)-invariance, and we are assuming trivial central character, so this simplifies

to
2p
dr = / 6727ri($+5)
C

nf [ Y 0 _ —2mi(z+7T
w (1) = L

where we reverted to the usual absolute value on R, causing the exponent p to effectively double. Replace
x by xy to obtain a useful integral representation, valid for y € C*,

Therefore,

y a

Y2+ ax

Y

Y2 + 2T (for Re (1) > 3)

_ _ 1
Wﬁf(g ?) = IyI}C M/(Clﬁ(x-y)mdm (fOTRe(M)>%)

As in the case of GLy(R), the integral can be rearranged to show the meromorphic continuation, and explain
subsequent renormalization. Namely, using the identity involving I'(s), for y > 0,

2—-2 [e’e)
y2_2u/ e—27ri(;c+§)y 17 dw _ Yy H / / e—27‘ri(-’£+§)y t2u e—t(l“rﬂii) daj @
C (1 + az)? I'@2p) Je Jo t

Replace x by = - % to obtain

1—
Tyl /OO/ e—2ri(m+5)y<% $2n—=1 gt =TT ﬂ

L(w) Jo Je t
Taking the Fourier transform of the Gaussian in « € C, this is

m|y[>2 /OO oY E 201 ot dt
L) Jo t

Replacing ¢ by «|y| - t gives

2u [e’e}
wf (Y 0 T |yl —rlyl(244) j2u—1 Gt
= E T t”‘
Wi (0 1) e Jo © :

This last integral converges nicely for any complex pu.

A less naive normalization of the parametrization of the principal series Il‘jf replaces u by p+ %, taking

nf
IM - IN""%
and gets rid of the I'(2u) and 7%#, by taking
F(2,LL + 1) nf
W, = q2utl Wity

That is,

2pu+1 (e’
WM y 0 _ F(Q,U/ + 1) / e—27ri(m+§) 7|y‘ dr = |y| / e—7r|y|(%+t) tQ” @
0 1 w2l fe TT 4 y? 0 t

Thus, in this normalization, visibly
W—p, = VI/,U,

10
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8. Spherical Mellin transforms for G Ly(C)

For GLy(C), the Mellin transform of the spherical Whittaker function gives an integral of the form

> dy dy
nf _ 2s nf
/0|CW(01>Z/_/0 W“(Ol)y

where W;}f is the Whittaker function of the u*" (naively normalized) spherical principal series Iﬁf. As for

1
GLa(R), later we will rewrite this with |y|z replaced by |y|g: 2 in order to give L-functions functional
equation s — 1 — s rather than s — —s. To compute this integral in terms of gamma functions, use the
integral representation obtained above from an intertwining operator from Iﬁf to the Whittaker space:

[ (3 )5 = [ [ () "y

As over R, the obvious thing to do is to interchange the order of integration, and apply the gamma identity,
obtaining

o 2p [e’e] [e%¢)
L] v () Yan = g [ S eteman 2 g,
cJo aT + y? Yy '@p) Jo Jeo Y 3
Replace y by y/v/t
/ // d) 25+2/,1, th—s 7tzx 7y2 dy dI dt
2u
Replace y by /y

1 o < _ — d dt d
/ // P(x) y s TH s e e R 5+” / /¢ JeeT de
202p) Jo JcJo Yy t 2T(2p)

N

Then replace z by x - v and take the Fourier transform of the Gaussian
7TF 5+N’ / / ph—s—1 —maT g, ﬂ — 7TF(S+,LL) /we—”‘%t#—S—lﬂ
2T (2u) t 2T'(2u)  Jo t

Replace t by 1/t and then by t/72

ml(s+p) e /OO e tystl-n @ — e s+ p) T(s+1—p)
2T () 0 ! 2T (2n)

That is, in a naive normalization,

e} . e 0 dy 7.‘_2;1, 2s5—1
AU T(s+1—

The less naive normalization replaces pu by u + %, s by s — %, and uses

W'u = 7T2;L+1 pti 3

In this normalization, the Mellin transform of the spherical GL2(C) Whittaker function is

dy 1., -2
2W =51 “T(s+p)-I'(s—
/O lyle (o 1) i (s +p)-T(s—p)

11
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As usual, note the nature of the product of gammas, especially, the symmetry in +u.

9. Appendix: explicit Iwasawa decompositions

To compute the images of various vectors under natural intertwinings from principal series to Whittaker
spaces, as well as for other purposes, we need explicit Iwasawa decompositions of group elements. Let

w — 0 -1 n — 1 =z m— (Y 0
7\l 0 7 0 1 v 0 1
Given z in R or C and y > 0, let r = \/y? + 2Z. We claim that we have an Iwasawa decomposition

= () (2 )

Of course, once asserted, this can be wverified by direct computation. However, instead, we should see how
the decomposition could be found in the first place.

Over either R or C, the maximal compact K can be defined as
={g:9"'9g=1}={9: 99 =1} (where g* is g-conjugate-transpose)
Of course, over R the conjugation does nothing. Assuming that g = pk with p upper triangular and k in K,

99" = (pk)(pk)* = p(kk™)p = pp*

Letting p = <8 Z) with @ > 0 and d > 0, we can solve for a, b, d. Here,

B {0 =1\ [1 z\ [y O 0 1\ 10
g = WoltaMyWo = {1 o)J\o 1)\0o 1)\=1 0) " =z y
. 1 0\ (/1 —-z\ _
99 = \ -2 Yy 0 y) \=z y+m:
a?+bb bd\ _ (a b\ (a b\ _ (1 -T
bd d*>) — \0 d)\0 d) — \z y*+a7

immediately d = r, and b = —T/d = —Z/r, and then

Then

From an equality

2 o 2
— _ Y° +aT — T Y
a2:1—bb=1—aca:/7"2:7r2 =5
from which @ = y/r. Thus,
_ 1 _ (y/r =T/
g = WeNgMyw, = ( 0 r> k

for some k € K. Then

e (TR = () - ()

Thus, we have the Iwasawa decomposition

y/r —x/T> ( y/r w/?"@/)

1
Wo Tt My Wo = = ( 0 r —x/r y/r

12
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This can be slightly rewritten as

y/r —m/r) . ( y/r x/w) w,

Wo Ttz My = < 0 r —xz/r  y/r

10. Appendix: T'(s) - T'(1 — s) = w/sinms

Take 0 < Re(s) < 1 for convergence of both integrals, and compute

I‘( ) 1 —S / / uSe ¥ 1 5V du d’U / / ue,u(1+v) dU d’U

by replacing v by uv. Replacing u by u/(1 + v) (another instance of the basic gamma identity) and noting

that T'(1) = 1 gives
/ LA
o l+w

Replace the path from 0 to oo by the Hankel contour H. described as follows. Far to the right on the real
line, start with the branch of v=* given by (e2™v)~% = e~27y~¢ integrate from +o0o to ¢ > 0 along the
real axis, clockwise around a circle of radius ¢ at 0, then back out to +00, now with the standard branch of
v~*. For Re(—s) > —1 the integral around the little circle goes to 0 as ¢ — 0. Thus,

oo —S 1 —s
/ Y dv = lim / Y dv
0o 14w es01—e=2mis [ 14w

The integral of this integrand over a large circle goes to 0 as the radius goes to 400, for Re(—s) < 0. Thus,
this integral is equal to the limit as R — +o0o and € — 0 of the integral

from R to ¢

from e clockwise back to e
from € to R

from R counterclockwise to R

This integral is 277 times the sum of the residues inside it, namely, that at v = —1 = ™. Thus,

Vs 211 ) 21 T

I'(s)-T'(1— = dv = — . (e™)7°% = - — =
(S) ( S) A 1+’U v 1_6727713 (6 ) eTis _ p—Tis

sin s

11. Appendix: Duplication: T'(s) - I'(s + 1) = 2! . /m - T'(2s)
From the Eulerian integral definition,

o dt e 1 d
I'(s)-T(s+ %) :/o e_tt‘s—~/0 e_“u”'%;u

t

oo oo
/ / et s g3 du dt
o Jo u t

677‘(‘52 _ /6727rim-§ 6771'9:2 dx
R

13

Replacing ¢ by t/u

In the Fourier transform identity
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let & = v/t/\/u and replace = by x//7:

and replace t by t/m to obtain

Substituting the Fourier transform expression in place of e u gives

i/Oo /”/ HYE o b gy WU
vrlo Jo Jr (N

Replace = by z+/u, and then u by u/(x? + 1):

—2ix\/t 1 s —2ix/t 1 s dt
t* dx t* dx
/ / 22+ 1 t f / / 22+ 1

The inner mtegral over x can be evaluated by residues: it captures the negative of the residue of
@ — 2V /(12 4 1) in the lower half-plane, giving

S

/ 6722‘93'\/2 % dl’ — —27T'L . 6722(71)\/E . # = ’]'['672\/Z
R 24+ 1 (_Z) -1

Summarizing, and then replacing ¢ by t? and t by ¢/2:

I(s)-T(s+ \F/ —Q\fté = = Qf/ e y% @ = 2~ QSI/ e di_ V2 72T (25)
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