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The symmetrization map s : Sg→ Ug is a linear surjection from the symmetric algebra Sg to the universal
enveloping algebra Ug of a Lie algebra g, completely characterized by being the identity map on g (and
on the scalars). This map is peculiar, effectively attempting to parametrize a non-commutative algebra by
a commutative one. It is linear, but cannot quite be a ring homomorphism. Nevertheless, beginning with
Harish-Chandra’s work, the symmetrization map plays an important role.

The intent is to have a commutative algebra be mapped as surjectively as possible to a non-commutative
algebra by a linear map as much an algebra homomorphism as possible. These are conflicting requirements.

Given the technicality of this map, coordinate-free characterization is all the more important.

Throughout, k is a field of characteristic 0. All algebras are k-algebras, in particular requiring that k is in
the center. Unless specifically designated as Lie algebras, all algebras are associative.

1. Symmetrization maps

[1.1] What should a symmetrization map be? Of course, commutative algebras cannot linearly surject
to non-commutative algebras without losing the algebra homomorphism property, leaving the mystery of
what structure might remain.

For a commutative algebra S and an arbitrary associative algebra A, a requirement that a k-linear map
f : S → A be an algebra homomorphism sharply restricts the image f(S): it must lie inside a commutative
sub-algebra of A.

On the other hand, for A = Ug the universal enveloping algebra of a Lie algebra g, the non-commutativity
is not severe, since Ug is commutative modulo lower-degree terms, as we will see in the proof of surjectivity
below. In other words, the associated graded algebra of the filtration by degree on Ug is commutative, so is
the universal commutative algebra Sg on the vector space g.

There is the natural algebra homomorphism F : Ug → Sg, which reasonably-enough has a large kernel,
generated by commutators xy− yx for x, y ∈ g. So, again, it is unreasonable to hope for a two-sided inverse
to F , but it is plausible to ask for a merely-linear right inverse s : Sg→ Ug.

Some further algebraic structure must be required, or such a map is certainly not unique, and,
concommitantly, probably not useful.

The desired sort of linear map s : S → A from a commutative algebra S to a not-necessarily-commutative
algebra A ought to be as much a algebra homomorphism as possible, meaning that whenever s(x) and s(y)
commute, we should have s(xy) = s(x)s(y). However, the only systematic thing that can be said is that s(x)
commutes with itself, so the only universally safe condition to impose is

s(xn) = s(x)n

This may seem very weak, but the multinomial theorem effectively exploits this, over a field of characteristic
0. For example,

s(2xy) = s
(
(x+y)2−x2−y2

)
= s

(
(x+y)2

)
−s(x)2−s(x)2 = s(x+y)2−s(x)2−s(y)2 = s(x) s(y)+s(y) s(x)

In fact, by slightly more elaborate identities (below) the condition s(xn) = s(x)n for a collection {x} of
generators can be used to completely determine the linear map s.
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Thus, a symmetrization map s : Sg → Ug is required to be the identity on g, to be linear, and to have the
property s(xn) = s(x)n for all x ∈ g.

Proof is required that such a map exists, is unique, and gives a linear isomorphism.

[1.2] Universal algebras We will prove that any symmetrization map s : Sg→ Ug satisfies

s(x1 . . . xn) =
1

n!

∑
π∈Sn

xπ(1) . . . xπ(n) (for x1, . . . , xn ∈ g)

where Sn is the permutation group on {1, 2, . . . , n}. In fact, this identity has nothing to do with Lie algebras
g, insofar as it holds for an over-lying symmetrization map t : SV →

⊗ •V from the symmetric algebra to
the universal associate algebra for any vector space V .

The characterization of
⊗ •V is that it has the following universal property: there is a linear map V →

⊗ •V
such that, for every linear map V → A to an associative algebra A, there is a unique algebra map

⊗ •V → A
through which the original V → A factors. The diagram is⊗ •V

""E
E

E
E

V

OO

// A

That is, the functor taking V to
⊗ •V is a left adjoint to the forgetful functor F that sends an associative

algebra to the underlying vector space: for every associative algebra A,

Homalgebras(
⊗

•V,A) ≈ Homvectorspaces(V, FA)

The construction, as proof of existence, of
⊗ •V is by tensors:⊗

•V =

∞⊕
n=0

⊗
nV

where
⊗

nV is the universal object for n-multi-linear maps from V × . . .× V : there is a fixed n-multi-linear
V × . . .× V →

⊗n
V such that every n-multi-linear V × . . .× V →W factors through a unique linear map⊗n

V →W . The diagram is ⊗
nV

%%K
K

K
K

K

V × . . .× V

OO

// W

The multiplication on
⊗ •V is given summand-wise⊗

mV ×
⊗

nV −→
⊗

m+nV

by the innocuous

(u1 ⊗ . . .⊗ um)× (v1 ⊗ . . .⊗ vn) −→ u1 ⊗ . . .⊗ um ⊗ v1 ⊗ . . .⊗ vn

Similarly, SV is the universal commutative algebra over a vector space V : there is a linear map V → SV
such that, for every linear map V → A to a commutative algebra A, there is a unique algebra map

⊗ •V → A
through which the original V → A factors. The diagram is

SV

!!B
B

B
B

V

OO

// A
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That is, the functor taking V to SV is a left adjoint to the forgetful functor F that sends a commutative
algebra to the underlying vector space: for every associative algebra A,

Homcommutative(SV,A) ≈ Homvectorspaces(V, FA)

[1.3] Universal symmetrization map To avoid presuming well-definedness, and to avoid coordinate-
dependency issues, we first define a universal symmetrization map.

Say that a linear map f : SV → A of SV to an associative algebra A is a symmetrization map if it is linear
and if f(xn) = f(x)n for all x ∈ V . The universal symmetrization map j : SV → Q is a symmetrization
map to an associative algebra Q such that, given another symmetrization map SV → A, there is a unique
algebra homomorphism Q→ A through which SV → A factors. That is, we have a diagram

Q
alg

  B
B

B
B

SV

sym

OO

sym
// A

The usual categorical argument gives uniqueness up to unique isomorphism, assuming existence.

Since the identity map SV → SV is a symmetrization map, and is injective on V , necessarily the copy of V
inside SV injects to Q.

Existence of the universal symmetrization is straighforward, as follows. For a vector space V , let
i : SV →

⊗ •SV be the natural (injective) linear map. Let I be the two-sided ideal in
⊗ •(SV ) generated

by all images i
(
s(xn)− s(x)n

)
for x ∈ V , and let

Q =
⊗

•SV
/
I

be the quotient, with j : SV → Q the natural linear map. The universal properties of
⊗ •SV yield the

desired universal properties of j and Q.

[1.4] The universal formula We can deduce formulas in Q for j(x1 . . . xn) in terms of the j(x`). For
example, from

j((x+ y)2) = j(x+ y)2 (for x, y ∈ g)

we obtain

j(x)2 + 2j(xy) + j(y)2 = (j(x) + j(y))2 = j(x)2 + j(x)j(y) + j(y)j(x) + j(y)2

and then deduce
j(xy) = 1

2

(
j(x)j(y) + j(y)j(x)

)
Among many possible approaches to obtain the general expression, we can consider scalars t1, . . . , tn and
x1, . . . , xn in g, and expand j((t1x1 + . . . + tnxn)n) two different ways, with the exponent the same as the
number of summands. Without writing out either expression entirely, over a field of characteristic 0 equality
of the two sides for all scalars ti implies equality of the two sides as polynomials in indeterminates ti (with
values in Q). Equating the coefficients of the middle term t1 . . . tn gives(

n

1 1 . . . 1

)
j(x1 . . . xn) =

∑
π∈Sn

j(xπ(1)) . . . j(xπ(n))

which gives the universal formula for the universal symmetrization map:

j(x1 . . . xn) =
1

n!

∑
π∈Sn

j(xπ(1)) . . . j(xπ(n))
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The formula shows that the map
⊗ •V → Q induced from V → SV , composed with the quotient⊗ •SV → Q is surjective, since the formula exhibits every element of Q as a linear combination of monomials

in elements j(x) with x ∈ V .

Again, since the identity SV → SV is injective on V , V injects to Q. Thus, since V generates
⊗ •V and

any algebra homomorphism image thereof, the image j(V ) generates Q.

[1.5] Canonical symmetrization map to
⊗ •V There is a canonical symmetrization-like map

SV →
⊗ •V . This also depends upon the underlying field being of characteristic 0.

From their characterizations as universal algebra and universal commutative algebra for V , there is a
canonical surjection

⊗ •V → SV with kernel the two-sided ideal generated by commutators xy − yx with
x, y in

⊗ •V . This quotient respects the grading by degree, and is the direct sum of the canonical maps

qn :
⊗

nV −→ SymnV

For each n, we will construct a linear section sn : SymnV →
⊗n

V , that is, a linear map such that qn ◦ sn
is the identity map on SymnV .

Each element π of the permutation group Sn on n things gives a multilinear map

π : V × . . .× V︸ ︷︷ ︸
n

−→
⊗

nV

by
π(x1 × . . .× xn) = xπ(1) ⊗ . . .⊗ xπ(n)

and thus gives a unique map of
⊗n

V to itself. The symmetric nth power SymnV is the Sn co-fixed vectors
in
⊗n

V , that is, the largest Sn-quotient of
⊗n

V on which Sn acts trivially.

On the other hand, since the characteristic is 0, there is an averaging map αn of
⊗n

V to the Sn fixed vectors
in
⊗n

V , by

αn(β) =
1

n!

∑
π∈Sn

π(β) (for β ∈
⊗n

V )

This map is visibly the identity map on fixed vectors. Thus, there is a direct sum decomposition

n⊗
V = ker

(
αn
)
⊕
(
fixed vectors

)
where ker(αn) contains no non-zero fixed vectors.

We claim that the Sn-fixed vectors in
⊗n

V map isomorphically to the Sn-cofixed vectors SymnV . On one
hand, the map of

⊗n
V to its own fixed vectors by αn must factor through qn, so the fixed vectors inject to

the co-fixed vectors.

To prove surjectivity, we make the subordinate claim that the kernel K of the quotient map is generated by
elements m− πm for m ∈

⊗n
V and π ∈ Sn. Certainly this maps to 0 under any Sn-homomorphism to an

Sn-module on which Sn acts trivially. On the other hand, Sn acts trivially on the quotient of
⊗n

V by K,
since

π(m+K) = m+ (πm−m) +K = m+K

This is the sub-claim. Then

qn
(
αnm) = qn

( 1

n!

∑
π

πm
)

=
1

n!

∑
π

qn(πm) =
1

n!

∑
π

qn(m) = qn(m)
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That is, every element qn(m) in the quotient SymnV is hit by a fixed vector, among them the fixed vector
αn(m). This proves that the fixed vectors surject to the co-fixed vectors, and, thus, map isomorphically.

Let σn : SymnV →
⊗n

V be the inverse of the isomorphism of fixed to co-fixed vectors, and let
σ : SV →

⊗ •V be the direct sum of these isomorphisms.

We claim that σ is a symmetrization map, meaning that σ(xn) = σ(x)n for x ∈ V . Note that for x ∈ V the
element xn ∈ SV is qn(x ⊗ . . . ⊗ x). Conveniently, x ⊗ . . . ⊗ x is already a fixed vector, and the averaging
map is the identity on it. Thus,

σ(xn) = αn
(
qn(x⊗ . . .⊗ x)

)
= x⊗ . . .⊗ x = σ(x)⊗ . . .⊗ σ(x) = σ(x)n

Thus, indeed, σ : SV →
⊗ •V is a symmetrization map.

[1.6] The universal symmetrization identified Now we will see that the canonical symmetrization
σ : SV →

⊗ •V is universal.

Among all the other symmetrization-like maps from SV , we have this canonical σ to
⊗ •V . Thus, this σ

must factor through a unique algebra homomorphism σ̃ : Q →
⊗ •V from the universal symmetrization

j : SV → Q. And Q is a canonical image f(
⊗ •V ) of

⊗ •V . This fits into a diagram

SV //

j

##GGGGGGGGGG

σ

��4444444444444444
⊗ •SV

��
Q

σ̃

���
�
�

⊗ •V

inc

ddIIIIIIIII
foo

⊗ •V

Thus, j : SV → f(
⊗ •V ) and σ : SV →

⊗ •V are both symmetrization maps, and σ factors through j.

As observed above, j is injective on the copy of V in SV , and j(V ) generates Q as an algebra. Likewise,
σ is injective on V , and obviously σ(V ) generates

⊗ •V as an algebra. Therefore, the composite⊗ •V → Q→
⊗ •V must be the identity on

⊗ •V .

That is, Q =
⊗ •V , and the canonical symmetrization σ : SV →

⊗ •V is the universal one.

In particular, σ is the unique symmetrization map SV →
⊗ •V with the property of being the identity on

the copies of V .

[1.7] Symmetrization Sg→ Ug Now return to Lie algebras V = g. Note that any associative algebra
A has a natural Lie algebra structure given by [x, y] = xy − yx. Then the universal enveloping algebra Ug
of g is an associative algebra characterized as follows. There is there is a Lie algebra map i : g → Ug such
that, for every Lie algebra map g→ A to an associative algebra A, there is a unique associative algebra map
Ug→ A through which the original g→ A factors. The diagram is

Ug

assoc

  A
A

A
A

g

Lie

OO

Lie
// A

That is, the functor taking g to Ug is a left adjoint to the forgetful functor F that sends an associative
algebra to the underlying vector space: for every associative algebra A,

Homassoc(Ug, A) ≈ HomLie(g, FA)
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The Poincaré-Birkhoff-Witt theorem proves that i injects g to Ug.

This categorical characterization shows that i : g→ Ug is unique up to unique isomorphism, if it exists. To
prove existence, construct Ug as the quotient of

⊗ •g by the two-sided ideal generated by all (xy−yx)− [x, y]
with x, y ∈ g, deducing the desired properties of Ug from those of

⊗ •g.

We want a symmetrization map s : Sg → Ug with s the identity on the copies of g. Since Ug is generated
by the image of g, there is at most one such symmetrization, given by the universal formula above, if a
symmetrization map exists.

For existence, let s : Sg→ Ug be the composition

Sg
σ //

s

!!⊗ •g
quot // Ug

As a corollary, this symmetrization s : Sg → Ug is the universal symmetrization map for Lie algebras g,
in the following sense. For a symmetrization map f : Sg → A to an associative algebra A which is a Lie
algebra map on g, there is a unique associative algebra homomorphism Ug→ A through which f factors by
s : Sg→ Ug. That is,

Ug

assoc

��<
<

<
<

<
<

<
<

<

Sg

sym

OO

sym

&&NNNNNNNNNNNNN

g Lie //

linear

88qqqqqqqqqqqqq

Lie

77

A

[1.7.1] Remark: This definition produces the same outcome as attempting to define a symmetrization
map Sg → Ug by taking the identity map on g and extending it by the universal formula from above.
However, doing this directly faces two possible difficulties. First, it is not clear a priori that there exists
any s : Sg → Ug with s(xn) = s(x)n for all x ∈ g, and s is the identity on g, because this might impose
mutually conflicting conditions. Second, we might attempt to avoid potential conflicts by forgetting about
the requirements s(xn) = s(x)n, instead merely choosing a basis {xi} for g, taking the corresponding basis
for Sg consisting of elements

xi1 . . . xin (where i1 ≤ i2 ≤ . . . ≤ in)

and defining a linear map s : Sg→ Ug on that basis by the (in fact, universal) formula

s(xi1 . . . xin) =
1

n!

∑
π∈Sn

xπ(i1) . . . xπ(in) ∈ Ug (where i1 ≤ i2 ≤ . . . ≤ in)

Among other flaws, it is not clear that this is independent of the basis for g, and it is surely a fool’s errand
to try to prove it by choosing two bases for g and comparing.

[1.8] Surjectivity of Sg → Ug It is mildly surprising that the symmetrization map s : Sg → Ug is
surjective, so is a linear isomorphism. The surjectivity is not merely a curiosity.

Let ⊗
≤ng =

⊕
0≤i≤n

⊗
ig⊗

<ng =
⊕

0≤i<n
⊗

ig
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and S≤ng, S≤ng, U≤ng, U<ng the corresponding images. In all cases, the parameter n is the degree. We
prove that S≤ng surjects to U≤ng, by induction on degree.

At degree 0 (the scalars, by convention), the symmetrization map is the identity. At degree 1, the
symmetrization map is the identity, being the identity on g by definition. Consider a monomial

u = x1 . . . xn ∈ U≤ng

Every permutation π ∈ Sn is a product π = σ1 . . . σ` of adjacent transpositions σi,i+1, and

σi,i+1u = xσi,i+1(1) . . . xσi,i+1(n) = x1 . . . xi−1xi+1xixi+2xn

= x1 . . . xi−1[xi + 1, xi]xi+2xn + x1 . . . xi−1xixi+1xi+2xn ∈ U<ng + u

That is, by induction on the number of adjacent transpositions needed to express a permutation,

u− πu ∈ U<ng

In particular,

u− 1

n!

∑
π

πu ∈ U<ng

and the sum is in the image of the symmetrization map, by the universal formula. This proves the surjectivity.
Injectivity follows from the Poincaré-Birkhoff-Witt theorem. Thus, the symmetrization map is a linear
isomorphism Sg→ Ug.
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