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We exhibit a spectral identity involving L(s,Sym2f) for f on SL2. Perhaps contrary to expectations, we
do not treat L(s,Sym2f) directly as a GL3 object. Rather, we take advantage of the coincidence that the

standard L-function for SL2 is the symmetric square for a cuspform on GL2 restricted to SL2. [1] As
SL2 = Sp2, the integral identities obtained from Sp2n × Sp2n ⊂ Sp4n produce standard L-functions for
Sp2n, giving the symmetric square for GL2 as a special case. This computation is done in an appendix.

The same general argument applies to classical groups and their standard L-functions. Indeed, it is useful to
note that the twist Sp∗(Φ) of Sp2n consisting of isometries of a rationally anisotropic skew-quaternion form
Φ has compact arithmetic quotients, avoiding certain problems of regularization if desired.

The initial form of the spectral identity relates a sum of second integral moments of all automorphic forms
on Sp2n to a sum over automorphic forms on Sp4n of global integrals. Due to vanishing of Sp2n × Sp2n

periods, the expansion on Sp4n involves only automorphic forms generating degenerate principal series at
finite primes. [2]

We give two archimedean deformations [3] of the initial spectral relation.

1. The spectral identity
2. Appendix: normalization of L-functions
3. Appendix: computation of local integrals
4. Appendix: local integrals for Eisenstein series
5. Appendix: normalization of Eisenstein series

The general recipe includes the case of interest as follows. Let G be a reductive group defined over a number
field k, and H a k-subgroup of G, assumed without loss of generality to contain the center Z of G. Consider
two chains of subgroups inside G×G,

H∆ ⊂ H ×H ⊂ G×G

H∆ ⊂ G∆ ⊂ G×G

where the superscript ∆ denotes diagonal copies. Pictorially, this is

G×G
↗ ↖

H ×H G∆

↖ ↗
H∆

[1] One can be more precise about this, and discuss how various notions of packet behave under restriction.

[2] This is literally true of cuspforms, namely, that the only ones appearing in the spectral expansion of the initial

distribution or certain of its deformations are degenerate principal series attached to the Siegel parabolic. Typically,

degenerate principal series are irreducible, and this is true of unitary ones generally. Proof of this follows from an

argument similar to Casselman’s treatment of the Borel-Matsumoto theorem in his 1980 Compositio paper.

[3] More precisely, the initial relation is a limiting case of the deformations, as the Dirac delta on the real line is a

limiting case of suitably renormalized integration against 1/(1 + x2)s as s→ +∞.
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Consider the initial distribution u on suitable [4] automorphic forms on G×G defined by

u(f1 ⊗ f2) =

∫
Z∆

AH
∆
k \H

∆

A
f1 ⊗ f2 =

∫
ZAHk\HA

f1 · f2

where Z is the center of G. The spectral expansion of this diagonal initial distribution along H ×H is

u ◦ ResG×GH×H =
∑∫
F on H

F ⊗ F

where F runs over what would be an orthonormal basis if the decomposition were discrete, but in general
must include continuous-spectrum contributions. On the other hand, the spectral expansion of this diagonal
distribution along G∆ is

u ◦ ResG×GG∆ =
∑∫
F on G∆

FH · F

where u(F ) = FH is the period of F along H.

Let f be an automorphic form on G, with contragredient f∨. The general recipe gives [5]

∑∫
F on H

|〈f, F 〉H |2 = u(f ⊗ f∨) =
∑∫
F on G

FH · 〈F, |f |2〉G

Diagrammatically, this is

(moment side) (spectral side)

∑∫
F on H

|〈f, F 〉H |2 ←− f ⊗ f∨ −→
∑∫
F on G

FH · 〈F, |f |2〉G

G×G
↑ ↗ ↖ ↑

∑∫
F on H

F ⊗ F H ×H G∆
∑∫
F on G∆

FH · F

↑ ↖ ↗ ↑
H∆

u ∼ 1

The positivity of the left-hand side is a virtue of this relation. The weakness of this initial identity is that the
archimedean contributions in the left side will make the summands converge too well, being of exponential
decrease. We deform u in order to extract more information.

We call a Poincaré series any deformation of the initial distribution u to (integration against) a classical
function on Z∆

AG
∆
k \G∆

A . One natural non-elementary deformation is as follows. Let v
0

be archimedean,

[4] The indicated integral literally converges at least for cuspforms, and for wave packets of Eisenstein series with

cuspidal data. If the spectral coefficients of a packet of Eisenstein series are extremely smooth, then the packet will

be of rapid decay. The L2 spectral decomposition of automorphic forms behaves well with respect to restriction

to various notions of Schwartz spaces of automorphic forms. Thus, via duality, suitably tempered automorphic

distributions admit spectral decompositions.

[5] In general, since u will not have compact support, this evaluation has an immediate sense only for f in a suitable

Schwartz space. That is, only packets of Eisenstein series allow literal evaluation of the functional. Nevertheless,

suitable regularization can extend the domain of the functional. Further, deformation of the initial distribution to a

classical function already effectively extends the functional to a degree.
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and let Ω be Casimir on Gv
0
. Let λ ∈ C, and consider the (distributional) partial differential equation on

Hv
0
\Gv

0

(Ω− λ) βλ = u

where βλ is left Hv0
-invariant and right Kv0

-invariant. Assume there is a locally integrable solution [6] βλ

with sufficient decay at infinity. For simplicity, suppose that there is a unique archimedean place v
0

of k,
and that βλ solves the previous equation on Hv

0
\Gv

0
. For v 6= v0 , let

ϕv(g) =

 1 (for g ∈ Hv ·Kv)

0 (off Hv ·Kv)

where Kv is a maximal compact subgroup of Gv. Let

ϕλ(g) = βλ(gv
0
) ·
∏
v 6=v

0

ϕv(gv)

Form [7] the Poincaré series
Péλ(g) =

∑
γ∈Hk\Gk

ϕλ(γ · g)

Compute the spectral components [8] of Péλ as follows. Take a spherical automorphic form F on G with
eigenvalue λF for Ω on Gv0

. Unwinding as usual, and integrating by parts at v
0
, the F th spectral component

of Péλ is∫
ZAGk\GA

F · Péλ =

∫
ZAHk\GA

F · ϕλ =

∫
ZAHk\GA

Ω− λ
λF − λ

F · ϕλ =

∫
ZAHk\GA

F · Ω− λ
λF − λ

ϕλ

=

∫
ZAHk\GA

F · 1

λF − λ
(
u⊗

⊗
v 6=v

0

ϕv
)

=
1

λF − λ
·
∫
ZAHk\HA

F =
u(F )

λF − λ
=

FH
λF − λ

Visibly, this F th spectral coefficient has a pole [9] at λ = λF .

On the other hand, compute the moment expansion as follows. For f on G with contragredient f∨, do an
initial unwinding

〈Pé, |f |2〉 =

∫
ZAGk\GA

Péλ · |f |2 =

∫
ZAHk\GA

ϕλ · |f |2 =

∫
HA\GA

ϕλ(g)

∫
ZAHk\HA

f(hg) f∨(hg) dh dg

[6] Smoothness of a solution of (Ω− λ)β = u away from the singular support Hv
0

of u follows from hypoellipticity

of Ω on Gv0
/Kv0

.

[7] Often this sum will not converge classically, requiring regularization via analytic continuation in a further auxiliary

parameter, but this further deformation is relatively elementary, and we suppress it here.

[8] To compute spectral components, the obvious heuristic is to pretend that everything is L2 and compute following

Selberg, Langlands, Arthur, Jacquet Moeglin-Waldspurger, et alia. However, most interesting deformations are not

L2. Indeed, with G = GLn and H = GLn−1, for n ≥ 3, deformations as here have no genuine L2 components

remaining after singular components are removed. This can be remedied by a further deformation, identifying

the Poincaré series as an iterated residue of an object with cuspidal spectral components. Luckily, in the examples

considered here, this additional device is unnecessary for understanding the spectral decomposition, though additional

regularization may be convenient.

[9] For cuspforms F this does promise a genuine pole in the spectral expansion.
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since ϕλ is left HA-invariant. Expand f(hg) along H, as

f(hg) =
∑∫
F on H

F (h)
(∫

ZAHk\HA
f(ηg)F (η) dη

)
dη =

∑∫
F on H

F (h) · 〈g · f, F 〉H

where the action of g ∈ GA on functions f is by right translation:(
g · f

)
(h) = f(hg)

Thus,

〈Pé, |f |2〉 =
∑∫
F on H

∫
HA\GA

ϕλ(g)

∫
ZAHk\HA

F (h) · 〈g · f, F 〉H · f∨(hg) dh dg

=
∑∫
F on H

∫
HA\GA

ϕλ(g) · |〈g · f, F 〉H |2 dg

Because ϕλ is significantly deformed only at the single archimedean place v
0
, in the integral over HA\GA

the adele group element g = {gv} can be taken in Hv except at the single place v
0
. Thus,

〈Pé, |f |2〉 =
∑∫
F on H

∫
Hv0 \Gv0

βλ(gv0
) · |〈gv0

· f, F 〉H |2 dgv0

The specific structure of the case H = Sp2n × Sp2n and G = Sp4n with the direct-sum imbedding allows an
an elementary further unwinding [10] when f is an Eisenstein series

E(g) =
∑

γ∈Pk\Gk

ε(γ · g)

induced from a one-dimensional character of the Siegel parabolic [11] P , with ε =
⊗

v εv spherical in the
appropriate induced representation. Among the finitely-many double cosets Pk\Gk/Hk, there is a unique
[12] cuspidal [13] double coset, PξH, with

ξ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 1 0 0
0 0 1 −1


with n-by-n blocks. With this particular choice, the isotropy subgroup is

Θ = ξ−1Pξ ∩H = {(g, gσ) : g ∈ Spn} ≈ Spn

[10] In the anomalously simple case that G = GLn and H = GLn−1, global Whittaker-Fourier expansions for

cuspforms (at least) allow the integrals 〈g · f, F 〉H to be unwound to products of local integrals as in the Rankin-

Selberg convolution integrals for GLn × GLn−1. Then the deformation at v0 has an impact visibly confined to the

local integral at v0 . At the other extreme, in many interesting situations, an unwinding produces not only an Euler

product of local integrals, but also a global integral, a period. The present scenario, so-called doubling, has no period

on the moment side of the relation.

[11] The parabolic stabilizing the standard maximal totally isotropic subspace of the symplectic space is the Siegel or

popular parabolic.

[12] This double-coset computation is non-trivial, but by now standard.

[13] With arbitrary parabolic P and subgroup H, a double coset PxH is cuspidal, or non-negligible, when P ∩xHx−1

contains no unipotent radical of any parabolic of G as a normal subgroup.
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where, in n-by-n blocks,(
a b
c d

)σ
=

(
1 0
0 −1

)(
a b
c d

)(
a b
c d

)
=

(
a −b
−c d

)
since all the other integrals vanish due to the Gelfand cuspform condition [14] on F . Thus, with cuspform
F , the usual unwinding gives

〈gv
0
· E, F 〉H =

∫
Hk\HA

∑
γ∈Pk\Gk

ε(γ · hgv
0
)F (h) dh

=
∑

x∈Pk\Gk/Hk

∫
Hk\HA

∑
η∈(x−1Pkx∩Hk)\Hk

ε(xη · hgv
0
)F (h) dh

=
∑

x∈Pk\Gk/Hk

∫
ZA(x−1Pkx∩Hk)\HA

ε(x · hgv
0
)F (h) dh =

∫
Θk\HA

ε(ξ · hgv
0
)F (h) dh

In fact, in this example, h→ ε(ξhgv
0
) is left ΘA-invariant. Thus, the integral can be rewritten as

〈gv0
· E, F 〉H =

∫
ΘA\HA

ε(ξ · hgv0
)

∫
Θk\ΘA

F (θh) dθ dh =

∫
ΘA\HA

ε(ξ · hgv0
)

∫
Θk\ΘA

F (θh) dθ dh

Write F = f1 ⊗ f2 with fi on Sp2n, and take representatives {x× 1 : x ∈ Sp2n} for ΘA\HA. This is

〈gv
0
· E, F 〉H =

∫
Sp2n(A)

ε(ξ(x× 1)gv
0
)

∫
Θk\ΘA

f1(θx) f2(θ) dθ dx

The order of integration can be reversed, giving

〈gv
0
· E, F 〉H =

∫
Θk\ΘA

f2(θ) ·
(∫

Sp2n(A)

ε(ξ(x× 1)gv
0
) f1(θx) dx

)
dθ

Since gv
0

has non-trivial component only at the archimedean place v0 , the inner integral is a product of local

operators coming from the functions [15]

ηv(x) = εv(ξ(x× 1))

on Sp2n(kv) for v 6= v0 . At almost all places v, the function εv is right Sp4n(ov)-invariant. Then the left
invariance by Θv implies that

ηv(a · x · b) = ηv(x) (for all a, b ∈ Sp2n(ov), for x ∈ Sp2n(kv), for almost all v)

At such places v, if F = f1 ⊗ f2 has irreducible right Kv-type other than spherical, then 〈gv0
· E, F 〉H = 0,

while spherical F generating spherical representation πv at v gives∫
Sp2n(kv)

εv(ξ(xv × 1)) f1(θxv) dxv = λv · f1(θ)

[14] When P ∩ ξHξ−1 has a normal subgroup N a unipotent radical of a k-parabolic in G, the corresponding integral

of a cuspform vanishes, by Gelfand’s condition
∫
Nk\NA

F (ng) dn = 0.

[15] These functions are not compactly supported, so are not in the usual spherical Hecke algebra. Nevertheless, in

the region of convergence of the Eisenstein series E they give convergent integrals.
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with eigenvalue [16] λv depending only upon the isomorphism class of πv. By contrast, at v0 , the right
translation by gv

0
disrupts the right K-types at v0 of either the Eisenstein series E or the spectral components

F = f1⊗f2. Nevertheless, in the worst case, these integral operators cannot move f1 outside the irreducible
representation we assume it generates.

In particular, if f2 is not inside the representation generated by f1, then the integral is 0. If there were
no right translation by gv

0
, we could control this, and effectively take f2 = f1. However, with the right

translation by gv
0

present we must include an infinite sum over (probably) all the K-types in the archimedean
representation generated by f1.

That is, with f1 taken Kv0
-finite, certainly f2 ∈ U(g) · f1, where U(g) is the universal enveloping algebra of

g, the Lie algebra of Sp2n(kv0
).

For convenience, we continue to suppose that there is a single archimedean place v0 at which the deformation

takes place, and, further, that at all finite places the Eisenstein series E is spherical. [17] Then the previous
remarks show that the only cuspforms F = f1 ⊗ f2 appearing are spherical at finite places. So far,

〈gv0
· E, F 〉H =

∏
v<∞

λv ·
∫

Θk\ΘA
f2(θ) ·

∫
Sp2n(kv0

)

εv0
(ξ(xv0

× 1)gv0
) f1(θxv0

) dxv0
dθ

where the local integrals for λv are computed for n = 1 in the appendix. That is, except for the v
0
th local

integral, this is the integral of f1 against f2.

Replacing the initial distribution u by the λth deformation Péλ, evaluating in two ways,

(... moment side...) = 〈Péλ, |E|2〉G =
∑∫
F on G

FH
λF − λ

· 〈F, |E|2〉G

Note that the right-hand side has singularities [18] at eigenvalues of elements of the discrete spectrum that
have non-vanishing periods along H.

The example H = GLn−1 × GL1 inside G = GLn is anomalously simpler, in that Hv is a Levi component
of a parabolic in Gv, so a standard Iwasawa decomposition itself already gives useful transverse coordinates
along which to deform an initial distribution supported on Hv.

1. Appendix: normalization of L-functions

The classical description of the L-function attached to a holomorphic modular form

f0(z) =
∑
n≥1

an e
2πinz

of level 1 and of weight κ ∈ 2Z on the upper half-plane is

Λ(s, f0) =

∫ ∞
0

ys f0(iy)
dy

y
= (2π)−s Γ(s)

∑
n≥1

an
ns

[16] The vth eigenvalue is the vth local factor of the standard Sp2n L-function for f1. We verify this explicitly for

n = 1 in an appendix.

[17] The local data defining the Eisenstein series E on Sp4n can be arranged to accommodate or detect any fixed

right Kv-type on Sp2n, but this is not the point here. Similarly, the possibilities for differing deformations at various

archimedean places are not the point.

[18] It is easy, almost inevitable in any serious situation, for these eigenvalues to have many accumulation points.

Proof of this presumably requires some trace-formula considerations.
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The functional equation f0(−1/z) = zκ · f0(z) of f0 gives the corresponding functional equation

Λ(κ− s, f0) = Λ(s, f0)

For various reasons, a normalization that gives a functional equation s ←→ 1 − s is more convenient. This
is almost accomplished by thinking in terms of the associated automorphic form f on the Lie group, in this
case given by

f(

(
1 x
0 1

)(
y 0
0 1

)
= yκ/2 · f0(x+ iy)

If we were to take the Mellin transform of this, the functional equation would be with respect to s←→ −s,
which would be better, in that it would depend less upon the specific local data, but still would obscure the
notion of critical strip for the L-function. Therefore, the modern normalization is

Λ(s, f) =

∫ ∞
0

ys−
1
2 f(iy)

dy

y
=

∫ ∞
0

ys−
1
2 +κ

2 f0(iy)
dy

y
= (2π)s−

1
2 +κ

2 Γ(s− 1
2 +

κ

2
)
∑
n]ge1

an

ns−
1
2 +κ

2

The standard L-function [19] attached to a cuspform f on GL2 over a number field k, including the gamma
factor, is given by the Mellin transform

Λ(s, f) =

∫
J/k×

|y|s− 1
2 f

(
y 0
0 1

)
d×y =

∫
J
|y|s− 1

2 Wf

(
y 0
0 1

)
d×y

where Wf is the global Whittaker function for f , namely,

Wf (g) =

∫
A
f(

(
1 x
0 1

)
g) dx

In this normalization, the L-function has a functional equation under s ←→ 1 − s. Uniqueness of local
Whittaker models implies that Wf factors over primes Wf =

⊗
vWv. Thus, letting πv denote the

(irreducible) representation of GL2(kv) generated by f , the vth Euler factor of Λ(s, f) is given by the
local Mellin transform

Lv(s, πv) =

∫
k×v

|y|s− 1
2 Wv

(
y 0
0 1

)
d×y

For example, for kv ≈ R, for a holomorphic discrete series representation πv of weight κ ∈ 2Z, the Whittaker
function for the lowest Kv-type is

Wv

(
y 0
0 1

)
= yκ/2 e−2πy (for y > 0)

Thus, the local L-function (actually a gamma factor) in this normalization is

Lv(s, πv) =

∫ ∞
0

ys−
1
2 yκ/2 e−2πy dy

y
=

∫ ∞
0

ys+
κ−1

2 e−2πy dy

y
= (2π)−(s+κ−1

2 ) Γ(s+
κ− 1

2
)

At spherical finite places v, the local Whittaker function is given by the easiest case of the Shintani-Saito-
Casselman-Shalika formula,

Wv

(( 1 x
0 1

)(
y 0
0 1

))
=

{
ψ(x) · α

n+1−βn+1

α−β (for n = ord y ≥ 0)

0 (for n = ord y < 0)

[19] This integral is most properly termed a zeta integral, rather than L-function, since only an optimal choice of

cuspform within an irreducible gives good local factors, especially at bad primes. The discussion of finite bad primes

is not the point here.
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where αβ = 1/q, with q the residue field cardinality, where ψ is the fixed additive character specifying the
Whittaker model, and we assume that Wv has trivial central character. Thus, at good finite primes

Lv(s, πv) =
1

α− β

∞∑
n=0

q−n(s− 1
2 )(αn+1 − βn+1)

=
1

α− β
·
( α

1− αq−(s− 1
2 )
− β

1− βq−(s− 1
2 )

)
=

1(
1− αq−(s− 1

2 )
)(

1− βq−(s− 1
2 )
)

If we write the local L-factor in the form

Lv(s, πv) =
1(

1−Aq−s
)(

1−B q−s
)

then it must be that

A = q
1
2α B = q

1
2 β (up to permutations)

2. Appendix: computation of local integrals

This appendix verifies that the non-archimedean local integrals of cuspforms f⊗f∨ on SL2×SL2 against the
restriction of a Siegel-type Eisenstein series on Sp4 are the local factors of L(s,Sym2f), up to more-elementary
normalizing factors. A similar computation is done for Eisenstein series, to be sure of normalizations.

Let v be a non-archimedean place of k. The naive normalization Inf
s of the sth degenerate principal series of

Gv = Sp2n(kv) includes smooth functions f with the left equivariance

f
(( a ∗

0 ta−1

)
· g
)

= χs

(
a ∗
0 ta−1

)
· f(g) (where χ

(
a ∗
0 ta−1

)
= |deg a|s)

Let ε be the spherical function in Inf
s . That is, ε is right Kv = Sp4(ov)-invariant, and ε(1) = 1. For f on Gv

generating a spherical (irreducible) representation πv of Gv, the integral∫
Gv

f(xh) · ε(ξ(h× 1)) dh

with

ξ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 1 0 0
0 0 1 −1


(when convergent) is necessarily a constant λv(s, πv) (depending upon s and πv) multiple of f(x), since
the subspace of spherical vectors in the spherical representation πv is one-dimensional. This constant is
intrinsic, in that it depends only upon the isomorphism class of πv, so it can be computed via any model of
the spherical representation πv.

Take f = W . Since f(1) = 1, the constant λv(s, πv) is

λv(s, πv) =

∫
Gv

f(h) · ε(ξ(h× 1)) dh

Compute this integral via Iwasawa coordinates in SL2(kv)

h = nxmyθ =

(
1 x
0 1

)(
y 0
0 y−1

)
θ (with θ ∈ SL2(ov))
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By Witt’s theorem, with the Siegel parabolic Pv in Sp4(kv),

Pv\Gv ≈ {maximal totally isotropic subspaces} ≈ GL2(kv)\{lower halves of elements of Sp4(kv)}

Thus, compute with the lower half of ξ, namely(
1 1 0 0
0 0 1 −1

)
· (nxmy × 1) =

(
y 1 x/y 0
0 0 1/y −1

)
For W (my) to be non-zero, ord y ≥ 0. Thus,

1 0
−y 1

1 y
0 1

 ∈ Sp4(ov)

Right multiplication by this changes neither the value of the spherical Whittaker function nor the value of
ε, and puts the lower half of ξ(nxmy × 1) into the form(

0 1 x/y x
0 0 1/y 0

)
Left multiplication by (

1 −x
0 1

)
∈ SL2(kv)

(effectively in the kernel of the character defining the degenerate principal series) gives(
0 1 0 x
0 0 1/y 0

)
After a further permutation of rows and columns, we see

ξ · (nxmy × 1) =

Thus,

ker(χs) · ξ · (nxmy × 1) · Sp4n(ov) 3




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 1 0
0 0 0 1/y

 (for x ∈ ov)


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 x 0
0 0 0 1/y

 (for x 6∈ ov)

Since the lower right 2-by-2 block determines the upper left by inverting and taking transpose,

ε(ξ · (nxmy × 1)) =

 |y|s (for x ∈ ov)

|y/x|s (for x 6∈ ov)

Thus, the local integral is∫
ordy≥0

|y|s ·W
(
y 0
0 1/y

)
1

|y|
d×y ·

(
1 +

∫
ordx<0

ψ(x) · |x|−s dx
)

9
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The additive character ψ is trivial on the local integers ov and non-trivial on $−1ov where $ is a local
parameter at v. Let q be the cardinality of the residue field, and let ov have total measure 1. Note that for
ordx < −1, the function u → ψ(x · (1 + $u)) is a non-trivial character on u ∈ ov, while |x(1 + $u)| = |x|.
Thus, the integral in x can be computed on ordx = −1. The integral of ψ over $−1ov would be 0, but we
are missing ov, so the integral of ψ over ordx = −1 is −1. Thus, the integral over x is −q−s. Since αβ = 1/q,
the whole local integral is∑

n≥0

q−n(s−1)α
2n+1 − β2n+1

α− β
·
(

1− q−s
)

=
1

α− β

( α

1− α2q−(s−1)
− β

1− β2q−(s−1)

)
·
(

1− q−s
)

=
1 + αβq−(s−1)

(1− α2q−(s−1)) (1− β2q−(s−1))
· (1− q−s) =

(1− α2β2q−2(s−1)) (1− q−s)
(1− α2q−(s−1)) (1− αβq−(s−1)) (1− β2q−(s−1))

=
(1− q−2s) (1− q−s)

(1−A2q−s) (1−ABq−s) (1−B2q−s)

with A = q
1
2α and B = q

1
2 β as above. This is

Lv(s,Sym2f) · 1

ζv(2s) · ζv(s)

The naively normalized Siegel-type Eisenstein series Es on Sp2n (where the index indicates the size of the
matrices) attached to the sth degenerate principal series has functional equation relating Es and E(n+1)−s.
Thus, for n = 2, the relation is between Es and E3−s. That is, apart from the renormalization by the zeta
factors, L(s,Sym2f) is related to L(3− s,Sym2f).

3. Appendix: local integrals for Eisenstein series

A similar local computation arises in computation of the continuous spectrum components on SL2 × SL2

of suitably adjusted [20] Eisenstein series on Sp4, but the Whittaker function WE of Eisenstein series is
normalized differently, as follows. Suppress subscripts by letting k be a non-archimedean local field with
ring of integers o. The global Eisenstein series is locally an image of the naively normalized principal series
consisting of functions ϕ on GL2(k) with the equivariance

ϕ(

(
a ∗
0 d

)
· g) = |a/d|µ · ϕ(g)

Take the normalized spherical ϕ, namely, also right K = GL2(o)-invariant and ϕ(1) = 1. Then the natural
normalization of the local factor of the Fourier coefficient (Whittaker function) of the Eisenstein series is the

integral transform [21]

WE(g) =

∫
N

ψ(n) ϕ(w · n · g) dn (where N = {
(

1 ∗
0 1

)
})

[20] A naively normalized Eisenstein series Es on Sp4 can be adjusted so that on Re(s) > 3/2 its restriction to

SL2×SL2 has decay at infinity, without changing the level. This device allows computation of continuous-spectrum

components by integration against Eisenstein series. An equivalent effect is achieved, with somewhat different details,

by subtracting the Eisenstein series Es ⊗ Es on SL2 × SL2 from the restriction, before computing the spectral

projection. More generally, decomposition of the restricted Eisenstein series as a tempered distribution legitimizes

and shows the essential equivalence of all such devices.

[21] This is literally a naively normalized version of computation of the spherical Whittaker function for an unramified

principal series.
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It suffices to evaluate

WE(my) =

∫
k

ψ(x) ϕ(w · nx ·my) dx (where nx =

(
1 x
0 1

)
and my =

(
y 0
0 1

)
)

The plan of the computation is as follows. Unless y is integral, local cancellation due to ψ will cause the
integrand to vanish entirely. For y integral, there is still a local cancellation effect for ordx large negative.
At the edge of this regime, some cancellation occurs without annihilating the integrand entirely. Thus, the
integral will be equal to a finite geometric series with altered edge terms.

First,

w · nx ·my = w ·my · nx/y =

(
1 0
0 y

)
· w ·

(
1 x/y
0 1

)
Thus, because of the trivial central character,

ϕ(w · nx ·my) = |1/y|µ · ϕ(w · nx/y)

and

W (my) = |y|−µ ·
∫
k

ψ(x)ϕ(w · nx/y) dx = |y|1−µ ·
∫
k

ψ(xy)ϕ(w · nx) dx

by replacing x by xy. For y 6∈ o, the character x → ψ(xy) is non-trivial on o. On the other hand, nt ∈ K
for t ∈ o, and ϕ is right K-invariant, so

ϕ(w · nx · nt) = ϕ(w · nx) (for t ∈ o)

We have a standard vanishing argument by change of variables:∫
k

ψ(xy)ϕ(w·nx) dx =

∫
k

ψ(xy)ϕ(w·nx ·nt) dx =

∫
k

ψ((x−t)y)ϕ(w·nx) dx = ψ(ty)

∫
k

ψ(xy)ϕ(w·nx) dx

by replacing x by x− t. Since y 6∈ o, there is t ∈ o such that ψ(ty) 6= 1. Thus,∫
k

ψ(xy)ϕ(w · nx) dx = 0 (for y 6∈ o)

For y ∈ o compute ϕ(w · nx) via the p-adic Iwasawa decomposition of wnx: right modulo K,

w · nx =

(
0 −1
1 x

)
=


(

0 −1
1 x

)(
1 0
−x−1 1

)
=

(
x−1 −1

0 x

)
(for ordx ≤ 0)

= 1 (for ordx ≥ 0)

Using triviality of the central character, the convention that o has measure 1, break the integral over k − o
into o× orbits: ∫

k

ψ(xy)ϕ(w · nx) dx =

∫
o

ψ(xy) · 1 dx+

∫
k−o

ψ(xy) |x−2|µ dx

For fixed y ∈ o, for ordxy < 0, the map

x→ x · (1 +$u) (with u ∈ o)

leaves ϕ(wnx) invariant, but
ψ(x(1 +$u)y) = ψ(xy) · ψ(xy$ · u)

Since xy$ 6∈ o, the character
u→ ψ(xy$ · u) (for u ∈ o)

11
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is non-trivial, so the integral in x over such an (1 +$o)-orbit must vanish. Thus,∫
k

ψ(xy)ϕ(w · nx) dx =

∫
o

ψ(xy) · 1 dx+

∫
0>ordx≥−1−ord y

ψ(xy) |x|−2µ dx

There is no cancellation due to ψ except when ordxy = −1, so∫
k

ψ(xy)ϕ(w · nx) dx =

∫
o

1 dx+

∫
−ord y≤ordx<0

|x|−2µ dx+

∫
ordx=−(1+ord y)

ψ(xy) |x|−2µ dx

Let n = ord y and q the residue field cardinality. In the last integral, |x|−2µ is constant, and∫
ordx=−(1+ord y)

ψ(xy) dx =

∫
ordx≥−(1+ord y)

ψ(xy) dx−
∫

ordx≥−ord y

ψ(xy) dx = 0−meas (y−1o) = −qn

since the first integral is the integral of a non-trivial character. That is,∫
ordx=−(1+ord y)

ψ(xy) dx = −qn · (q(1+n))−2µ

Using the comparison

meas ($−no×) = qn · q − 1

q

of additive and multiplicative measures,

∫
k

ψ(xy)ϕ(w · nx) dx = 1 +
q − 1

q

ordy∑
n=1

qn · |$−n|−2µ − qn · q−2µ(n+1)

= 1 +
q − 1

q

ordy∑
n=1

(q1−2µ)n − qn · q−2µ(n+1)

Summing the finite geometric series, this is

1 +
q − 1

q
· q

1−2µ − (q1−2µ)n+1

1− q1−2µ
− qn · q−2µ(n+1)

To see how this should simplify, let X = q1−2µ. The whole is

1 +
q − 1

q
· X −X

n+1

1−X
− Xn+1

q

=
q(1−X) + (q − 1)(X −Xn+1)− (1−X)Xn+1

q(1−X)

=
q − qX + qX −X − qXn+1 +Xn+1 −Xn+1 +Xn+2

q(1−X)
=

q −X − qXn+1 +Xn+2

q(1−X)

=
1− 1

qX −X
n+1 + 1

qX
n+2

1−X
=

(1− 1
qX) (1−Xn+1)

1−X

Also, express |y|1−µ in terms of X:

|y|1−µ = (q−n)1−µ = (q−
n
2 )2−2µ = q−

n
2 · (q−n2 )1−2µ = q−

n
2 ·X−n2
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Thus, for ord y ≥ 0,

WE(my) = |y|1−µ ·
(1− 1

qX) (1−Xn+1)

1−X
= q−

n
2 ·X−n2

(1− 1
qX) (1−Xn+1)

1−X

= (1− 1
qX) · q−n2 · X

−n+1
2 −X n+1

2

X−
1
2 −X 1

2

= (1− 1
qX) · (1/qX)

n+1
2 − (X/q)

n+1
2

(1/qX)
1
2 − (X/q)

1
2

= (1− q−2µ) · (qµ−1)n+1 − (q−µ)n+1

qµ−1 − q−µ

That is, up to switching the two, α = qµ−1 and β = q−µ, and there is an extra leading factor of (1− q2µ).

Clearly αβ = 1/q. Then the integral against the restriction of the sth Siegel Eisenstein series gives local
integrals at finite places v of the form

(1− q2µ) · (1− (αβ)2 · q−2(s−1)) (1− q−s)
(1− α2q−(s−1)) (1− αβq−(s−1)) (1− β2q−(s−1))

=
1

ζv(2µ) ζv(s) ζv(2s)
· 1

(1− q2µ−2−(s−1)) (1− q−s) (1− q(−2µ)−(s−1))

=
ζv(s+ 1− 2µ) ζv(s) ζv(s− 1− 2µ)

ζv(2µ) ζv(s) ζv(2s)

In fact, for purposes of spectral decomposition, µ = 1
2 + iν with ν ∈ R, so this becomes

ζv(s− 2iν) ζv(s) ζv(s− 2− 2iν)

ζ(1 + 2iν) ζv(s) ζv(2s)

4. Appendix: normalization of Eisenstein series

We recall the normalization of Siegel-type Eisenstein series giving control over poles to the right of the critical
line.

Let k be a number field, and G = Sp2n. Let v be a non-archimedean place of k. The naive normalization
Inf
s of the degenerate principal series of Gv = Sp2n(kv) consists of f with left equivariance

f
(( a ∗

0 ta−1

)
· g
)

= χs

(
a ∗
0 ta−1

)
· f(g) (where χ

(
a ∗
0 ta−1

)
= |deg a|s)

Let εv be the spherical function in Inf
s . That is, εv is right Kv = Sp2n(ov)-invariant, and εv(1) = 1.

The naively normalized Siegel-type Eisenstein series Es on Sp2n (where the index indicates the size of the
matrices) attached to the sth degenerate principal series has functional equation relating Es and E(n+1)−s.
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