(July 26, 2011)

Symmetrization maps and differential operators

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

The symmetrization map $s: S\mathfrak{g} \to U\mathfrak{g}$ is a linear surjection from the symmetric algebra $S\mathfrak{g}$ to the universal enveloping algebra $U\mathfrak{g}$ of a Lie algebra \mathfrak{g} , completely characterized by being the identity map on \mathfrak{g} (and on the scalars). This map is peculiar, effectively attempting to parametrize a non-commutative algebra by a commutative one. It is linear, but cannot quite be a ring homomorphism. Nevertheless, beginning with Harish-Chandra's work, the symmetrization map plays an important role.

The intent is to have a commutative algebra be mapped as surjectively as possible to a non-commutative algebra by a linear map as much an algebra homomorphism as possible. These are conflicting requirements.

Given the technicality of this map, coordinate-free characterization is all the more important.

Throughout, k is a field of characteristic 0. All algebras are k-algebras, in particular requiring that k is in the center. Unless specifically designated as *Lie* algebras, all algebras are associative.

1. Symmetrization maps

[1.1] What should a symmetrization map be? Of course, commutative algebras cannot linearly surject to non-commutative algebras without losing the algebra homomorphism property, leaving the mystery of what structure might remain.

For a *commutative* algebra S and an arbitrary associative algebra A, a requirement that a k-linear map $f: S \to A$ be an *algebra* homomorphism sharply restricts the image f(S): it must lie inside a commutative sub-algebra of A.

On the other hand, for $A = U\mathfrak{g}$ the universal enveloping algebra of a Lie algebra \mathfrak{g} , the non-commutativity is not severe, since $U\mathfrak{g}$ is commutative modulo lower-degree terms, as we will see in the proof of surjectivity below. In other words, the associated graded algebra of the filtration by degree on $U\mathfrak{g}$ is commutative, so is the universal commutative algebra $S\mathfrak{g}$ on the vector space \mathfrak{g} .

There is the natural algebra homomorphism $F: U\mathfrak{g} \to S\mathfrak{g}$, which reasonably-enough has a large kernel, generated by commutators xy - yx for $x, y \in \mathfrak{g}$. So, again, it is unreasonable to hope for a two-sided inverse to F, but it is plausible to ask for a merely-linear *right* inverse $s: S\mathfrak{g} \to U\mathfrak{g}$.

Some further algebraic structure must be required, or such a map is certainly not unique, and, concommitantly, probably not useful.

The desired sort of linear map $s: S \to A$ from a commutative algebra S to a not-necessarily-commutative algebra A ought to be as much a algebra homomorphism as possible, meaning that whenever s(x) and s(y) commute, we should have s(xy) = s(x)s(y). However, the only systematic thing that can be said is that s(x) commutes with itself, so the only universally safe condition to impose is

$$s(x^n) = s(x)^n$$

This may seem very weak, but the multinomial theorem effectively exploits this, over a field of characteristic 0. For example,

$$s(2xy) = s((x+y)^2 - x^2 - y^2) = s((x+y)^2) - s(x)^2 - s(x)^2 = s(x+y)^2 - s(x)^2 - s(y)^2 = s(x)s(y) + s(y)s(x)$$

In fact, by slightly more elaborate identities (below) the condition $s(x^n) = s(x)^n$ for a collection $\{x\}$ of generators can be used to completely determine the linear map s.

Thus, a symmetrization map $s: S\mathfrak{g} \to U\mathfrak{g}$ is required to be the identity on \mathfrak{g} , to be linear, and to have the property $s(x^n) = s(x)^n$ for all $x \in \mathfrak{g}$.

Proof is required that such a map *exists*, is *unique*, and gives a *linear isomorphism*.

[1.2] Universal algebras We will prove that any symmetrization map $s: S\mathfrak{g} \to U\mathfrak{g}$ satisfies

$$s(x_1 \dots x_n) = \frac{1}{n!} \sum_{\pi \in S_n} x_{\pi(1)} \dots x_{\pi(n)} \qquad (\text{for } x_1, \dots, x_n \in \mathfrak{g})$$

where S_n is the permutation group on $\{1, 2, ..., n\}$. In fact, this identity has nothing to do with Lie algebras \mathfrak{g} , insofar as it holds for an over-lying symmetrization map $t: SV \to \bigotimes^{\bullet} V$ from the symmetric algebra to the universal associate algebra for any vector space V.

The characterization of $\bigotimes \bullet V$ is that it has the following universal property: there is a linear map $V \to \bigotimes \bullet V$ such that, for every *linear* map $V \to A$ to an associative algebra A, there is a unique *algebra* map $\bigotimes \bullet V \to A$ through which the original $V \to A$ factors. The diagram is

That is, the functor taking V to $\bigotimes \bullet V$ is a left adjoint to the forgetful functor F that sends an associative algebra to the underlying vector space: for every associative algebra A,

$$\operatorname{Hom}_{\operatorname{algebras}}(\bigotimes {}^{\bullet}V, A) \approx \operatorname{Hom}_{\operatorname{vectorspaces}}(V, FA)$$

The *construction*, as proof of existence, of $\bigotimes {}^{\bullet}V$ is by tensors:

$$\bigotimes^{\bullet} V = \bigoplus_{n=0}^{\infty} \bigotimes^{n} V$$

where $\bigotimes^{n} V$ is the universal object for *n*-multi-linear maps from $V \times \ldots \times V$: there is a fixed *n*-multi-linear $V \times \ldots \times V \to \bigotimes^{n} V$ such that every *n*-multi-linear $V \times \ldots \times V \to W$ factors through a unique linear map $\bigotimes^{n} V \to W$. The diagram is

$$\bigotimes^{n} V$$

$$\downarrow$$

$$V \times \ldots \times V \longrightarrow W$$

The multiplication on $\bigotimes {}^{\bullet}V$ is given summand-wise

$$\bigotimes^{m} V \times \bigotimes^{n} V \longrightarrow \bigotimes^{m+n} V$$

by the innocuous

$$(u_1 \otimes \ldots \otimes u_m) \times (v_1 \otimes \ldots \otimes v_n) \longrightarrow u_1 \otimes \ldots \otimes u_m \otimes v_1 \otimes \ldots \otimes v_n$$

Similarly, SV is the universal *commutative* algebra over a vector space V: there is a linear map $V \to SV$ such that, for every *linear* map $V \to A$ to a *commutative* algebra A, there is a unique *algebra* map $\bigotimes {}^{\bullet}V \to A$ through which the original $V \to A$ factors. The diagram is

That is, the functor taking V to SV is a left adjoint to the forgetful functor F that sends a commutative algebra to the underlying vector space: for every associative algebra A,

$$\operatorname{Hom}_{\operatorname{commutative}}(SV, A) \approx \operatorname{Hom}_{\operatorname{vectorspaces}}(V, FA)$$

[1.3] Universal symmetrization map To avoid presuming well-definedness, and to avoid coordinatedependency issues, we first define a *universal* symmetrization map.

Say that a linear map $f: SV \to A$ of SV to an associative algebra A is a symmetrization map if it is linear and if $f(x^n) = f(x)^n$ for all $x \in V$. The universal symmetrization map $j: SV \to Q$ is a symmetrization map to an associative algebra Q such that, given another symmetrization map $SV \to A$, there is a unique algebra homomorphism $Q \to A$ through which $SV \to A$ factors. That is, we have a diagram

The usual categorical argument gives uniqueness up to unique isomorphism, assuming existence.

Since the identity map $SV \to SV$ is a symmetrization map, and is injective on V, necessarily the copy of V inside SV injects to Q.

Existence of the universal symmetrization is straighforward, as follows. For a vector space V, let $i: SV \to \bigotimes^{\bullet} SV$ be the natural (injective) linear map. Let I be the two-sided ideal in $\bigotimes^{\bullet} (SV)$ generated by all images $i(s(x^n) - s(x)^n)$ for $x \in V$, and let

$$Q = \bigotimes \bullet SV / I$$

be the quotient, with $j: SV \to Q$ the natural linear map. The universal properties of $\bigotimes {}^{\bullet}SV$ yield the desired universal properties of j and Q.

[1.4] The universal formula We can deduce formulas in Q for $j(x_1 \dots x_n)$ in terms of the $j(x_\ell)$. For example, from

$$j((x+y)^2) = j(x+y)^2 \qquad \text{(for } x, y \in \mathfrak{g})$$

we obtain

$$j(x)^{2} + 2j(xy) + j(y)^{2} = (j(x) + j(y))^{2} = j(x)^{2} + j(x)j(y) + j(y)j(x) + j(y)^{2}$$

and then deduce

$$j(xy) = \frac{1}{2} (j(x)j(y) + j(y)j(x))$$

Among many possible approaches to obtain the general expression, we can consider scalars t_1, \ldots, t_n and x_1, \ldots, x_n in \mathfrak{g} , and expand $j((t_1x_1 + \ldots + t_nx_n)^n)$ two different ways, with the exponent the same as the number of summands. Without writing out either expression entirely, over a field of characteristic 0 equality of the two sides for all scalars t_i implies equality of the two sides as polynomials in indeterminates t_i (with values in Q). Equating the coefficients of the middle term $t_1 \ldots t_n$ gives

$$\binom{n}{1 \ 1 \ \dots \ 1} j(x_1 \dots x_n) = \sum_{\pi \in S_n} j(x_{\pi(1)}) \dots j(x_{\pi(n)})$$

which gives the *universal* formula for the *universal* symmetrization map:

$$j(x_1...x_n) = \frac{1}{n!} \sum_{\pi \in S_n} j(x_{\pi(1)}) \dots j(x_{\pi(n)})$$

The formula shows that the map $\bigotimes {}^{\bullet}V \to Q$ induced from $V \to SV$, composed with the quotient $\bigotimes {}^{\bullet}SV \to Q$ is *surjective*, since the formula exhibits every element of Q as a linear combination of monomials in elements j(x) with $x \in V$.

Again, since the identity $SV \to SV$ is injective on V, V injects to Q. Thus, since V generates $\bigotimes^{\bullet} V$ and any algebra homomorphism image thereof, the image j(V) generates Q.

[1.5] Canonical symmetrization map to $\bigotimes^{\bullet} V$ There is a canonical symmetrization-like map $SV \to \bigotimes^{\bullet} V$. This also depends upon the underlying field being of characteristic 0.

From their characterizations as universal algebra and universal commutative algebra for V, there is a canonical surjection $\bigotimes^{\bullet} V \to SV$ with kernel the two-sided ideal generated by commutators xy - yx with x, y in $\bigotimes^{\bullet} V$. This quotient respects the grading by degree, and is the direct sum of the canonical maps

$$q_n : \bigotimes^n V \longrightarrow \operatorname{Sym}^n V$$

For each n, we will construct a linear section $s_n : \operatorname{Sym}^n V \to \bigotimes^n V$, that is, a linear map such that $q_n \circ s_n$ is the identity map on $\operatorname{Sym}^n V$.

Each element π of the permutation group S_n on n things gives a multilinear map

$$\pi : \underbrace{V \times \ldots \times V}_{n} \longrightarrow \bigotimes^{n} V$$

by

$$\pi(x_1 \times \ldots \times x_n) = x_{\pi(1)} \otimes \ldots \otimes x_{\pi(n)}$$

and thus gives a unique map of $\bigotimes^n V$ to itself. The symmetric n^{th} power $\operatorname{Sym}^n V$ is the S_n co-fixed vectors in $\bigotimes^n V$, that is, the largest S_n -quotient of $\bigotimes^n V$ on which S_n acts trivially.

On the other hand, since the characteristic is 0, there is an averaging map α_n of $\bigotimes^n V$ to the S_n fixed vectors in $\bigotimes^n V$, by

$$\alpha_n(\beta) = \frac{1}{n!} \sum_{\pi \in S_n} \pi(\beta) \qquad (\text{for } \beta \in \bigotimes^n V)$$

This map is visibly the identity map on fixed vectors. Thus, there is a direct sum decomposition

$$\bigotimes^{n} V = \ker (\alpha_n) \oplus (\text{fixed vectors})$$

where $\ker(\alpha_n)$ contains no non-zero fixed vectors.

We claim that the S_n -fixed vectors in $\bigotimes^n V$ map isomorphically to the S_n -cofixed vectors $\operatorname{Sym}^n V$. On one hand, the map of $\bigotimes^n V$ to its own fixed vectors by α_n must factor through q_n , so the fixed vectors *inject* to the co-fixed vectors.

To prove *surjectivity*, we make the subordinate claim that the kernel K of the quotient map is generated by elements $m - \pi m$ for $m \in \bigotimes^n V$ and $\pi \in S_n$. Certainly this maps to 0 under any S_n -homomorphism to an S_n -module on which S_n acts trivially. On the other hand, S_n acts trivially on the quotient of $\bigotimes^n V$ by K, since

$$\pi(m+K) = m + (\pi m - m) + K = m + K$$

This is the sub-claim. Then

$$q_n(\alpha_n m) = q_n(\frac{1}{n!}\sum_{\pi} \pi m) = \frac{1}{n!}\sum_{\pi} q_n(\pi m) = \frac{1}{n!}\sum_{\pi} q_n(m) = q_n(m)$$

That is, every element $q_n(m)$ in the quotient $\operatorname{Sym}^n V$ is hit by a fixed vector, among them the fixed vector $\alpha_n(m)$. This proves that the fixed vectors *surject* to the co-fixed vectors, and, thus, map isomorphically.

Let $\sigma_n : \operatorname{Sym}^n V \to \bigotimes^n V$ be the *inverse* of the isomorphism of fixed to co-fixed vectors, and let $\sigma : SV \to \bigotimes^{\bullet} V$ be the direct sum of these isomorphisms.

We claim that σ is a symmetrization map, meaning that $\sigma(x^n) = \sigma(x)^n$ for $x \in V$. Note that for $x \in V$ the element $x^n \in SV$ is $q_n(x \otimes \ldots \otimes x)$. Conveniently, $x \otimes \ldots \otimes x$ is already a fixed vector, and the averaging map is the identity on it. Thus,

$$\sigma(x^n) = \alpha_n(q_n(x \otimes \ldots \otimes x)) = x \otimes \ldots \otimes x = \sigma(x) \otimes \ldots \otimes \sigma(x) = \sigma(x)^n$$

Thus, indeed, $\sigma: SV \to \bigotimes^{\bullet} V$ is a symmetrization map.

[1.6] The universal symmetrization identified Now we will see that the canonical symmetrization $\sigma: SV \to \bigotimes^{\bullet} V$ is *universal*.

Among all the other symmetrization-like maps from SV, we have this canonical σ to $\bigotimes^{\bullet} V$. Thus, this σ must factor through a *unique* algebra homomorphism $\tilde{\sigma} : Q \to \bigotimes^{\bullet} V$ from the *universal* symmetrization $j : SV \to Q$. And Q is a canonical image $f(\bigotimes^{\bullet} V)$ of $\bigotimes^{\bullet} V$. This fits into a diagram

Thus, $j: SV \to f(\bigotimes^{\bullet} V)$ and $\sigma: SV \to \bigotimes^{\bullet} V$ are both symmetrization maps, and σ factors through j.

As observed above, j is injective on the copy of V in SV, and j(V) generates Q as an algebra. Likewise, σ is injective on V, and obviously $\sigma(V)$ generates $\bigotimes^{\bullet} V$ as an algebra. Therefore, the composite $\bigotimes^{\bullet} V \to Q \to \bigotimes^{\bullet} V$ must be the identity on $\bigotimes^{\bullet} V$.

That is, $Q = \bigotimes^{\bullet} V$, and the canonical symmetrization $\sigma : SV \to \bigotimes^{\bullet} V$ is the *universal* one.

In particular, σ is the unique symmetrization map $SV \to \bigotimes^{\bullet} V$ with the property of being the identity on the copies of V.

[1.7] Symmetrization $S\mathfrak{g} \to U\mathfrak{g}$ Now return to Lie algebras $V = \mathfrak{g}$. Note that any associative algebra A has a natural Lie algebra structure given by [x, y] = xy - yx. Then the universal enveloping algebra $U\mathfrak{g}$ of \mathfrak{g} is an *associative* algebra characterized as follows. There is there is a *Lie algebra* map $i : \mathfrak{g} \to U\mathfrak{g}$ such that, for every *Lie algebra* map $\mathfrak{g} \to A$ to an *associative* algebra A, there is a unique *associative* algebra map $U\mathfrak{g} \to A$ through which the original $\mathfrak{g} \to A$ factors. The diagram is

That is, the functor taking \mathfrak{g} to $\mathcal{U}\mathfrak{g}$ is a left adjoint to the forgetful functor F that sends an associative algebra to the underlying vector space: for every associative algebra A,

$$\operatorname{Hom}_{\operatorname{assoc}}(U\mathfrak{g}, A) \approx \operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g}, FA)$$

The Poincaré-Birkhoff-Witt theorem proves that i injects \mathfrak{g} to $U\mathfrak{g}$.

This categorical characterization shows that $i: \mathfrak{g} \to U\mathfrak{g}$ is unique up to unique isomorphism, *if* it exists. To prove existence, *construct* $U\mathfrak{g}$ as the quotient of $\bigotimes^{\bullet}\mathfrak{g}$ by the two-sided ideal generated by all (xy - yx) - [x, y] with $x, y \in \mathfrak{g}$, deducing the desired properties of $U\mathfrak{g}$ from those of $\bigotimes^{\bullet}\mathfrak{g}$.

We want a symmetrization map $s: S\mathfrak{g} \to U\mathfrak{g}$ with s the identity on the copies of \mathfrak{g} . Since $U\mathfrak{g}$ is generated by the image of \mathfrak{g} , there is *at most one* such symmetrization, given by the universal formula above, *if* a symmetrization map exists.

For *existence*, let $s: S\mathfrak{g} \to U\mathfrak{g}$ be the composition

As a corollary, this symmetrization $s : S\mathfrak{g} \to U\mathfrak{g}$ is the *universal* symmetrization map for Lie algebras \mathfrak{g} , in the following sense. For a symmetrization map $f : S\mathfrak{g} \to A$ to an associative algebra A which is a Lie algebra map on \mathfrak{g} , there is a unique associative algebra homomorphism $U\mathfrak{g} \to A$ through which f factors by $s : S\mathfrak{g} \to U\mathfrak{g}$. That is,

[1.7.1] Remark: This definition produces the same outcome as attempting to define a symmetrization map $S\mathfrak{g} \to U\mathfrak{g}$ by taking the identity map on \mathfrak{g} and extending it by the universal formula from above. However, doing this directly faces two possible difficulties. First, it is not clear a priori that there exists any $s: S\mathfrak{g} \to U\mathfrak{g}$ with $s(x^n) = s(x)^n$ for all $x \in \mathfrak{g}$, and s is the identity on \mathfrak{g} , because this might impose mutually conflicting conditions. Second, we might attempt to avoid potential conflicts by forgetting about the requirements $s(x^n) = s(x)^n$, instead merely choosing a basis $\{x_i\}$ for \mathfrak{g} , taking the corresponding basis for $S\mathfrak{g}$ consisting of elements

$$x_{i_1} \dots x_{i_n}$$
 (where $i_1 \leq i_2 \leq \dots \leq i_n$)

and defining a linear map $s: S\mathfrak{g} \to U\mathfrak{g}$ on that basis by the (in fact, universal) formula

$$s(x_{i_1} \dots x_{i_n}) = \frac{1}{n!} \sum_{\pi \in S_n} x_{\pi(i_1)} \dots x_{\pi(i_n)} \in U\mathfrak{g} \qquad (\text{where } i_1 \le i_2 \le \dots \le i_n)$$

Among other flaws, it is not clear that this is independent of the basis for \mathfrak{g} , and it is surely a fool's errand to try to prove it by choosing two bases for \mathfrak{g} and comparing.

[1.8] Surjectivity of $S\mathfrak{g} \to U\mathfrak{g}$ It is mildly surprising that the symmetrization map $s: S\mathfrak{g} \to U\mathfrak{g}$ is *surjective*, so is a *linear isomorphism*. The surjectivity is not merely a curiosity.

Let

$$\bigotimes^{\leq n} \mathfrak{g} = \bigoplus_{0 \leq i \leq n} \bigotimes^{i} \mathfrak{g}$$
$$\bigotimes^{< n} \mathfrak{g} = \bigoplus_{0 \leq i < n} \bigotimes^{i} \mathfrak{g}$$

and $S^{\leq n}\mathfrak{g}$, $S^{\leq n}\mathfrak{g}$, $U^{\leq n}\mathfrak{g}$, $U^{<n}\mathfrak{g}$ the corresponding images. In all cases, the parameter *n* is the *degree*. We prove that $S^{\leq n}\mathfrak{g}$ surjects to $U^{\leq n}\mathfrak{g}$, by induction on degree.

At degree 0 (the scalars, by convention), the symmetrization map is the identity. At degree 1, the symmetrization map is the identity, being the identity on \mathfrak{g} by *definition*. Consider a monomial

$$u = x_1 \dots x_n \in U^{\leq n} \mathfrak{g}$$

Every permutation $\pi \in S_n$ is a product $\pi = \sigma_1 \dots \sigma_\ell$ of *adjacent* transpositions $\sigma_{i,i+1}$, and

$$\sigma_{i,i+1}u = x_{\sigma_{i,i+1}(1)} \dots x_{\sigma_{i,i+1}(n)} = x_1 \dots x_{i-1}x_{i+1}x_ix_{i+2}x_n$$
$$= x_1 \dots x_{i-1}[x_i+1, x_i]x_{i+2}x_n + x_1 \dots x_{i-1}x_ix_{i+1}x_{i+2}x_n \in U^{$$

That is, by induction on the number of adjacent transpositions needed to express a permutation,

$$u - \pi u \in U^{< n} \mathfrak{g}$$

In particular,

$$u - \frac{1}{n!} \sum_{\pi} \pi u \in U^{< n} \mathfrak{g}$$

and the sum is in the image of the symmetrization map, by the universal formula. This proves the surjectivity. Injectivity follows from the Poincaré-Birkhoff-Witt theorem. Thus, the symmetrization map is a linear isomorphism $S\mathfrak{g} \to U\mathfrak{g}$.