## Standard estimates for $S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/garrett/

This is a simple example of a general phenomenon. Examples in $S L_{2}(\mathbb{R})$ ares carried out in [Iwaniec 2002]. For $\Gamma=S L_{2}(\mathbb{Z}[i]), G=S L_{2}(\mathbb{C})$, and $K=S U(2)$, we prove the standard estimate

$$
\sum_{\left|s_{F}\right| \leq T}|F(g)|^{2}+\frac{1}{2 \pi} \int_{-T}^{T}\left|E_{\frac{1}{2}+i t}(g)\right|^{2} d t \quad<_{C} \quad T^{3} \quad \text { (uniformly for } g \text { in a compact } C \subset G \text { ) }
$$

for cuspforms $F$ with eigenvalues

$$
\lambda_{F}=s_{F}\left(s_{F}-1\right)
$$

for the Laplacian $\mathcal{D}$, and Eisenstein series $E_{s}$. We normalize the dependence of $E_{s}$ on the parameter $s$ so that the functional equation relates $E_{s}$ and $E_{1-s}$.

As usual, we consider integral operators attached to compactly supported measures $\eta$ on the group $G$, and exploit the intrinsic sense of such operators on any reasonable representation space for $G$, for example, Hilbert, Banach, Fréchet, and LF (strict colimits of Fréchet), or, generally,, quasi-complete, locally convex spaces. For a representation $\pi, V$ of $G$, and a compactly-supported measure $\eta$, the action is

$$
\eta \cdot v=\int_{G} \pi(g)(v) d \eta(g) \quad(\text { for } v \in V)
$$

The general theory of Gelfand-Pettis integrals assures the reasonable behavior of such integrals.
The non-trivial but memorable fact used in the proof, illustrated in the case of $G=S L_{2}(\mathbb{C})$, is that a waveform $f$, an eigenfunction for the $G$-invariant Laplacian $\mathcal{D}$ in $L^{2}(\Gamma \backslash G / K)$, generates an irreducible representation of $G$ under right translation, specifically, an unramified principal series $I_{s}$. ${ }^{[1]}$ The same is true of Eisenstein series $E_{s}$ more immediately. We index the character defining the unramified principal series $I_{s}$ so that the standard intertwining operators go from $I_{s}$ to $I_{1-s}$.

Thus, a waveform $f$ (or Eisenstein series $E_{s}$ ) is the unique spherical vector in the copy of the unramified principal series representation it generates, up to a constant. Thus, for any left-and-right $K$-invariant compactly-supported measure $\eta$ the integral operator action

$$
(\eta \cdot f)(x)=\int_{G} \pi(y) f(x y) d \eta(y)
$$

produces another right $K$-invariant vector in the representation space of $f$. Necessarily $\eta \cdot f$ is a scalar multiple of $f$. Let $\chi_{f}(\eta)$ denote the eigenvalue:

$$
\eta \cdot f=\chi_{f}(\eta) \cdot f \quad\left(\text { with } \chi_{f}(\eta) \in \mathbb{C}\right)
$$

This is an intrinsic representation-theoretic relation, so the scalar $\chi_{f}(\eta)$ can be computed in any model of the representation. We choose an unramified principal series

$$
I_{s}=\left\{\text { smooth } K \text {-finite } \varphi: \varphi\left(\left(\begin{array}{ll}
a & * \\
0 & d
\end{array}\right) \cdot g\right)=\left|\frac{a}{d}\right|^{2 s} \cdot \varphi(g)\right\} \quad(\text { with } s \in \mathbb{C})
$$

[^0]On $I_{s}$, the Laplacian or Casimir has eigenvalue $\lambda_{f}=s(s-1)$.
[1.1] Choice of integral operator Let $\|g\|$ be the square of the operator norm on $G$ for the standard representation of $G$ on $\mathbb{C}^{2}$ by matrix multiplication. In a Cartan decomposition,

$$
\left\|k_{1} \cdot\left(\begin{array}{cc}
e^{r / 2} & 0 \\
0 & e^{-r / 2}
\end{array}\right) \cdot k_{2}\right\|=e^{r} \quad\left(\text { with } k_{1}, k_{2} \in K, r \geq 0\right)
$$

This norm gives a left $G$-invariant metric $d($,$) on G / K$ by $\log$

$$
d(g K, h K) \stackrel{\log _{2}}{=}\left\|g^{-1} h\right\|=\left\langle\left\|h^{-1} g\right\|\right.
$$

The triangle inequality follows from the submultiplicativity of the norm.
Take $\eta$ to be the characteristic function of the left and right $K$-invariant set of group elements of norm at most $e^{\delta}$, with small $\delta>0$. That is,

$$
\eta(g)= \begin{cases}1 & \left(\text { for }\|g\| \leq e^{\delta}\right) \\ 0 & \left(\text { for }\|g\|>e^{\delta}\right)\end{cases}
$$

or

$$
\eta\left(k_{1} \cdot\left(\begin{array}{cc}
e^{r / 2} & 0 \\
0 & e^{-r / 2}
\end{array}\right) \cdot k_{2}\right)=\left\{\begin{array}{cc}
1 & (\text { for } r \leq \delta) \\
0 & (\text { for } r>\delta)
\end{array} \quad(\text { with } r \geq 0)\right.
$$

[1.2] Upper bound on a kernel The map $f \rightarrow(\eta \cdot f)(x)$ on automorphic forms $f$ can be expressed as integration of $f$ against a sort of automorphic form $q_{x}$ by winding up the integral, as follows.

$$
\begin{gathered}
(\eta \cdot f)(x)=\int_{G} f(x y) \eta(y) d y=\int_{G} f(y) \eta\left(x^{-1} y\right) d y=\int_{\Gamma \backslash G}\left(\sum_{\gamma \in \Gamma} f(\gamma y) \eta\left(x^{-1} \gamma y\right)\right) d y \\
=\int_{\Gamma \backslash G} f(y) \cdot\left(\sum_{\gamma \in \Gamma} \eta\left(x^{-1} \gamma y\right)\right) d y
\end{gathered}
$$

Thus, for $x, y \in G$ put

$$
q_{x}(y)=\sum_{\gamma \in \Gamma} \eta\left(x^{-1} \gamma y\right)
$$

The norm-squared of $q_{x}$, as a function of $y$ alone, is

$$
\left|q_{x}\right|_{L^{2}(\Gamma \backslash G)}^{2}=\int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} \sum_{\gamma^{\prime} \in \Gamma} \eta\left(x^{-1} \gamma \gamma y\right) \bar{\eta}\left(x^{-1} \gamma^{\prime} y\right) d y=\int_{G} \sum_{\gamma \in \Gamma} \eta\left(x^{-1} \gamma y\right) \bar{\eta}\left(x^{-1} y\right) d y
$$

after unwinding. For both $\eta\left(x^{-1} \gamma y\right)$ and $\eta\left(x^{-1} y\right)$ to be non-zero, the distance from $x$ to both $y$ and $\gamma y$ must be at most $\delta$. By the triangle inequality, the distance from $y$ to $\gamma y$ must be at most $2 \delta$. For $x$ in a fixed compact $C$, this requires that $y$ be in ball of radius $\delta$, and that $\gamma y=y$. Since $K$ is compact and $\Gamma$ is discrete, the isotropy groups of all points in $G / K$ are finite. Thus,

$$
\left|q_{x}\right|_{L^{2}(\Gamma \backslash G)}^{2} \ll \int_{d(x, y) \leq \delta} 1 d y \asymp \delta^{3}
$$

[1.3] Lower bound on eigenvalues A non-trivial lower bound for $\chi_{f}(\eta)$ can be given for $\delta \ll 1 / t_{f}$, as follows. With spherical function $\varphi^{o}$ in the $s^{t h}$ principal series, the corresponding eigenvalue is

$$
\chi_{s}(\eta)=\int_{G} \eta(g) \varphi^{o}(g) d g=\int_{r \leq \delta} \varphi^{o}\left(k \cdot\left(\begin{array}{cc}
e^{r / 2} & 0 \\
0 & e^{-r / 2}
\end{array}\right)\right) d g
$$

Paul Garrett: Standard estimates for $S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$ (June 6, 2010)
In fact, a qualitative argument clearly indicates the outcome, although we will also carry out a more explicit computation. For the qualitative argument, we need qualitative metrical properties of the Iwasawa decomposition. Let $P^{+}$be the upper-triangular matrices in $G$ with positive real entries, and $K=S U(2)$. Let $g \rightarrow p_{g} k_{g}$ be the decomposition. We claim that $\|g\| \leq \delta$ implies $\left\|p_{g}\right\| \ll \delta$ for small $\delta>0$. This is immediate, since the Jacobian of the map $P^{+} \rightarrow G / K$ near $e \in P^{+}$is invertible.

But, also, the Iwasaw decomposition is easily computed here, and the integral expressing the eigenvalue can be estimated explicitly: elements of $K$ can be parametrized as

$$
k=\left(\begin{array}{cc}
\bar{\alpha} & \bar{\beta} \\
-\beta & \alpha
\end{array}\right) \quad\left(\text { where }|\alpha|^{2}+|\beta|^{2}=1\right)
$$

and let $a=e^{r / 2}$. Then

$$
k \cdot\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
-a \beta & \alpha / a
\end{array}\right)
$$

Right multiplication by a suitable element $k_{2}$ of $S U(2)$ rotates the bottom row to put the matrix into $P^{+}$:

$$
k \cdot\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \cdot k_{2}=\left(\begin{array}{cc}
* & * \\
0 & \sqrt{(-a|\beta|)^{2}+(|\alpha| / a)^{2}}
\end{array}\right)
$$

Thus,

$$
\chi_{s}(\eta)=\int_{r \leq \delta}\left((-a|\beta|)^{2}+(|\alpha| / a)^{2}\right)^{-s} d g
$$

Rather than compute the integral exactly, make $\delta$ small enough to give a lower bound on the integrand, such as would arise from

$$
\left.\left|\left((-a|\beta|)^{2}+(|\alpha| / a)^{2}\right)^{-s}-1\right|<\frac{1}{2} \quad \quad \text { for all elements of } K\right)
$$

Since $|\alpha|^{2}+|\beta|^{2}=1$, for small $r$,

$$
\left(-e^{r / 2}|\beta|\right)^{2}+\left(|\alpha| / e^{r / 2}\right)^{2}=e^{r}|\beta|^{2}+|\alpha|^{2} / e^{r} \asymp(1+r)|\beta|^{2}+(1-r)|\alpha|^{2} \ll 1+r
$$

Thus, for small $0 \leq r \leq \delta$,

$$
\left|\left(e^{r}|\beta|^{2}+|\alpha|^{2} / e^{r}\right)^{-s}-1\right| \ll|s| \cdot r
$$

Thus, $0 \leq r \leq \delta \ll \frac{1}{|s|}$ suffices to make this less than $\frac{1}{2}$. That is, with $\eta$ the characteristic function of the $\delta$-ball, we have the lower bound

$$
\left|\chi_{s}(\eta)\right|=\int_{G} \eta(g) \varphi^{o}(g) d g \gg \int_{r \leq \delta} 1=\operatorname{vol}(\delta \text {-ball }) \asymp \delta^{3} \quad(\eta \text { char fcn of } \delta \text {-ball, for }|s| \ll 1 / \delta,)
$$

Taking $\delta$ as large as possible compatible with $\delta \ll 1 /|s|$ gives the bound

$$
\chi_{s}(\eta) \gg \delta^{3} \quad(\text { for }|s| \ll 1 / \delta, \eta \text { the characteristic function of } \delta \text {-ball })
$$

From the $L^{2}$ automorphic spectral expansion of $q_{x}$, apply Plancherel

$$
\sum_{F}\left|\left\langle q_{x}, F\right\rangle\right|^{2}+\frac{\left|\left\langle q_{x}, 1\right\rangle\right|^{2}}{\langle 1,1\rangle}+\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left|\left\langle q_{x}, E_{s}\right\rangle\right|^{2} d t=\left|q_{x}\right|_{L^{2}(\Gamma \backslash G / K)}^{2} \ll \delta^{3}
$$

Truncating this to Bessel's inequality and dropping the single residual term,

$$
\sum_{\left|s_{F}\right| \leq T}\left|\left\langle q_{x}, F\right\rangle\right|^{2}+\frac{1}{2 \pi} \int_{-T}^{+T}\left|\left\langle q_{x}, E_{s}\right\rangle\right|^{2} d t \ll \delta^{3}
$$

Paul Garrett: Standard estimates for $S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$ (June 6, 2010)
Recall that for a the spherical vector $f \in I_{s}$

$$
\left\langle q_{x}, f\right\rangle=\chi_{s}(\eta) \cdot f
$$

and use the inequality $\chi_{s}(\eta) \gg \delta^{3}$ from above for this restricted parameter range, obtaining

$$
\sum_{\left|s_{F}\right| \leq T}\left(\delta^{3} \cdot|F(x)|\right)^{2}+\int_{-T}^{+T}\left(\delta^{3} \cdot\left|E_{s}(x)\right|\right)^{2} d t \ll \delta^{3}
$$

Multiply through by $T^{6} \asymp 1 / \delta^{6}$ to obtain the standard estimate

$$
\sum_{\left|s_{F}\right| \leq T}|F(x)|^{2}+\int_{-T}^{+T}\left|E_{s}(x)\right|^{2} d t \ll T^{3}
$$

[Bargmann 1947] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. Math. 48 (1947), 568-640.
[Berezin 1957] F.A. Berezin, Laplace operator on semisimple Lie groups, Trudy Moscow Mat. Obsc. 6 (1857) 371-463. English translation in Amer. Math. Soc. Transl. 21 (1962), 239-339.
[Berezin 1956a] F.A. Berezin, Laplace operators on semisimple Lie groups, Dokl. Akad. Nauk SSSR 107 (1956), 9-12.
[Berezin 1956b] F.A. Berezin, Representations of complex semisimple Lie groups in Banach spaces, Dokl. Akad. Nauk SSSR 110 (1956), 897-900.
[Berezin 1957] F.A. Berezin, Laplace operator on semisimple Lie groups, Trudy Moscow Mat. Obsc. 6 (1857) 371-463. English translation in Amer. Math. Soc. Transl. 21 (1962), 239-339.
[Cogdell-PS 1990] J. Cogdell, I. Piatetski-Shapiro, The arithmetic and spectral analysis of Poincaré series, Perspectives in Mathematics, Academic Press, 1990.
[DKV 1979] J. Duistermaat, J. Kolk, V. Varadarajan, Spectra of compact locally symmetric manifolds of negative curvature, Inv. Math. 52 (1979), 27-93.
[DKV 1983] J. Duistermaat, J. Kolk, V. Varadarajan, Functions, flows, and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Comp. Math. 49 (1983), 309-398.
[Gangolli-Varadarajan 1988] R. Gangolli, V.S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Springer-Verlag, 1988.
[Gelfand-Naimark 1950] I.M. Gelfand, M.A. Naimark, Unitary representations of the classical groups, Trudy Mat.Inst. Steklova 36 (1950), 1-288.
[Gelfand-Naimark 1952] I.M. Gelfand, M.A. Naimark, Unitary representations of the unimodular group containing the identity representation of the unitary subgroup, Trudy Moscow Mat. Obsc. 1 (1952), 423-475.
[Godement 1948] R. Godement, A theory of spherical functions I, Trans. AMS, 73 (1952), 496-536.
[Harish-Chandra 1954] Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. AMS 76 (1954), 485-528.
[HarishChandra 1958] Harish-Chandra, Spherical functions on semisimple Lie groups I, Amer. J. Math. 79 (1958), 241-310.
[Helgason 1984] S. Helgason, Groups and geometric analysis, Academic Press, 1984.

Paul Garrett: Standard estimates for $S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$ (June 6, 2010)
[Iwaniec 2002] H. Iwaniec, Spectral methods of automorphic forms, Graduate Studies in Mathematis 53, AMS, 2002.
[Jorgenson-Lang 2001] S. Lang, J. Jorgenson, Spherical inversion for $S L_{n}(\mathbb{R})$, Springer, 2001.
[Jorgenson-Lang 2008] S. Lang, J. Jorgenson, The heat kernel and theta inversion on $S L_{2}(\mathbb{C})$, Springer, 2008.
[Jorgenson-Lang 2009] S. Lang, J. Jorgenson, Heat Eisenstein series on $S L_{n}(\mathbb{C})$, Mem. AMS 201, no. 946, 2009.
[Knapp 1986] A. Knapp, Representation theory of semi-simple real Lie groups: an overview based on examples, Princeton University Press, 1986.
[Selberg 1956] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces, J. Indian Math. Soc. 20 (1956).
[Selberg 1991] A. Selberg, with a foreword by K. Chandrasekharan, Collected papers, Vol. II (Springer, Berlin, 1991).
[Sobolev 1937] S.L. Sobolev, On a boundary value problem for polyharmonic equations (Russian), Mat. Sb. 2 (44) (1937), 465-499.
[Sobolev 1938] S.L. Sobolev, On a theorem of functional analysis (Russian), Mat. Sb. N.S. 4 (1938), 471-497.
[Varadarajan 1989] V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups, Cambridge University Press, 1989.


[^0]:    [1] The general theory of spherical functions shows that, generally, eigenfunctions for all left $G$-invariant differential operators on $G / K$ generate principal series. Often, the center of the enveloping algebra surjects to that collection of differential operators: for classical groups this holds. However, [Helgason 1984] gives examples of non-surjection among exceptional groups.

