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This is a simple example of a general phenomenon. Examples in SL2(R) ares carried out in [Iwaniec 2002].
For Γ = SL2(Z[i]), G = SL2(C), and K = SU(2), we prove the standard estimate

∑
|sF |≤T

|F (g)|2 +
1

2π

∫ T

−T
|E 1

2 +it(g)|2 dt �C T 3 (uniformly for g in a compact C ⊂ G)

for cuspforms F with eigenvalues
λF = sF (sF − 1)

for the Laplacian D, and Eisenstein series Es. We normalize the dependence of Es on the parameter s so
that the functional equation relates Es and E1−s.

As usual, we consider integral operators attached to compactly supported measures η on the group G, and
exploit the intrinsic sense of such operators on any reasonable representation space for G, for example,
Hilbert, Banach, Fréchet, and LF (strict colimits of Fréchet), or, generally,, quasi-complete, locally convex
spaces. For a representation π, V of G, and a compactly-supported measure η, the action is

η · v =

∫
G

π(g)(v) dη(g) (for v ∈ V )

The general theory of Gelfand-Pettis integrals assures the reasonable behavior of such integrals.

The non-trivial but memorable fact used in the proof, illustrated in the case of G = SL2(C), is that a
waveform f , an eigenfunction for the G-invariant Laplacian D in L2(Γ\G/K), generates an irreducible

representation of G under right translation, specifically, an unramified principal series Is.
[1] The same is

true of Eisenstein series Es more immediately. We index the character defining the unramified principal
series Is so that the standard intertwining operators go from Is to I1−s.

Thus, a waveform f (or Eisenstein series Es) is the unique spherical vector in the copy of the unramified
principal series representation it generates, up to a constant. Thus, for any left-and-right K-invariant
compactly-supported measure η the integral operator action

(η · f)(x) =

∫
G

π(y)f(xy) dη(y)

produces another right K-invariant vector in the representation space of f . Necessarily η · f is a scalar
multiple of f . Let χf (η) denote the eigenvalue:

η · f = χf (η) · f (with χf (η) ∈ C)

This is an intrinsic representation-theoretic relation, so the scalar χf (η) can be computed in any model of
the representation. We choose an unramified principal series

Is =
{

smooth K-finite ϕ : ϕ(

(
a ∗
0 d

)
· g) =

∣∣∣a
d

∣∣∣2s · ϕ(g)
}

(with s ∈ C)

[1] The general theory of spherical functions shows that, generally, eigenfunctions for all left G-invariant differential

operators on G/K generate principal series. Often, the center of the enveloping algebra surjects to that collection

of differential operators: for classical groups this holds. However, [Helgason 1984] gives examples of non-surjection

among exceptional groups.
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On Is, the Laplacian or Casimir has eigenvalue λf = s(s− 1).

[1.1] Choice of integral operator Let ||g|| be the square of the operator norm on G for the standard
representation of G on C2 by matrix multiplication. In a Cartan decomposition,

||k1 ·
(
er/2 0

0 e−r/2

)
· k2|| = er (with k1, k2 ∈ K, r ≥ 0)

This norm gives a left G-invariant metric d(, ) on G/K by

d(gK, hK) = ||g−1h|| = ||h−1g||

The triangle inequality follows from the submultiplicativity of the norm.

Take η to be the characteristic function of the left and right K-invariant set of group elements of norm at
most eδ, with small δ > 0. That is,

η(g) =

 1 (for ||g|| ≤ eδ)

0 (for ||g|| > eδ)

or

η
(
k1 ·

(
er/2 0

0 e−r/2

)
· k2

)
=

 1 (for r ≤ δ)

0 (for r > δ)
(with r ≥ 0)

[1.2] Upper bound on a kernel The map f → (η · f)(x) on automorphic forms f can be expressed as
integration of f against a sort of automorphic form qx by winding up the integral, as follows.

(η · f)(x) =

∫
G

f(xy) η(y) dy =

∫
G

f(y) η(x−1y) dy =

∫
Γ\G

(∑
γ∈Γ

f(γy) η(x−1γy)
)
dy

=

∫
Γ\G

f(y) ·
(∑
γ∈Γ

η(x−1γy)
)
dy

Thus, for x, y ∈ G put

qx(y) =
∑
γ∈Γ

η(x−1γy)

The norm-squared of qx, as a function of y alone, is

|qx|2L2(Γ\G) =

∫
Γ\G

∑
γ∈Γ

∑
γ′∈Γ

η(x−1γγy)η(x−1γ′y) dy =

∫
G

∑
γ∈Γ

η(x−1γy)η(x−1y) dy

after unwinding. For both η(x−1γy) and η(x−1y) to be non-zero, the distance from x to both y and γy must
be at most δ. By the triangle inequality, the distance from y to γy must be at most 2δ. For x in a fixed
compact C, this requires that y be in ball of radius δ, and that γy = y. Since K is compact and Γ is discrete,
the isotropy groups of all points in G/K are finite. Thus,

|qx|2L2(Γ\G) �
∫
d(x,y)≤δ

1 dy � δ3

[1.3] Lower bound on eigenvalues A non-trivial lower bound for χf (η) can be given for δ � 1/tf , as
follows. With spherical function ϕo in the sth principal series, the corresponding eigenvalue is

χs(η) =

∫
G

η(g)ϕo(g) dg =

∫
r≤δ

ϕo(k ·
(
er/2 0

0 e−r/2

)
) dg
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In fact, a qualitative argument clearly indicates the outcome, although we will also carry out a more
explicit computation. For the qualitative argument, we need qualitative metrical properties of the Iwasawa
decomposition. Let P+ be the upper-triangular matrices in G with positive real entries, and K = SU(2).
Let g → pgkg be the decomposition. We claim that ||g|| ≤ δ implies ||pg|| � δ for small δ > 0. This is
immediate, since the Jacobian of the map P+ → G/K near e ∈ P+ is invertible.

But, also, the Iwasaw decomposition is easily computed here, and the integral expressing the eigenvalue can
be estimated explicitly: elements of K can be parametrized as

k =

(
α β
−β α

)
(where |α|2 + |β|2 = 1)

and let a = er/2. Then

k ·
(
a 0
0 a−1

)
=

(
∗ ∗
−aβ α/a

)
Right multiplication by a suitable element k2 of SU(2) rotates the bottom row to put the matrix into P+:

k ·
(
a 0
0 a−1

)
· k2 =

 ∗ ∗

0
√

(−a|β|)2 + (|α|/a)2


Thus,

χs(η) =

∫
r≤δ

(
(−a|β|)2 + (|α|/a)2

)−s
dg

Rather than compute the integral exactly, make δ small enough to give a lower bound on the integrand, such
as would arise from∣∣∣((−a|β|)2 + (|α|/a)2

)−s
− 1

∣∣∣ < 1
2 (for all elements of K)

Since |α|2 + |β|2 = 1, for small r,

(−er/2|β|)2 + (|α|/er/2)2 = er|β|2 + |α|2/er � (1 + r)|β|2 + (1− r)|α|2 � 1 + r

Thus, for small 0 ≤ r ≤ δ, ∣∣(er|β|2 + |α|2/er
)−s − 1

∣∣ � |s| · r

Thus, 0 ≤ r ≤ δ � 1
|s| suffices to make this less than 1

2 . That is, with η the characteristic function of the

δ-ball, we have the lower bound

|χs(η)| =
∫
G

η(g)ϕo(g) dg �
∫
r≤δ

1 = vol (δ-ball) � δ3 (η char fcn of δ-ball, for |s| � 1/δ, )

Taking δ as large as possible compatible with δ � 1/|s| gives the bound

χs(η) � δ3 (for |s| � 1/δ, η the characteristic function of δ-ball)

From the L2 automorphic spectral expansion of qx, apply Plancherel∑
F

|〈qx, F 〉|2 +
|〈qx, 1〉|2

〈1, 1〉
+

1

2π

∫ +∞

−∞
|〈qx, Es〉|2 dt = |qx|2L2(Γ\G/K) � δ3

Truncating this to Bessel’s inequality and dropping the single residual term,

∑
|sF |≤T

|〈qx, F 〉|2 +
1

2π

∫ +T

−T
|〈qx, Es〉|2 dt � δ3
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Recall that for a the spherical vector f ∈ Is

〈qx, f〉 = χs(η) · f

and use the inequality χs(η)� δ3 from above for this restricted parameter range, obtaining

∑
|sF |≤T

(
δ3 · |F (x)|

)2
+

∫ +T

−T

(
δ3 · |Es(x)|

)2
dt � δ3

Multiply through by T 6 � 1/δ6 to obtain the standard estimate

∑
|sF |≤T

|F (x)|2 +

∫ +T

−T
|Es(x)|2 dt � T 3
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