Symmetrization maps and differential operators

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

The symmetrization map $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ is a linear surjection from the symmetric algebra $S \mathfrak{g}$ to the universal enveloping algebra $U \mathfrak{g}$ of a Lie algebra \mathfrak{g}, completely characterized by being the identity map on \mathfrak{g} (and on the scalars). This map is peculiar, effectively attempting to parametrize a non-commutative algebra by a commutative one. It is linear, but cannot quite be a ring homomorphism. Nevertheless, beginning with Harish-Chandra's work, the symmetrization map plays an important role.

The intent is to have a commutative algebra be mapped as surjectively as possible to a non-commutative algebra by a linear map as much an algebra homomorphism as possible. These are conflicting requirements.

Given the technicality of this map, coordinate-free characterization is all the more important.
Throughout, k is a field of characteristic 0 . All algebras are k-algebras, in particular requiring that k is in the center. Unless specifically designated as Lie algebras, all algebras are associative.

1. Symmetrization maps

[1.1] What should a symmetrization map be? Of course, commutative algebras cannot linearly surject to non-commutative algebras without losing the algebra homomorphism property, leaving the mystery of what structure might remain.

For a commutative algebra S and an arbitrary associative algebra A, a requirement that a k-linear map $f: S \rightarrow A$ be an algebra homomorphism sharply restricts the image $f(S)$: it must lie inside a commutative sub-algebra of A.

On the other hand, for $A=U \mathfrak{g}$ the universal enveloping algebra of a Lie algebra \mathfrak{g}, the non-commutativity is not severe, since $U \mathfrak{g}$ is commutative modulo lower-degree terms, as we will see in the proof of surjectivity below. In other words, the associated graded algebra of the filtration by degree on $U \mathfrak{g}$ is commutative, so is the universal commutative algebra $S \mathfrak{g}$ on the vector space \mathfrak{g}.

There is the natural algebra homomorphism $F: U \mathfrak{g} \rightarrow S \mathfrak{g}$, which reasonably-enough has a large kernel, generated by commutators $x y-y x$ for $x, y \in \mathfrak{g}$. So, again, it is unreasonable to hope for a two-sided inverse to F, but it is plausible to ask for a merely-linear right inverse $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$.

Some further algebraic structure must be required, or such a map is certainly not unique, and, concommitantly, probably not useful.

The desired sort of linear map $s: S \rightarrow A$ from a commutative algebra S to a not-necessarily-commutative algebra A ought to be as much a algebra homomorphism as possible, meaning that whenever $s(x)$ and $s(y)$ commute, we should have $s(x y)=s(x) s(y)$. However, the only systematic thing that can be said is that $s(x)$ commutes with itself, so the only universally safe condition to impose is

$$
s\left(x^{n}\right)=s(x)^{n}
$$

This may seem very weak, but the multinomial theorem effectively exploits this, over a field of characteristic 0 . For example,
$s(2 x y)=s\left((x+y)^{2}-x^{2}-y^{2}\right)=s\left((x+y)^{2}\right)-s(x)^{2}-s(x)^{2}=s(x+y)^{2}-s(x)^{2}-s(y)^{2}=s(x) s(y)+s(y) s(x)$
In fact, by slightly more elaborate identities (below) the condition $s\left(x^{n}\right)=s(x)^{n}$ for a collection $\{x\}$ of generators can be used to completely determine the linear map s.

Thus, a symmetrization map $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ is required to be the identity on \mathfrak{g}, to be linear, and to have the property $s\left(x^{n}\right)=s(x)^{n}$ for all $x \in \mathfrak{g}$.

Proof is required that such a map exists, is unique, and gives a linear isomorphism.
[1.2] Universal algebras We will prove that any symmetrization map $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ satisfies

$$
s\left(x_{1} \ldots x_{n}\right)=\frac{1}{n!} \sum_{\pi \in S_{n}} x_{\pi(1)} \ldots x_{\pi(n)} \quad\left(\text { for } x_{1}, \ldots, x_{n} \in \mathfrak{g}\right)
$$

where S_{n} is the permutation group on $\{1,2, \ldots, n\}$. In fact, this identity has nothing to do with Lie algebras \mathfrak{g}, insofar as it holds for an over-lying symmetrization map $t: S V \rightarrow \otimes \bullet V$ from the symmetric algebra to the universal associate algebra for any vector space V.

The characterization of $\otimes^{\bullet} V$ is that it has the following universal property: there is a linear map $V \rightarrow \otimes^{\bullet} V$ such that, for every linear map $V \rightarrow A$ to an associative algebra A, there is a unique algebra map $\otimes^{\bullet} V \rightarrow A$ through which the original $V \rightarrow A$ factors. The diagram is

That is, the functor taking V to $\otimes^{\bullet} V$ is a left adjoint to the forgetful functor F that sends an associative algebra to the underlying vector space: for every associative algebra A,

$$
\operatorname{Hom}_{\text {algebras }}(\bigotimes \bullet V, A) \approx \operatorname{Hom}_{\text {vectorspaces }}(V, F A)
$$

The construction, as proof of existence, of $\otimes^{\bullet} V$ is by tensors:

$$
\bigotimes \cdot V=\bigoplus_{n=0}^{\infty} \bigotimes{ }^{n} V
$$

where $\bigotimes^{n} V$ is the universal object for n-multi-linear maps from $V \times \ldots \times V$: there is a fixed n-multi-linear $V \times \ldots \times V \rightarrow \bigotimes^{n} V$ such that every n-multi-linear $V \times \ldots \times V \rightarrow W$ factors through a unique linear map $\otimes^{n} V \rightarrow W$. The diagram is

The multiplication on $\otimes^{\bullet} V$ is given summand-wise

$$
\bigotimes^{m} V \times \bigotimes^{n} V \longrightarrow \bigotimes^{m+n} V
$$

by the innocuous

$$
\left(u_{1} \otimes \ldots \otimes u_{m}\right) \times\left(v_{1} \otimes \ldots \otimes v_{n}\right) \longrightarrow u_{1} \otimes \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes v_{n}
$$

Similarly, $S V$ is the universal commutative algebra over a vector space V : there is a linear map $V \rightarrow S V$ such that, for every linear map $V \rightarrow A$ to a commutative algebra A, there is a unique algebra map $\otimes^{\bullet} V \rightarrow A$ through which the original $V \rightarrow A$ factors. The diagram is

That is, the functor taking V to $S V$ is a left adjoint to the forgetful functor F that sends a commutative algebra to the underlying vector space: for every associative algebra A,

$$
\operatorname{Hom}_{\text {commutative }}(S V, A) \approx \operatorname{Hom}_{\text {vectorspaces }}(V, F A)
$$

[1.3] Universal symmetrization map To avoid presuming well-definedness, and to avoid coordinatedependency issues, we first define a universal symmetrization map.

Say that a linear map $f: S V \rightarrow A$ of $S V$ to an associative algebra A is a symmetrization map if it is linear and if $f\left(x^{n}\right)=f(x)^{n}$ for all $x \in V$. The universal symmetrization map $j: S V \rightarrow Q$ is a symmetrization map to an associative algebra Q such that, given another symmetrization map $S V \rightarrow A$, there is a unique algebra homomorphism $Q \rightarrow A$ through which $S V \rightarrow A$ factors. That is, we have a diagram

The usual categorical argument gives uniqueness up to unique isomorphism, assuming existence.
Since the identity map $S V \rightarrow S V$ is a symmetrization map, and is injective on V, necessarily the copy of V inside $S V$ injects to Q.

Existence of the universal symmetrization is straighforward, as follows. For a vector space V, let $i: S V \rightarrow \bigotimes^{\bullet} S V$ be the natural (injective) linear map. Let I be the two-sided ideal in $\bigotimes^{\bullet}(S V)$ generated by all images $i\left(s\left(x^{n}\right)-s(x)^{n}\right)$ for $x \in V$, and let

$$
Q=\bigotimes \cdot S V / I
$$

be the quotient, with $j: S V \rightarrow Q$ the natural linear map. The universal properties of $\otimes \bullet S V$ yield the desired universal properties of j and Q.
[1.4] The universal formula We can deduce formulas in Q for $j\left(x_{1} \ldots x_{n}\right)$ in terms of the $j\left(x_{\ell}\right)$. For example, from

$$
j\left((x+y)^{2}\right)=j(x+y)^{2} \quad(\text { for } x, y \in \mathfrak{g})
$$

we obtain

$$
j(x)^{2}+2 j(x y)+j(y)^{2}=(j(x)+j(y))^{2}=j(x)^{2}+j(x) j(y)+j(y) j(x)+j(y)^{2}
$$

and then deduce

$$
j(x y)=\frac{1}{2}(j(x) j(y)+j(y) j(x))
$$

Among many possible approaches to obtain the general expression, we can consider scalars t_{1}, \ldots, t_{n} and x_{1}, \ldots, x_{n} in \mathfrak{g}, and expand $j\left(\left(t_{1} x_{1}+\ldots+t_{n} x_{n}\right)^{n}\right)$ two different ways, with the exponent the same as the number of summands. Without writing out either expression entirely, over a field of characteristic 0 equality of the two sides for all scalars t_{i} implies equality of the two sides as polynomials in indeterminates t_{i} (with values in Q). Equating the coefficients of the middle term $t_{1} \ldots t_{n}$ gives

$$
\left(\begin{array}{cc}
n \\
1 & 1 \ldots
\end{array}\right) j\left(x_{1} \ldots x_{n}\right)=\sum_{\pi \in S_{n}} j\left(x_{\pi(1)}\right) \ldots j\left(x_{\pi(n)}\right)
$$

which gives the universal formula for the universal symmetrization map:

$$
j\left(x_{1} \ldots x_{n}\right)=\frac{1}{n!} \sum_{\pi \in S_{n}} j\left(x_{\pi(1)}\right) \ldots j\left(x_{\pi(n)}\right)
$$

The formula shows that the map $\otimes^{\bullet} V \rightarrow Q$ induced from $V \rightarrow S V$, composed with the quotient $\otimes \bullet S V \rightarrow Q$ is surjective, since the formula exhibits every element of Q as a linear combination of monomials in elements $j(x)$ with $x \in V$.

Again, since the identity $S V \rightarrow S V$ is injective on V, V injects to Q. Thus, since V generates $\otimes^{\bullet} V$ and any algebra homomorphism image thereof, the image $j(V)$ generates Q.
[1.5] Canonical symmetrization map to $\bigotimes^{\bullet} V$ There is a canonical symmetrization-like map $S V \rightarrow \bigotimes^{\bullet} V$. This also depends upon the underlying field being of characteristic 0 .

From their characterizations as universal algebra and universal commutative algebra for V, there is a canonical surjection $\otimes \bullet V \rightarrow S V$ with kernel the two-sided ideal generated by commutators $x y-y x$ with x, y in $\bigotimes^{\bullet} V$. This quotient respects the grading by degree, and is the direct sum of the canonical maps

$$
q_{n}: \bigotimes{ }^{n} V \longrightarrow \operatorname{Sym}^{n} V
$$

For each n, we will construct a linear section $s_{n}: \operatorname{Sym}^{n} V \rightarrow \bigotimes^{n} V$, that is, a linear map such that $q_{n} \circ s_{n}$ is the identity map on $\operatorname{Sym}^{n} V$.

Each element π of the permutation group S_{n} on n things gives a multilinear map

$$
\pi: \underbrace{V \times \ldots \times V}_{n} \longrightarrow \bigotimes{ }^{n} V
$$

by

$$
\pi\left(x_{1} \times \ldots \times x_{n}\right)=x_{\pi(1)} \otimes \ldots \otimes x_{\pi(n)}
$$

and thus gives a unique map of $\bigotimes^{n} V$ to itself. The symmetric $n^{t h}$ power $\operatorname{Sym}^{n} V$ is the S_{n} co-fixed vectors in $\bigotimes^{n} V$, that is, the largest S_{n}-quotient of $\bigotimes^{n} V$ on which S_{n} acts trivially.

On the other hand, since the characteristic is 0 , there is an averaging map α_{n} of $\bigotimes^{n} V$ to the S_{n} fixed vectors in $\bigotimes^{n} V$, by

$$
\alpha_{n}(\beta)=\frac{1}{n!} \sum_{\pi \in S_{n}} \pi(\beta) \quad\left(\text { for } \beta \in \bigotimes^{n} V\right)
$$

This map is visibly the identity map on fixed vectors. Thus, there is a direct sum decomposition

$$
\bigotimes^{n} V=\operatorname{ker}\left(\alpha_{n}\right) \oplus(\text { fixed vectors })
$$

where $\operatorname{ker}\left(\alpha_{n}\right)$ contains no non-zero fixed vectors.
We claim that the S_{n}-fixed vectors in $\bigotimes^{n} V$ map isomorphically to the S_{n}-cofixed vectors $\operatorname{Sym}^{n} V$. On one hand, the map of $\bigotimes^{n} V$ to its own fixed vectors by α_{n} must factor through q_{n}, so the fixed vectors inject to the co-fixed vectors.

To prove surjectivity, we make the subordinate claim that the kernel K of the quotient map is generated by elements $m-\pi m$ for $m \in \bigotimes^{n} V$ and $\pi \in S_{n}$. Certainly this maps to 0 under any S_{n}-homomorphism to an S_{n}-module on which S_{n} acts trivially. On the other hand, S_{n} acts trivially on the quotient of $\bigotimes^{n} V$ by K, since

$$
\pi(m+K)=m+(\pi m-m)+K=m+K
$$

This is the sub-claim. Then

$$
q_{n}\left(\alpha_{n} m\right)=q_{n}\left(\frac{1}{n!} \sum_{\pi} \pi m\right)=\frac{1}{n!} \sum_{\pi} q_{n}(\pi m)=\frac{1}{n!} \sum_{\pi} q_{n}(m)=q_{n}(m)
$$

That is, every element $q_{n}(m)$ in the quotient $\operatorname{Sym}^{n} V$ is hit by a fixed vector, among them the fixed vector $\alpha_{n}(m)$. This proves that the fixed vectors surject to the co-fixed vectors, and, thus, map isomorphically.

Let $\sigma_{n}: \operatorname{Sym}^{n} V \rightarrow \bigotimes^{n} V$ be the inverse of the isomorphism of fixed to co-fixed vectors, and let $\sigma: S V \rightarrow \bigotimes^{\bullet} V$ be the direct sum of these isomorphisms.

We claim that σ is a symmetrization map, meaning that $\sigma\left(x^{n}\right)=\sigma(x)^{n}$ for $x \in V$. Note that for $x \in V$ the element $x^{n} \in S V$ is $q_{n}(x \otimes \ldots \otimes x)$. Conveniently, $x \otimes \ldots \otimes x$ is already a fixed vector, and the averaging map is the identity on it. Thus,

$$
\sigma\left(x^{n}\right)=\alpha_{n}\left(q_{n}(x \otimes \ldots \otimes x)\right)=x \otimes \ldots \otimes x=\sigma(x) \otimes \ldots \otimes \sigma(x)=\sigma(x)^{n}
$$

Thus, indeed, $\sigma: S V \rightarrow \bigotimes^{\bullet} V$ is a symmetrization map.
[1.6] The universal symmetrization identified Now we will see that the canonical symmetrization $\sigma: S V \rightarrow \bigotimes^{\bullet} V$ is universal.

Among all the other symmetrization-like maps from $S V$, we have this canonical σ to $\otimes{ }^{\bullet} V$. Thus, this σ must factor through a unique algebra homomorphism $\tilde{\sigma}: Q \rightarrow \bigotimes^{\bullet} V$ from the universal symmetrization $j: S V \rightarrow Q$. And Q is a canonical image $f\left(\otimes^{\bullet} V\right)$ of $\otimes^{\bullet} V$. This fits into a diagram

Thus, $j: S V \rightarrow f\left(\otimes^{\bullet} V\right)$ and $\sigma: S V \rightarrow \bigotimes^{\bullet} V$ are both symmetrization maps, and σ factors through j.
As observed above, j is injective on the copy of V in $S V$, and $j(V)$ generates Q as an algebra. Likewise, σ is injective on V, and obviously $\sigma(V)$ generates $\otimes^{\bullet} V$ as an algebra. Therefore, the composite $\otimes^{\bullet} V \rightarrow Q \rightarrow \otimes^{\bullet} V$ must be the identity on $\otimes^{\bullet} V$.

That is, $Q=\bigotimes^{\bullet} V$, and the canonical symmetrization $\sigma: S V \rightarrow \otimes^{\bullet} V$ is the universal one.
In particular, σ is the unique symmetrization map $S V \rightarrow \otimes^{\bullet} V$ with the property of being the identity on the copies of V.
[1.7] Symmetrization $S \mathfrak{g} \rightarrow U \mathfrak{g} \quad$ Now return to Lie algebras $V=\mathfrak{g}$. Note that any associative algebra A has a natural Lie algebra structure given by $[x, y]=x y-y x$. Then the universal enveloping algebra $U \mathfrak{g}$ of \mathfrak{g} is an associative algebra characterized as follows. There is there is a Lie algebra map $i: \mathfrak{g} \rightarrow U \mathfrak{g}$ such that, for every Lie algebra map $\mathfrak{g} \rightarrow A$ to an associative algebra A, there is a unique associative algebra map $U \mathfrak{g} \rightarrow A$ through which the original $\mathfrak{g} \rightarrow A$ factors. The diagram is

That is, the functor taking \mathfrak{g} to $\mathcal{U} \mathfrak{g}$ is a left adjoint to the forgetful functor F that sends an associative algebra to the underlying vector space: for every associative algebra A,

$$
\operatorname{Hom}_{\text {assoc }}(U \mathfrak{g}, A) \approx \operatorname{Hom}_{\text {Lie }}(\mathfrak{g}, F A)
$$

The Poincaré-Birkhoff-Witt theorem proves that i injects \mathfrak{g} to $U \mathfrak{g}$.
This categorical characterization shows that $i: \mathfrak{g} \rightarrow U \mathfrak{g}$ is unique up to unique isomorphism, if it exists. To prove existence, construct $U \mathfrak{g}$ as the quotient of $\bigotimes^{\bullet} \mathfrak{g}$ by the two-sided ideal generated by all $(x y-y x)-[x, y]$ with $x, y \in \mathfrak{g}$, deducing the desired properties of $U \mathfrak{g}$ from those of $\otimes^{\bullet} \mathfrak{g}$.

We want a symmetrization map $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ with s the identity on the copies of \mathfrak{g}. Since $U \mathfrak{g}$ is generated by the image of \mathfrak{g}, there is at most one such symmetrization, given by the universal formula above, if a symmetrization map exists.

For existence, let $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ be the composition

As a corollary, this symmetrization $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ is the universal symmetrization map for Lie algebras \mathfrak{g}, in the following sense. For a symmetrization map $f: S \mathfrak{g} \rightarrow A$ to an associative algebra A which is a Lie algebra map on \mathfrak{g}, there is a unique associative algebra homomorphism $U \mathfrak{g} \rightarrow A$ through which f factors by $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$. That is,

[1.7.1] Remark: This definition produces the same outcome as attempting to define a symmetrization map $S \mathfrak{g} \rightarrow U \mathfrak{g}$ by taking the identity map on \mathfrak{g} and extending it by the universal formula from above. However, doing this directly faces two possible difficulties. First, it is not clear a priori that there exists any $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ with $s\left(x^{n}\right)=s(x)^{n}$ for all $x \in \mathfrak{g}$, and s is the identity on \mathfrak{g}, because this might impose mutually conflicting conditions. Second, we might attempt to avoid potential conflicts by forgetting about the requirements $s\left(x^{n}\right)=s(x)^{n}$, instead merely choosing a basis $\left\{x_{i}\right\}$ for \mathfrak{g}, taking the corresponding basis for $S \mathfrak{g}$ consisting of elements

$$
x_{i_{1}} \ldots x_{i_{n}} \quad\left(\text { where } i_{1} \leq i_{2} \leq \ldots \leq i_{n}\right)
$$

and defining a linear map $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ on that basis by the (in fact, universal) formula

$$
s\left(x_{i_{1}} \ldots x_{i_{n}}\right)=\frac{1}{n!} \sum_{\pi \in S_{n}} x_{\pi\left(i_{1}\right)} \ldots x_{\pi\left(i_{n}\right)} \in U \mathfrak{g} \quad \quad\left(\text { where } i_{1} \leq i_{2} \leq \ldots \leq i_{n}\right)
$$

Among other flaws, it is not clear that this is independent of the basis for \mathfrak{g}, and it is surely a fool's errand to try to prove it by choosing two bases for \mathfrak{g} and comparing.
[1.8] Surjectivity of $S \mathfrak{g} \rightarrow U \mathfrak{g} \quad$ It is mildly surprising that the symmetrization map $s: S \mathfrak{g} \rightarrow U \mathfrak{g}$ is surjective, so is a linear isomorphism. The surjectivity is not merely a curiosity.

Let

$$
\begin{aligned}
& \bigotimes^{\leq n} \mathfrak{g}=\bigoplus_{0 \leq i \leq n} \bigotimes^{i} \mathfrak{g} \\
& \bigotimes^{<n} \mathfrak{g}=\bigoplus_{0 \leq i<n} \bigotimes^{i} \mathfrak{g}
\end{aligned}
$$

and $S^{\leq n} \mathfrak{g}, S^{\leq n} \mathfrak{g}, U^{\leq n} \mathfrak{g}, U^{<n} \mathfrak{g}$ the corresponding images. In all cases, the parameter n is the degree. We prove that $S^{\leq n} \mathfrak{g}$ surjects to $U^{\leq n} \mathfrak{g}$, by induction on degree.

At degree 0 (the scalars, by convention), the symmetrization map is the identity. At degree 1, the symmetrization map is the identity, being the identity on \mathfrak{g} by definition. Consider a monomial

$$
u=x_{1} \ldots x_{n} \in U^{\leq n} \mathfrak{g}
$$

Every permutation $\pi \in S_{n}$ is a product $\pi=\sigma_{1} \ldots \sigma_{\ell}$ of adjacent transpositions $\sigma_{i, i+1}$, and

$$
\begin{gathered}
\sigma_{i, i+1} u=x_{\sigma_{i, i+1}(1)} \ldots x_{\sigma_{i, i+1}(n)}=x_{1} \ldots x_{i-1} x_{i+1} x_{i} x_{i+2} x_{n} \\
=x_{1} \ldots x_{i-1}\left[x_{i}+1, x_{i}\right] x_{i+2} x_{n}+x_{1} \ldots x_{i-1} x_{i} x_{i+1} x_{i+2} x_{n} \in U^{<n} \mathfrak{g}+u
\end{gathered}
$$

That is, by induction on the number of adjacent transpositions needed to express a permutation,

$$
u-\pi u \in U^{<n} \mathfrak{g}
$$

In particular,

$$
u-\frac{1}{n!} \sum_{\pi} \pi u \in U^{<n} \mathfrak{g}
$$

and the sum is in the image of the symmetrization map, by the universal formula. This proves the surjectivity. Injectivity follows from the Poincaré-Birkhoff-Witt theorem. Thus, the symmetrization map is a linear isomorphism $S \mathfrak{g} \rightarrow U \mathfrak{g}$.

