Averages of symmetric square L-functions, and applications

Adrian Diaconu and Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

We exhibit a spectral identity involving $L\left(s, \operatorname{Sym}^{2} f\right)$ for f on $S L_{2}$. Perhaps contrary to expectations, we do not treat $L\left(s, \mathrm{Sym}^{2} f\right)$ directly as a $G L_{3}$ object. Rather, we take advantage of the coincidence that the standard L-function for $S L_{2}$ is the symmetric square for a cuspform on $G L_{2}$ restricted to $S L_{2}$. [1] As $S L_{2}=S p_{2}$, the integral identities obtained from $S p_{2 n} \times S p_{2 n} \subset S p_{4 n}$ produce standard L-functions for $S p_{2 n}$, giving the symmetric square for $G L_{2}$ as a special case. This computation is done in an appendix.

The same general argument applies to classical groups and their standard L-functions. Indeed, it is useful to note that the twist $S p^{*}(\Phi)$ of $S p_{2 n}$ consisting of isometries of a rationally anisotropic skew-quaternion form Φ has compact arithmetic quotients, avoiding certain problems of regularization if desired.

The initial form of the spectral identity relates a sum of second integral moments of all automorphic forms on $S p_{2 n}$ to a sum over automorphic forms on $S p_{4 n}$ of global integrals. Due to vanishing of $S p_{2 n} \times S p_{2 n}$ periods, the expansion on $S p_{4 n}$ involves only automorphic forms generating degenerate principal series at finite primes. ${ }^{[2]}$

We give two archimedean deformations ${ }^{[3]}$ of the initial spectral relation.

1. The spectral identity
2. Appendix: normalization of L-functions
3. Appendix: computation of local integrals
4. Appendix: local integrals for Eisenstein series
5. Appendix: normalization of Eisenstein series

The general recipe includes the case of interest as follows. Let G be a reductive group defined over a number field k, and H a k-subgroup of G, assumed without loss of generality to contain the center Z of G. Consider two chains of subgroups inside $G \times G$,

$$
\begin{aligned}
& H^{\Delta} \subset H \times H \subset G \times G \\
& H^{\Delta} \subset G^{\Delta} \quad \subset G \times G
\end{aligned}
$$

where the superscript Δ denotes diagonal copies. Pictorially, this is

[1] One can be more precise about this, and discuss how various notions of packet behave under restriction.
[2] This is literally true of cuspforms, namely, that the only ones appearing in the spectral expansion of the initial distribution or certain of its deformations are degenerate principal series attached to the Siegel parabolic. Typically, degenerate principal series are irreducible, and this is true of unitary ones generally. Proof of this follows from an argument similar to Casselman's treatment of the Borel-Matsumoto theorem in his 1980 Compositio paper.
[3] More precisely, the initial relation is a limiting case of the deformations, as the Dirac delta on the real line is a limiting case of suitably renormalized integration against $1 /\left(1+x^{2}\right)^{s}$ as $s \rightarrow+\infty$.

Consider the initial distribution u on suitable ${ }^{[4]}$ automorphic forms on $G \times G$ defined by

$$
u\left(f_{1} \otimes f_{2}\right)=\int_{Z_{\mathbb{A}}^{\Delta} H_{k}^{\Delta} \backslash H_{\mathbb{A}}^{\Delta}} f_{1} \otimes f_{2}=\int_{Z_{\mathbb{A}} H_{k} \backslash H_{\mathbb{A}}} f_{1} \cdot f_{2}
$$

where Z is the center of G. The spectral expansion of this diagonal initial distribution along $H \times H$ is

$$
u \circ \operatorname{Res}_{H \times H}^{G \times G}=\mathcal{F}_{F \text { on } H} F \otimes \bar{F}
$$

where F runs over what would be an orthonormal basis if the decomposition were discrete, but in general must include continuous-spectrum contributions. On the other hand, the spectral expansion of this diagonal distribution along G^{Δ} is

$$
u \circ \operatorname{Res}_{G^{\Delta}}^{G \times G}=\mathcal{F}_{F \text { on } G^{\Delta}} F_{H} \cdot F
$$

where $u(F)=F_{H}$ is the period of F along H.
Let f be an automorphic form on G, with contragredient f^{\vee}. The general recipe gives ${ }^{[5]}$

$$
\left.\mathcal{F}_{F \text { on } H}\left|\langle f, F\rangle_{H}\right|^{2}=u\left(f \otimes f^{\vee}\right)=\left.\mathcal{F}_{F \text { on } G} F_{H} \cdot\langle F,| f\right|^{2}\right\rangle_{G}
$$

Diagrammatically, this is

$$
\begin{aligned}
& \text { (moment side) (spectral side) } \\
& \left.\left.\sum_{F \text { on } H}\left|\langle f, F\rangle_{H}\right|^{2} \longleftarrow \quad \begin{array}{l}
f \otimes f^{\vee} \\
G \times G
\end{array} \longrightarrow \sum_{F \text { on } G} F_{H} \cdot\langle F,| f\right|^{2}\right\rangle_{G} \\
& \sum_{\substack{\text { on } H \\
\uparrow}} F \otimes \bar{F} \begin{array}{cccc}
\\
& \nwarrow \times H & & G^{\Delta}
\end{array} \sum_{F \text { on } G^{\Delta}} F_{H} \cdot F
\end{aligned}
$$

The positivity of the left-hand side is a virtue of this relation. The weakness of this initial identity is that the archimedean contributions in the left side will make the summands converge too well, being of exponential decrease. We deform u in order to extract more information.

We call a Poincaré series any deformation of the initial distribution u to (integration against) a classical function on $Z_{\mathbb{A}}^{\Delta} G_{k}^{\Delta} \backslash G_{\mathbb{A}}^{\Delta}$. One natural non-elementary deformation is as follows. Let v_{0} be archimedean,
[4] The indicated integral literally converges at least for cuspforms, and for wave packets of Eisenstein series with cuspidal data. If the spectral coefficients of a packet of Eisenstein series are extremely smooth, then the packet will be of rapid decay. The L^{2} spectral decomposition of automorphic forms behaves well with respect to restriction to various notions of Schwartz spaces of automorphic forms. Thus, via duality, suitably tempered automorphic distributions admit spectral decompositions.
[5] In general, since u will not have compact support, this evaluation has an immediate sense only for f in a suitable Schwartz space. That is, only packets of Eisenstein series allow literal evaluation of the functional. Nevertheless, suitable regularization can extend the domain of the functional. Further, deformation of the initial distribution to a classical function already effectively extends the functional to a degree.
and let Ω be Casimir on $G_{v_{0}}$. Let $\lambda \in \mathbb{C}$, and consider the (distributional) partial differential equation on $H_{v_{0}} \backslash G_{v_{0}}$

$$
(\Omega-\lambda) \beta^{\lambda}=u
$$

where β^{λ} is left $H_{v_{0}}$-invariant and right $K_{v_{0}}$-invariant. Assume there is a locally integrable solution ${ }^{[6]} \beta^{\lambda}$ with sufficient decay at infinity. For simplicity, suppose that there is a unique archimedean place v_{0} of k, and that β^{λ} solves the previous equation on $H_{v_{0}} \backslash G_{v_{0}}$. For $v \neq v_{0}$, let

$$
\varphi_{v}(g)= \begin{cases}1 & \left(\text { for } g \in H_{v} \cdot K_{v}\right) \\ 0 & \left(\text { off } H_{v} \cdot K_{v}\right)\end{cases}
$$

where K_{v} is a maximal compact subgroup of G_{v}. Let

$$
\varphi^{\lambda}(g)=\beta^{\lambda}\left(g_{v_{0}}\right) \cdot \prod_{v \neq v_{0}} \varphi_{v}\left(g_{v}\right)
$$

Form ${ }^{[7]}$ the Poincaré series

$$
\mathrm{Pe}^{\lambda}(g)=\sum_{\gamma \in H_{k} \backslash G_{k}} \varphi^{\lambda}(\gamma \cdot g)
$$

Compute the spectral components ${ }^{[8]}$ of Pe^{λ} as follows. Take a spherical automorphic form F on G with eigenvalue λ_{F} for Ω on $G_{v_{0}}$. Unwinding as usual, and integrating by parts at v_{0}, the $F^{t h}$ spectral component of Pe^{λ} is

$$
\begin{gathered}
\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}} F \cdot \mathrm{Pé}^{\lambda}=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} F \cdot \varphi^{\lambda}=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} \frac{\Omega-\lambda}{\lambda_{F}-\lambda} F \cdot \varphi^{\lambda}=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} F \cdot \frac{\Omega-\lambda}{\lambda_{F}-\lambda} \varphi^{\lambda} \\
=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} F \cdot \frac{1}{\lambda_{F}-\lambda}\left(u \otimes \bigotimes_{v \neq v_{0}} \varphi_{v}\right)=\frac{1}{\lambda_{F}-\lambda} \cdot \int_{Z_{\mathbb{A}} H_{k} \backslash H_{\mathbb{A}}} F=\frac{u(F)}{\lambda_{F}-\lambda}=\frac{F_{H}}{\lambda_{F}-\lambda}
\end{gathered}
$$

Visibly, this $F^{t h}$ spectral coefficient has a pole ${ }^{[9]}$ at $\lambda=\lambda_{F}$.
On the other hand, compute the moment expansion as follows. For f on G with contragredient f^{\vee}, do an initial unwinding

$$
\left.\left.\langle\mathrm{Pé},| f\right|^{2}\right\rangle=\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathbb{A}}} \mathrm{Pé}^{\lambda} \cdot|f|^{2}=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathbb{A}}} \varphi^{\lambda} \cdot|f|^{2}=\int_{H_{\mathbb{A}} \backslash G_{\mathbb{A}}} \varphi^{\lambda}(g) \int_{Z_{\mathbb{A}} H_{k} \backslash H_{\mathbb{A}}} f(h g) f^{\vee}(h g) d h d g
$$

[6] Smoothness of a solution of $(\Omega-\lambda) \beta=u$ away from the singular support $H_{v_{0}}$ of u follows from hypoellipticity of Ω on $G_{v_{0}} / K_{v_{0}}$.
[7] Often this sum will not converge classically, requiring regularization via analytic continuation in a further auxiliary parameter, but this further deformation is relatively elementary, and we suppress it here.
[8] To compute spectral components, the obvious heuristic is to pretend that everything is L^{2} and compute following Selberg, Langlands, Arthur, Jacquet Moeglin-Waldspurger, et alia. However, most interesting deformations are not L^{2}. Indeed, with $G=G L_{n}$ and $H=G L_{n-1}$, for $n \geq 3$, deformations as here have no genuine L^{2} components remaining after singular components are removed. This can be remedied by a further deformation, identifying the Poincaré series as an iterated residue of an object with cuspidal spectral components. Luckily, in the examples considered here, this additional device is unnecessary for understanding the spectral decomposition, though additional regularization may be convenient.
[9] For cuspforms F this does promise a genuine pole in the spectral expansion.
since φ^{λ} is left $H_{\mathbb{A}}$-invariant. Expand $f(h g)$ along H, as

$$
f(h g)=\mathcal{\psi}_{F \text { on } H} F(h)\left(\int_{Z_{\mathbb{A}} H_{k} \backslash H_{\mathbb{A}}} f(\eta g) \bar{F}(\eta) d \eta\right) d \eta=\psi_{F \text { on } H} F(h) \cdot\langle g \cdot f, F\rangle_{H}
$$

where the action of $g \in G_{\mathbb{A}}$ on functions f is by right translation:

$$
(g \cdot f)(h)=f(h g)
$$

Thus,

$$
\begin{gathered}
\left.\left.\langle\text { Pé, }| f\right|^{2}\right\rangle=\mathcal{F}_{F \text { on } H} \int_{H_{\mathbb{A}} \backslash G_{\mathbb{A}}} \varphi^{\lambda}(g) \int_{Z_{\mathbb{A}} H_{k} \backslash H_{\mathbb{A}}} F(h) \cdot\langle g \cdot f, F\rangle_{H} \cdot f^{\vee}(h g) d h d g \\
=\sum_{F \text { on } H} \int_{H_{\mathbb{A}} \backslash G_{\mathbb{A}}} \varphi^{\lambda}(g) \cdot\left|\langle g \cdot f, F\rangle_{H}\right|^{2} d g
\end{gathered}
$$

Because φ^{λ} is significantly deformed only at the single archimedean place v_{0}, in the integral over $H_{\mathbb{A}} \backslash G_{\mathbb{A}}$ the adele group element $g=\left\{g_{v}\right\}$ can be taken in H_{v} except at the single place v_{0}. Thus,

$$
\left.\left.\langle\text { Pé, }| f\right|^{2}\right\rangle=\mathcal{F}_{F \text { on } H} \int_{H_{v_{0}} \backslash G_{v_{0}}} \beta^{\lambda}\left(g_{v_{0}}\right) \cdot\left|\left\langle g_{v_{0}} \cdot f, F\right\rangle_{H}\right|^{2} d g_{v_{0}}
$$

The specific structure of the case $H=S p_{2 n} \times S p_{2 n}$ and $G=S p_{4 n}$ with the direct-sum imbedding allows an an elementary further unwinding ${ }^{[10]}$ when f is an Eisenstein series

$$
E(g)=\sum_{\gamma \in P_{k} \backslash G_{k}} \varepsilon(\gamma \cdot g)
$$

induced from a one-dimensional character of the Siegel parabolic ${ }^{[11]} P$, with $\varepsilon=\bigotimes_{v} \varepsilon_{v}$ spherical in the appropriate induced representation. Among the finitely-many double cosets $P_{k} \backslash G_{k} / H_{k}$, there is a unique [12] cuspidal ${ }^{[13]}$ double coset, $P \xi H$, with

$$
\xi=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

with n-by- n blocks. With this particular choice, the isotropy subgroup is

$$
\Theta=\xi^{-1} P \xi \cap H=\left\{\left(g, g^{\sigma}\right): g \in S p_{n}\right\} \approx S p_{n}
$$

[10] In the anomalously simple case that $G=G L_{n}$ and $H=G L_{n-1}$, global Whittaker-Fourier expansions for cuspforms (at least) allow the integrals $\langle g \cdot f, F\rangle_{H}$ to be unwound to products of local integrals as in the RankinSelberg convolution integrals for $G L_{n} \times G L_{n-1}$. Then the deformation at v_{0} has an impact visibly confined to the local integral at v_{0}. At the other extreme, in many interesting situations, an unwinding produces not only an Euler product of local integrals, but also a global integral, a period. The present scenario, so-called doubling, has no period on the moment side of the relation.
[11] The parabolic stabilizing the standard maximal totally isotropic subspace of the symplectic space is the Siegel or popular parabolic.
[12] This double-coset computation is non-trivial, but by now standard.
[13] With arbitrary parabolic P and subgroup H, a double coset $P x H$ is cuspidal, or non-negligible, when $P \cap x H x^{-1}$ contains no unipotent radical of any parabolic of G as a normal subgroup.
where, in n-by- n blocks,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\sigma}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right)
$$

since all the other integrals vanish due to the Gelfand cuspform condition ${ }^{[14]}$ on F. Thus, with cuspform F, the usual unwinding gives

$$
\begin{gathered}
\left\langle g_{v_{0}} \cdot E, F\right\rangle_{H}=\int_{H_{k} \backslash H_{\mathbb{A}}} \sum_{\gamma \in P_{k} \backslash G_{k}} \varepsilon\left(\gamma \cdot h g_{v_{0}}\right) \bar{F}(h) d h \\
=\sum_{x \in P_{k} \backslash G_{k} / H_{k}} \int_{H_{k} \backslash H_{\mathbb{A}}} \sum_{\eta \in\left(x^{-1} P_{k} x \cap H_{k}\right) \backslash H_{k}} \varepsilon\left(x \eta \cdot h g_{v_{0}}\right) \bar{F}(h) d h \\
=\sum_{x \in P_{k} \backslash G_{k} / H_{k}} \int_{Z_{\mathbb{A}}\left(x^{-1} P_{k} x \cap H_{k}\right) \backslash H_{\mathbb{A}}} \varepsilon\left(x \cdot h g_{v_{0}}\right) \bar{F}(h) d h=\int_{\Theta_{k} \backslash H_{\mathbb{A}}} \varepsilon\left(\xi \cdot h g_{v_{0}}\right) \bar{F}(h) d h
\end{gathered}
$$

In fact, in this example, $h \rightarrow \varepsilon\left(\xi h g_{v_{0}}\right)$ is left $\Theta_{\mathbb{A}}$-invariant. Thus, the integral can be rewritten as

$$
\left\langle g_{v_{0}} \cdot E, F\right\rangle_{H}=\int_{\Theta_{\mathbb{A}} \backslash H_{\mathbb{A}}} \varepsilon\left(\xi \cdot h g_{v_{0}}\right) \int_{\Theta_{k} \backslash \Theta_{\mathbb{A}}} \bar{F}(\theta h) d \theta d h=\int_{\Theta_{\mathbb{A}} \backslash H_{\mathbb{A}}} \varepsilon\left(\xi \cdot h g_{v_{0}}\right) \int_{\Theta_{k} \backslash \Theta_{\mathbb{A}}} \bar{F}(\theta h) d \theta d h
$$

Write $\bar{F}=f_{1} \otimes f_{2}$ with f_{i} on $S p_{2 n}$, and take representatives $\left\{x \times 1: x \in S p_{2 n}\right\}$ for $\Theta_{\mathbb{A}} \backslash H_{\mathbb{A}}$. This is

$$
\left\langle g_{v_{0}} \cdot E, F\right\rangle_{H}=\int_{S p_{2 n}(\mathbb{A})} \varepsilon\left(\xi(x \times 1) g_{v_{0}}\right) \int_{\Theta_{k} \backslash \Theta_{\mathbb{A}}} f_{1}(\theta x) f_{2}(\theta) d \theta d x
$$

The order of integration can be reversed, giving

$$
\left\langle g_{v_{0}} \cdot E, F\right\rangle_{H}=\int_{\Theta_{k} \backslash \Theta_{\mathbb{A}}} f_{2}(\theta) \cdot\left(\int_{S p_{2 n}(\mathbb{A})} \varepsilon\left(\xi(x \times 1) g_{v_{0}}\right) f_{1}(\theta x) d x\right) d \theta
$$

Since $g_{v_{0}}$ has non-trivial component only at the archimedean place v_{0}, the inner integral is a product of local operators coming from the functions ${ }^{[15]}$

$$
\eta_{v}(x)=\varepsilon_{v}(\xi(x \times 1))
$$

on $S p_{2 n}\left(k_{v}\right)$ for $v \neq v_{0}$. At almost all places v, the function ε_{v} is right $S p_{4 n}\left(\mathfrak{o}_{v}\right)$-invariant. Then the left invariance by Θ_{v} implies that

$$
\eta_{v}(a \cdot x \cdot b)=\eta_{v}(x) \quad\left(\text { for all } a, b \in S p_{2 n}\left(\mathfrak{o}_{v}\right), \text { for } x \in S p_{2 n}\left(k_{v}\right), \text { for almost all } v\right)
$$

At such places v, if $\bar{F}=f_{1} \otimes f_{2}$ has irreducible right $K_{v^{-}}$-type other than spherical, then $\left\langle g_{v_{0}} \cdot E, F\right\rangle_{H}=0$, while spherical F generating spherical representation π_{v} at v gives

$$
\int_{S p_{2 n}\left(k_{v}\right)} \varepsilon_{v}\left(\xi\left(x_{v} \times 1\right)\right) f_{1}\left(\theta x_{v}\right) d x_{v}=\lambda_{v} \cdot f_{1}(\theta)
$$

[^0]with eigenvalue ${ }^{[16]} \lambda_{v}$ depending only upon the isomorphism class of π_{v}. By contrast, at v_{0}, the right translation by $g_{v_{0}}$ disrupts the right K-types at v_{0} of either the Eisenstein series E or the spectral components $F=\bar{f}_{1} \otimes \bar{f}_{2}$. Nevertheless, in the worst case, these integral operators cannot move f_{1} outside the irreducible representation we assume it generates.

In particular, if \bar{f}_{2} is not inside the representation generated by f_{1}, then the integral is 0 . If there were no right translation by $g_{v_{0}}$, we could control this, and effectively take $f_{2}=\bar{f}_{1}$. However, with the right translation by $g_{v_{0}}$ present we must include an infinite sum over (probably) all the K-types in the archimedean representation generated by f_{1}.

That is, with f_{1} taken $K_{v_{0}}$-finite, certainly $f_{2} \in U(\mathfrak{g}) \cdot \bar{f}_{1}$, where $U(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g}, the Lie algebra of $S p_{2 n}\left(k_{v_{0}}\right)$.

For convenience, we continue to suppose that there is a single archimedean place v_{0} at which the deformation takes place, and, further, that at all finite places the Eisenstein series E is spherical. ${ }^{[17]}$ Then the previous remarks show that the only cuspforms $F=\bar{f}_{1} \otimes \bar{f}_{2}$ appearing are spherical at finite places. So far,

$$
\left\langle g_{v_{0}} \cdot E, F\right\rangle_{H}=\prod_{v<\infty} \lambda_{v} \cdot \int_{\Theta_{k} \backslash \Theta_{\mathbb{A}}} f_{2}(\theta) \cdot \int_{S p_{2 n}\left(k_{v_{0}}\right)} \varepsilon_{v_{0}}\left(\xi\left(x_{v_{0}} \times 1\right) g_{v_{0}}\right) f_{1}\left(\theta x_{v_{0}}\right) d x_{v_{0}} d \theta
$$

where the local integrals for λ_{v} are computed for $n=1$ in the appendix. That is, except for the $v_{0}{ }^{t h}$ local integral, this is the integral of f_{1} against f_{2}.

Replacing the initial distribution u by the $\lambda^{t h}$ deformation Péd evaluating in two ways,

$$
\left.\left(\ldots \text { moment side...) }=\left.\left\langle\mathrm{Pé}^{\lambda},\right| E\right|^{2}\right\rangle_{G}=\left.\sum_{F \text { on } G} \frac{F_{H}}{\lambda_{F}-\lambda} \cdot\langle F,| E\right|^{2}\right\rangle_{G}
$$

Note that the right-hand side has singularities ${ }^{[18]}$ at eigenvalues of elements of the discrete spectrum that have non-vanishing periods along H.

The example $H=G L_{n-1} \times G L_{1}$ inside $G=G L_{n}$ is anomalously simpler, in that H_{v} is a Levi component of a parabolic in G_{v}, so a standard Iwasawa decomposition itself already gives useful transverse coordinates along which to deform an initial distribution supported on H_{v}.

1. Appendix: normalization of L-functions

The classical description of the L-function attached to a holomorphic modular form

$$
f_{0}(z)=\sum_{n \geq 1} a_{n} e^{2 \pi i n z}
$$

of level 1 and of weight $\kappa \in 2 \mathbb{Z}$ on the upper half-plane is

$$
\Lambda\left(s, f_{0}\right)=\int_{0}^{\infty} y^{s} f_{0}(i y) \frac{d y}{y}=(2 \pi)^{-s} \Gamma(s) \sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

[16] The $v^{t h}$ eigenvalue is the $v^{t h}$ local factor of the standard $S p_{2 n} L$-function for f_{1}. We verify this explicitly for $n=1$ in an appendix.
[17] The local data defining the Eisenstein series E on $S p_{4 n}$ can be arranged to accommodate or detect any fixed right K_{v}-type on $S p_{2 n}$, but this is not the point here. Similarly, the possibilities for differing deformations at various archimedean places are not the point.
[18] It is easy, almost inevitable in any serious situation, for these eigenvalues to have many accumulation points. Proof of this presumably requires some trace-formula considerations.

The functional equation $f_{0}(-1 / z)=z^{\kappa} \cdot f_{0}(z)$ of f_{0} gives the corresponding functional equation

$$
\Lambda\left(\kappa-s, f_{0}\right)=\Lambda\left(s, f_{0}\right)
$$

For various reasons, a normalization that gives a functional equation $s \longleftrightarrow 1-s$ is more convenient. This is almost accomplished by thinking in terms of the associated automorphic form f on the Lie group, in this case given by

$$
f\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)=y^{\kappa / 2} \cdot f_{0}(x+i y)\right.
$$

If we were to take the Mellin transform of this, the functional equation would be with respect to $s \longleftrightarrow-s$, which would be better, in that it would depend less upon the specific local data, but still would obscure the notion of critical strip for the L-function. Therefore, the modern normalization is

$$
\Lambda(s, f)=\int_{0}^{\infty} y^{s-\frac{1}{2}} f(i y) \frac{d y}{y}=\int_{0}^{\infty} y^{s-\frac{1}{2}+\frac{\kappa}{2}} f_{0}(i y) \frac{d y}{y}=(2 \pi)^{s-\frac{1}{2}+\frac{\kappa}{2}} \Gamma\left(s-\frac{1}{2}+\frac{\kappa}{2}\right) \sum_{n] g e 1} \frac{a_{n}}{n^{s-\frac{1}{2}+\frac{\kappa}{2}}}
$$

The standard L-function ${ }^{[19]}$ attached to a cuspform f on $G L_{2}$ over a number field k, including the gamma factor, is given by the Mellin transform

$$
\Lambda(s, f)=\int_{\mathbb{J} / k^{\times}}|y|^{s-\frac{1}{2}} f\left(\begin{array}{cc}
y & 0 \\
0 & 1
\end{array}\right) d^{\times} y=\int_{\mathbb{J}}|y|^{s-\frac{1}{2}} W_{f}\left(\begin{array}{cc}
y & 0 \\
0 & 1
\end{array}\right) d^{\times} y
$$

where W_{f} is the global Whittaker function for f, namely,

$$
W_{f}(g)=\int_{\mathbb{A}} f\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) d x
$$

In this normalization, the L-function has a functional equation under $s \longleftrightarrow 1-s$. Uniqueness of local Whittaker models implies that W_{f} factors over primes $W_{f}=\bigotimes_{v} W_{v}$. Thus, letting π_{v} denote the (irreducible) representation of $G L_{2}\left(k_{v}\right)$ generated by f, the $v^{t h}$ Euler factor of $\Lambda(s, f)$ is given by the local Mellin transform

$$
L_{v}\left(s, \pi_{v}\right)=\int_{k_{v}^{\times}}|y|^{s-\frac{1}{2}} W_{v}\left(\begin{array}{cc}
y & 0 \\
0 & 1
\end{array}\right) d^{\times} y
$$

For example, for $k_{v} \approx \mathbb{R}$, for a holomorphic discrete series representation π_{v} of weight $\kappa \in 2 \mathbb{Z}$, the Whittaker function for the lowest K_{v}-type is

$$
W_{v}\left(\begin{array}{cc}
y & 0 \\
0 & 1
\end{array}\right)=y^{\kappa / 2} e^{-2 \pi y} \quad(\text { for } y>0)
$$

Thus, the local L-function (actually a gamma factor) in this normalization is

$$
L_{v}\left(s, \pi_{v}\right)=\int_{0}^{\infty} y^{s-\frac{1}{2}} y^{\kappa / 2} e^{-2 \pi y} \frac{d y}{y}=\int_{0}^{\infty} y^{s+\frac{\kappa-1}{2}} e^{-2 \pi y} \frac{d y}{y}=(2 \pi)^{-\left(s+\frac{\kappa-1}{2}\right)} \Gamma\left(s+\frac{\kappa-1}{2}\right)
$$

At spherical finite places v, the local Whittaker function is given by the easiest case of the Shintani-Saito-Casselman-Shalika formula,

$$
W_{v}\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)\right)= \begin{cases}\psi(x) \cdot \frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta} & (\text { for } n=\operatorname{ord} y \geq 0) \\
0 & (\text { for } n=\operatorname{ord} y<0)\end{cases}
$$

[19] This integral is most properly termed a zeta integral, rather than L-function, since only an optimal choice of cuspform within an irreducible gives good local factors, especially at bad primes. The discussion of finite bad primes is not the point here.
where $\alpha \beta=1 / q$, with q the residue field cardinality, where ψ is the fixed additive character specifying the Whittaker model, and we assume that W_{v} has trivial central character. Thus, at good finite primes

$$
\begin{gathered}
L_{v}\left(s, \pi_{v}\right)=\frac{1}{\alpha-\beta} \sum_{n=0}^{\infty} q^{-n\left(s-\frac{1}{2}\right)}\left(\alpha^{n+1}-\beta^{n+1}\right) \\
=\frac{1}{\alpha-\beta} \cdot\left(\frac{\alpha}{1-\alpha q^{-\left(s-\frac{1}{2}\right)}}-\frac{\beta}{1-\beta q^{-\left(s-\frac{1}{2}\right)}}\right)=\frac{1}{\left(1-\alpha q^{-\left(s-\frac{1}{2}\right)}\right)\left(1-\beta q^{-\left(s-\frac{1}{2}\right)}\right)}
\end{gathered}
$$

If we write the local L-factor in the form

$$
L_{v}\left(s, \pi_{v}\right)=\frac{1}{\left(1-A q^{-s}\right)\left(1-B q^{-s}\right)}
$$

then it must be that

$$
A=q^{\frac{1}{2}} \alpha \quad B=q^{\frac{1}{2}} \beta \quad \text { (up to permutations) }
$$

2. Appendix: computation of local integrals

This appendix verifies that the non-archimedean local integrals of cuspforms $f \otimes f^{\vee}$ on $S L_{2} \times S L_{2}$ against the restriction of a Siegel-type Eisenstein series on $S p_{4}$ are the local factors of $L\left(s, \operatorname{Sym}^{2} f\right)$, up to more-elementary normalizing factors. A similar computation is done for Eisenstein series, to be sure of normalizations.

Let v be a non-archimedean place of k. The naive normalization I_{s}^{nf} of the $s^{t h}$ degenerate principal series of $G_{v}=S p_{2 n}\left(k_{v}\right)$ includes smooth functions f with the left equivariance

$$
f\left(\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right) \cdot g\right)=\chi_{s}\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right) \cdot f(g) \quad\left(\text { where } \chi\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right)=|\operatorname{deg} a|^{s}\right)
$$

Let ε be the spherical function in I_{s}^{nff}. That is, ε is right $K_{v}=S p_{4}\left(\mathfrak{o}_{v}\right)$-invariant, and $\varepsilon(1)=1$. For f on G_{v} generating a spherical (irreducible) representation π_{v} of G_{v}, the integral

$$
\int_{G_{v}} f(x h) \cdot \varepsilon(\xi(h \times 1)) d h
$$

with

$$
\xi=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

(when convergent) is necessarily a constant $\lambda_{v}\left(s, \pi_{v}\right)$ (depending upon s and π_{v}) multiple of $f(x)$, since the subspace of spherical vectors in the spherical representation π_{v} is one-dimensional. This constant is intrinsic, in that it depends only upon the isomorphism class of π_{v}, so it can be computed via any model of the spherical representation π_{v}.

Take $f=W$. Since $f(1)=1$, the constant $\lambda_{v}\left(s, \pi_{v}\right)$ is

$$
\lambda_{v}\left(s, \pi_{v}\right)=\int_{G_{v}} f(h) \cdot \varepsilon(\xi(h \times 1)) d h
$$

Compute this integral via Iwasawa coordinates in $S L_{2}\left(k_{v}\right)$

$$
h=n_{x} m_{y} \theta=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y & 0 \\
0 & y^{-1}
\end{array}\right) \theta \quad\left(\text { with } \theta \in S L_{2}\left(\mathfrak{o}_{v}\right)\right)
$$

Diaconu-Garrett: Averages of symmetric square L-functions, and applications (July 18, 2018)
By Witt's theorem, with the Siegel parabolic P_{v} in $S p_{4}\left(k_{v}\right)$,

$$
P_{v} \backslash G_{v} \approx\{\text { maximal totally isotropic subspaces }\} \approx G L_{2}\left(k_{v}\right) \backslash\left\{\text { lower halves of elements of } S p_{4}\left(k_{v}\right)\right\}
$$

Thus, compute with the lower half of ξ, namely

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right) \cdot\left(n_{x} m_{y} \times 1\right)=\left(\begin{array}{cccc}
y & 1 & x / y & 0 \\
0 & 0 & 1 / y & -1
\end{array}\right)
$$

For $W\left(m_{y}\right)$ to be non-zero, ord $y \geq 0$. Thus,

$$
\left(\begin{array}{cccc}
1 & 0 & & \\
-y & 1 & & \\
& & 1 & y \\
& & 0 & 1
\end{array}\right) \in S p_{4}\left(\mathfrak{o}_{v}\right)
$$

Right multiplication by this changes neither the value of the spherical Whittaker function nor the value of ε, and puts the lower half of $\xi\left(n_{x} m_{y} \times 1\right)$ into the form

$$
\left(\begin{array}{llll}
0 & 1 & x / y & x \\
0 & 0 & 1 / y & 0
\end{array}\right)
$$

Left multiplication by

$$
\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right) \in S L_{2}\left(k_{v}\right)
$$

(effectively in the kernel of the character defining the degenerate principal series) gives

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & x \\
0 & 0 & 1 / y & 0
\end{array}\right)
$$

After a further permutation of rows and columns, we see

$$
\xi \cdot\left(n_{x} m_{y} \times 1\right)=
$$

Thus,

$$
\operatorname{ker}\left(\chi_{s}\right) \cdot \xi \cdot\left(n_{x} m_{y} \times 1\right) \cdot S p_{4 n}\left(\mathfrak{o}_{v}\right) \ni\left\{\begin{array}{cc}
\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 / y
\end{array}\right) \quad\left(\text { for } x \in \mathfrak{o}_{v}\right) \\
& \\
* & * \\
* & * \\
* & * \\
* & * \\
0 & 0
\end{array} x\right.
$$

Since the lower right 2-by-2 block determines the upper left by inverting and taking transpose,

$$
\varepsilon\left(\xi \cdot\left(n_{x} m_{y} \times 1\right)\right)= \begin{cases}|y|^{s} & \left(\text { for } x \in \mathfrak{o}_{v}\right) \\ |y / x|^{s} & \left(\text { for } x \notin \mathfrak{o}_{v}\right)\end{cases}
$$

Thus, the local integral is

$$
\int_{\operatorname{Ord} y \geq 0}|y|^{s} \cdot W\left(\begin{array}{cc}
y & 0 \\
0 & 1 / y
\end{array}\right) \frac{1}{|y|} d^{\times} y \cdot\left(1+\int_{\operatorname{Ord} x<0} \psi(x) \cdot|x|^{-s} d x\right)
$$

The additive character ψ is trivial on the local integers \mathfrak{o}_{v} and non-trivial on $\varpi^{-1} \mathfrak{o}_{v}$ where ϖ is a local parameter at v. Let q be the cardinality of the residue field, and let \mathfrak{o}_{v} have total measure 1 . Note that for ord $x<-1$, the function $u \rightarrow \psi(x \cdot(1+\varpi u))$ is a non-trivial character on $u \in \mathfrak{o}_{v}$, while $|x(1+\varpi u)|=|x|$. Thus, the integral in x can be computed on ord $x=-1$. The integral of ψ over $\varpi^{-1} \mathfrak{o}_{v}$ would be 0 , but we are missing \mathfrak{o}_{v}, so the integral of ψ over ord $x=-1$ is -1 . Thus, the integral over x is $-q^{-s}$. Since $\alpha \beta=1 / q$, the whole local integral is

$$
\begin{gathered}
\sum_{n \geq 0} q^{-n(s-1)} \frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\alpha-\beta} \cdot\left(1-q^{-s}\right)=\frac{1}{\alpha-\beta}\left(\frac{\alpha}{1-\alpha^{2} q^{-(s-1)}}-\frac{\beta}{1-\beta^{2} q^{-(s-1)}}\right) \cdot\left(1-q^{-s}\right) \\
=\frac{1+\alpha \beta q^{-(s-1)}}{\left(1-\alpha^{2} q^{-(s-1)}\right)\left(1-\beta^{2} q^{-(s-1)}\right)} \cdot\left(1-q^{-s}\right)=\frac{\left(1-\alpha^{2} \beta^{2} q^{-2(s-1)}\right)\left(1-q^{-s}\right)}{\left(1-\alpha^{2} q^{-(s-1)}\right)\left(1-\alpha \beta q^{-(s-1)}\right)\left(1-\beta^{2} q^{-(s-1)}\right)} \\
=\frac{\left(1-q^{-2 s}\right)\left(1-q^{-s}\right)}{\left(1-A^{2} q^{-s}\right)\left(1-A B q^{-s}\right)\left(1-B^{2} q^{-s}\right)}
\end{gathered}
$$

with $A=q^{\frac{1}{2}} \alpha$ and $B=q^{\frac{1}{2}} \beta$ as above. This is

$$
L_{v}\left(s, \operatorname{Sym}^{2} f\right) \cdot \frac{1}{\zeta_{v}(2 s) \cdot \zeta_{v}(s)}
$$

The naively normalized Siegel-type Eisenstein series E_{s} on $S p_{2 n}$ (where the index indicates the size of the matrices) attached to the $s^{t h}$ degenerate principal series has functional equation relating E_{s} and $E_{(n+1)-s}$. Thus, for $n=2$, the relation is between E_{s} and E_{3-s}. That is, apart from the renormalization by the zeta factors, $L\left(s, \operatorname{Sym}^{2} f\right)$ is related to $L\left(3-s, \operatorname{Sym}^{2} f\right)$.

3. Appendix: local integrals for Eisenstein series

A similar local computation arises in computation of the continuous spectrum components on $S L_{2} \times S L_{2}$ of suitably adjusted ${ }^{[20]}$ Eisenstein series on $S p_{4}$, but the Whittaker function W^{E} of Eisenstein series is normalized differently, as follows. Suppress subscripts by letting k be a non-archimedean local field with ring of integers \mathfrak{o}. The global Eisenstein series is locally an image of the naively normalized principal series consisting of functions φ on $G L_{2}(k)$ with the equivariance

$$
\varphi\left(\left(\begin{array}{ll}
a & * \\
0 & d
\end{array}\right) \cdot g\right)=|a / d|^{\mu} \cdot \varphi(g)
$$

Take the normalized spherical φ, namely, also right $K=G L_{2}(\mathfrak{o})$-invariant and $\varphi(1)=1$. Then the natural normalization of the local factor of the Fourier coefficient (Whittaker function) of the Eisenstein series is the integral transform ${ }^{\text {[21] }}$

$$
W^{E}(g)=\int_{N} \bar{\psi}(n) \varphi(w \cdot n \cdot g) d n \quad\left(\text { where } N=\left\{\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)\right\}\right)
$$

[20] A naively normalized Eisenstein series E_{s} on $S p_{4}$ can be adjusted so that on $\operatorname{Re}(s)>3 / 2$ its restriction to $S L_{2} \times S L_{2}$ has decay at infinity, without changing the level. This device allows computation of continuous-spectrum components by integration against Eisenstein series. An equivalent effect is achieved, with somewhat different details, by subtracting the Eisenstein series $E_{s} \otimes E_{s}$ on $S L_{2} \times S L_{2}$ from the restriction, before computing the spectral projection. More generally, decomposition of the restricted Eisenstein series as a tempered distribution legitimizes and shows the essential equivalence of all such devices.
[21] This is literally a naively normalized version of computation of the spherical Whittaker function for an unramified principal series.

It suffices to evaluate

$$
W^{E}\left(m_{y}\right)=\int_{k} \bar{\psi}(x) \varphi\left(w \cdot n_{x} \cdot m_{y}\right) d x \quad\left(\text { where } n_{x}=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \text { and } m_{y}=\left(\begin{array}{cc}
y & 0 \\
0 & 1
\end{array}\right)\right)
$$

The plan of the computation is as follows. Unless y is integral, local cancellation due to ψ will cause the integrand to vanish entirely. For y integral, there is still a local cancellation effect for ord x large negative. At the edge of this regime, some cancellation occurs without annihilating the integrand entirely. Thus, the integral will be equal to a finite geometric series with altered edge terms.

First,

$$
w \cdot n_{x} \cdot m_{y}=w \cdot m_{y} \cdot n_{x / y}=\left(\begin{array}{cc}
1 & 0 \\
0 & y
\end{array}\right) \cdot w \cdot\left(\begin{array}{cc}
1 & x / y \\
0 & 1
\end{array}\right)
$$

Thus, because of the trivial central character,

$$
\varphi\left(w \cdot n_{x} \cdot m_{y}\right)=|1 / y|^{\mu} \cdot \varphi\left(w \cdot n_{x / y}\right)
$$

and

$$
W\left(m_{y}\right)=|y|^{-\mu} \cdot \int_{k} \bar{\psi}(x) \varphi\left(w \cdot n_{x / y}\right) d x=|y|^{1-\mu} \cdot \int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x
$$

by replacing x by $x y$. For $y \notin \mathfrak{o}$, the character $x \rightarrow \bar{\psi}(x y)$ is non-trivial on \mathfrak{o}. On the other hand, $n_{t} \in K$ for $t \in \mathfrak{o}$, and φ is right K-invariant, so

$$
\varphi\left(w \cdot n_{x} \cdot n_{t}\right)=\varphi\left(w \cdot n_{x}\right) \quad(\text { for } t \in \mathfrak{o})
$$

We have a standard vanishing argument by change of variables:
$\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x=\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x} \cdot n_{t}\right) d x=\int_{k} \bar{\psi}((x-t) y) \varphi\left(w \cdot n_{x}\right) d x=\psi(t y) \int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x$
by replacing x by $x-t$. Since $y \notin \mathfrak{o}$, there is $t \in \mathfrak{o}$ such that $\psi(t y) \neq 1$. Thus,

$$
\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x=0 \quad(\text { for } y \notin \mathfrak{o})
$$

For $y \in \mathfrak{o}$ compute $\varphi\left(w \cdot n_{x}\right)$ via the p-adic Iwasawa decomposition of $w n_{x}$: right modulo K,

$$
w \cdot n_{x}=\left(\begin{array}{cc}
0 & -1 \\
1 & x
\end{array}\right)=\left\{\begin{array}{ccc}
\left(\begin{array}{cc}
0 & -1 \\
1 & x
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-x^{-1} & 1
\end{array}\right) & =\left(\begin{array}{cc}
x^{-1} & -1 \\
0 & x
\end{array}\right) & (\text { for ord } x \leq 0) \\
& =\left(\begin{array}{cc}
1 & (\text { for } \operatorname{ord} x \geq 0)
\end{array} ~\right.
\end{array}\right.
$$

Using triviality of the central character, the convention that \mathfrak{o} has measure 1 , break the integral over $k-\mathfrak{o}$ into \mathfrak{o}^{\times}orbits:

$$
\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x=\int_{\mathfrak{o}} \bar{\psi}(x y) \cdot 1 d x+\int_{k-\mathfrak{o}} \bar{\psi}(x y)\left|x^{-2}\right|^{\mu} d x
$$

For fixed $y \in \mathfrak{o}$, for ord $x y<0$, the map

$$
x \rightarrow x \cdot(1+\varpi u) \quad(\text { with } u \in \mathfrak{o})
$$

leaves $\varphi\left(w n_{x}\right)$ invariant, but

$$
\bar{\psi}(x(1+\varpi u) y)=\bar{\psi}(x y) \cdot \bar{\psi}(x y \varpi \cdot u)
$$

Since $x y \varpi \notin \mathfrak{o}$, the character

$$
u \rightarrow \bar{\psi}(x y \varpi \cdot u) \quad(\text { for } u \in \mathfrak{o})
$$

is non-trivial, so the integral in x over such an $(1+\varpi \mathfrak{o})$-orbit must vanish. Thus,

$$
\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x=\int_{\mathfrak{o}} \bar{\psi}(x y) \cdot 1 d x+\int_{0>\operatorname{ord} x \geq-1-\operatorname{ord} y} \bar{\psi}(x y)|x|^{-2 \mu} d x
$$

There is no cancellation due to ψ except when ord $x y=-1$, so

$$
\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x=\int_{0} 1 d x+\int_{-\operatorname{ord} y \leq \operatorname{ord} x<0}|x|^{-2 \mu} d x+\int_{\operatorname{ord} x=-(1+\operatorname{ord} y)} \bar{\psi}(x y)|x|^{-2 \mu} d x
$$

Let $n=\operatorname{ord} y$ and q the residue field cardinality. In the last integral, $|x|^{-2 \mu}$ is constant, and

$$
\int_{\operatorname{Ord} x=-(1+\operatorname{ord} y)} \bar{\psi}(x y) d x=\int_{\operatorname{Ord} x \geq-(1+\operatorname{ord} y)} \bar{\psi}(x y) d x-\int_{\operatorname{Ord} x \geq-\operatorname{ord} y} \bar{\psi}(x y) d x=0-\operatorname{meas}\left(y^{-1} \mathfrak{o}\right)=-q^{n}
$$

since the first integral is the integral of a non-trivial character. That is,

$$
\int_{\operatorname{Ord} x=-(1+\operatorname{ord} y)} \bar{\psi}(x y) d x=-q^{n} \cdot\left(q^{(1+n)}\right)^{-2 \mu}
$$

Using the comparison

$$
\operatorname{meas}\left(\varpi^{-n} \mathfrak{o}^{\times}\right)=q^{n} \cdot \frac{q-1}{q}
$$

of additive and multiplicative measures,

$$
\begin{gathered}
\int_{k} \bar{\psi}(x y) \varphi\left(w \cdot n_{x}\right) d x=1+\frac{q-1}{q} \sum_{n=1}^{\text {ord } y} q^{n} \cdot\left|\varpi^{-n}\right|^{-2 \mu}-q^{n} \cdot q^{-2 \mu(n+1)} \\
=1+\frac{q-1}{q} \sum_{n=1}^{\text {ord } y}\left(q^{1-2 \mu}\right)^{n}-q^{n} \cdot q^{-2 \mu(n+1)}
\end{gathered}
$$

Summing the finite geometric series, this is

$$
1+\frac{q-1}{q} \cdot \frac{q^{1-2 \mu}-\left(q^{1-2 \mu}\right)^{n+1}}{1-q^{1-2 \mu}}-q^{n} \cdot q^{-2 \mu(n+1)}
$$

To see how this should simplify, let $X=q^{1-2 \mu}$. The whole is

$$
\begin{gathered}
1+\frac{q-1}{q} \cdot \frac{X-X^{n+1}}{1-X}-\frac{X^{n+1}}{q} \\
=\frac{q(1-X)+(q-1)\left(X-X^{n+1}\right)-(1-X) X^{n+1}}{q(1-X)} \\
=\frac{q-q X+q X-X-q X^{n+1}+X^{n+1}-X^{n+1}+X^{n+2}}{q(1-X)}=\frac{q-X-q X^{n+1}+X^{n+2}}{q(1-X)} \\
=\frac{1-\frac{1}{q} X-X^{n+1}+\frac{1}{q} X^{n+2}}{1-X}=\frac{\left(1-\frac{1}{q} X\right)\left(1-X^{n+1}\right)}{1-X}
\end{gathered}
$$

Also, express $|y|^{1-\mu}$ in terms of X :

$$
|y|^{1-\mu}=\left(q^{-n}\right)^{1-\mu}=\left(q^{-\frac{n}{2}}\right)^{2-2 \mu}=q^{-\frac{n}{2}} \cdot\left(q^{-\frac{n}{2}}\right)^{1-2 \mu}=q^{-\frac{n}{2}} \cdot X^{-\frac{n}{2}}
$$

Thus, for ord $y \geq 0$,

$$
\begin{gathered}
W^{E}\left(m_{y}\right)=|y|^{1-\mu} \cdot \frac{\left(1-\frac{1}{q} X\right)\left(1-X^{n+1}\right)}{1-X}=q^{-\frac{n}{2}} \cdot X^{-\frac{n}{2}} \frac{\left(1-\frac{1}{q} X\right)\left(1-X^{n+1}\right)}{1-X} \\
=\left(1-\frac{1}{q} X\right) \cdot q^{-\frac{n}{2}} \cdot \frac{X^{-\frac{n+1}{2}}-X^{\frac{n+1}{2}}}{X^{-\frac{1}{2}}-X^{\frac{1}{2}}}=\left(1-\frac{1}{q} X\right) \cdot \frac{(1 / q X)^{\frac{n+1}{2}}-(X / q)^{\frac{n+1}{2}}}{(1 / q X)^{\frac{1}{2}}-(X / q)^{\frac{1}{2}}} \\
=\left(1-q^{-2 \mu}\right) \cdot \frac{\left(q^{\mu-1}\right)^{n+1}-\left(q^{-\mu}\right)^{n+1}}{q^{\mu-1}-q^{-\mu}}
\end{gathered}
$$

That is, up to switching the two, $\alpha=q^{\mu-1}$ and $\beta=q^{-\mu}$, and there is an extra leading factor of $\left(1-q^{2 \mu}\right)$.
Clearly $\alpha \beta=1 / q$. Then the integral against the restriction of the $s^{\text {th }}$ Siegel Eisenstein series gives local integrals at finite places v of the form

$$
\begin{gathered}
\left(1-q^{2 \mu}\right) \cdot \frac{\left(1-(\alpha \beta)^{2} \cdot q^{-2(s-1)}\right)\left(1-q^{-s}\right)}{\left(1-\alpha^{2} q^{-(s-1)}\right)\left(1-\alpha \beta q^{-(s-1)}\right)\left(1-\beta^{2} q^{-(s-1)}\right)} \\
=\frac{1}{\zeta_{v}(2 \mu) \zeta_{v}(s) \zeta_{v}(2 s)} \cdot \frac{1}{\left(1-q^{2 \mu-2-(s-1)}\right)\left(1-q^{-s}\right)\left(1-q^{(-2 \mu)-(s-1)}\right)} \\
=\frac{\zeta_{v}(s+1-2 \mu) \zeta_{v}(s) \zeta_{v}(s-1-2 \mu)}{\zeta_{v}(2 \mu) \zeta_{v}(s) \zeta_{v}(2 s)}
\end{gathered}
$$

In fact, for purposes of spectral decomposition, $\mu=\frac{1}{2}+i \nu$ with $\nu \in \mathbb{R}$, so this becomes

$$
\frac{\zeta_{v}(s-2 i \nu) \zeta_{v}(s) \zeta_{v}(s-2-2 i \nu)}{\zeta(1+2 i \nu) \zeta_{v}(s) \zeta_{v}(2 s)}
$$

4. Appendix: normalization of Eisenstein series

We recall the normalization of Siegel-type Eisenstein series giving control over poles to the right of the critical line.

Let k be a number field, and $G=S p_{2 n}$. Let v be a non-archimedean place of k. The naive normalization I_{s}^{nf} of the degenerate principal series of $G_{v}=S p_{2 n}\left(k_{v}\right)$ consists of f with left equivariance

$$
f\left(\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right) \cdot g\right)=\chi_{s}\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right) \cdot f(g) \quad\left(\text { where } \chi\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right)=|\operatorname{deg} a|^{s}\right)
$$

Let ε_{v} be the spherical function in I_{s}^{nf}. That is, ε_{v} is right $K_{v}=S p_{2 n}\left(\mathfrak{o}_{v}\right)$-invariant, and $\varepsilon_{v}(1)=1$.
The naively normalized Siegel-type Eisenstein series E_{s} on $S p_{2 n}$ (where the index indicates the size of the matrices) attached to the $s^{t h}$ degenerate principal series has functional equation relating E_{s} and $E_{(n+1)-s}$.

[^0]: [14] When $P \cap \xi H \xi^{-1}$ has a normal subgroup N a unipotent radical of a k-parabolic in G, the corresponding integral of a cuspform vanishes, by Gelfand's condition $\int_{N_{k} \backslash N_{\mathbb{A}}} F(n g) d n=0$.
 [15] These functions are not compactly supported, so are not in the usual spherical Hecke algebra. Nevertheless, in the region of convergence of the Eisenstein series E they give convergent integrals.

