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Irreducible complex representations of GL(2) and SL(2) over a finite field can be classified by methods useful
for p-adic reductive groups and real Lie groups. (See Piatetski-Shapiro’s inspiring A.M.S. Memoir on this
subject.) That is, we first see that most principal series representations are irreducible. We determine
the irreducible constituents of the irregular principal series. We prove the uniqueness of Whittaker models
by showing that the endomorphism ring of the space of Whittaker functions is commutative.

We resist using techniques special to finite groups and finite-dimensional representations, to practice more
sophisticated techniques. For example, we minimize invocation of dimension or cardinality, as well as the
theorem (recalled below) on unitarizability and complete reducibility. Still, special explicit facts do help
gauge the effectiveness of the methods here.

1. Background

The simplicity of the statements and/or proofs of the following for finite-dimensional complex representations
of finite groups is convenient in the short term, but gives a false impression about reasonable goals in other
important situations.

As usual, a representation of a group G on a complex vector space V is a group homomorphism

π : G→ AutC(V )

to complex-linear automorphisms of V . One style of notation is to say that the ordered pair (π, V ) is the
representation, and to write the action of an element g ∈ G on v ∈ V as

g × v −→ π(g)(v)

This notation is burdensome, and usually unnecessary. Instead, we will typically write

g × v −→ g · v

[1] When using the pi-less and parenthesis-less notation for a representation (π, V ), we may often avoid
naming the homomorphism π, and refer to the representation V , freeing up symbols for other uses. [2]

[1] The pi-less and parenthesis-less style of notation is compatible with the standard notation for modules over rings.

The decrease in visual noise is another strong recommendation.

[2] There is also a notational style in which the representation space for a homomorphism π is invariably denoted

Vπ. A more serious breach of notational propriety is a common abuse of notation, in which, for a representation

properly denoted (π, V ), instead of writing v ∈ V we write v ∈ π. That is, the symbol for the group homomorphism

is also used as a symbol for the vector space. Apart from the confustion this convention may cause, it has the virtue

of saving a symbol for the name of the vector space. Indeed, there is no need for confustion, since the notation v ∈ π
has no immediate alternative meaning.
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All representations will be on finite-dimensional complex vector spaces.

Recall that a representation V of a group G is irreducible if it has no proper subrepresentations, that is, no
subrepresentations other than the trivial representation {0} and the whole representation V itself.

[1.0.1] Theorem: (Unitarizability) A finite-dimensional complex representation V of a finite [3] group
G has a G-invariant [4] hermitian inner product 〈, 〉. ///

[1.0.2] Corollary: (Complete Reducibility) For a G-subrepresentation W of a finite-dimensional complex
representation V of a finite group G, there is another G-subrepresentation U such that

V = U ⊕W

With a G-invariant inner product on V this direct sum decomposition is orthogonal. ///

[1.0.3] Theorem: (Schur’s Lemma) For an irreducible V of G,

HomG(V, V ) = C · 1V

That is, the endomorphisms of V commuting with G are only the scalars. ///

[1.0.4] Corollary: (Of previous corollary and last theorem: Endomorphism algebra criterion for
irreducibility) A G-representation V is irreducible if and only if dimCHomG(V, V ) = 1. ///

[1.0.5] Theorem: Summing over isomorphism classes for the irreducibles of a finite group G,∑
V

(dimV )2 = order of G

(From the decomposition of the biregular representation. The form of this decomposition holds for compact
groups.) ///

The following helpful result for finite groups has no simple general counterpart:

[1.0.6] Theorem: The set of (isomorphism classes of) irreducible complex representations of a finite
group G is of the same cardinality as the collection of conjugacy classes in G. ///

Last, finite-dimensional representations V are reflexive in the usual sense that the second dual V ∗∗ is
naturally isomorphic to V . (The same conclusion holds for admissible smooth representations of p-adic and
Lie groups.)

2. Principal series representations of GL(2)

Let k be a finite field with q elements. Let G = GL(2, k) or G = SL(2, k). Let

P = {
(
∗ ∗
0 ∗

)
∈ G} N = {

(
1 ∗
0 1

)
∈ G} M = {

(
∗ 0
0 ∗

)
∈ G} wo =

(
0 −1
1 0

)
[3] This result and its immediate corollaries extend to compact topological groups, using Haar measure in place of

counting measure.

[4] The G-invariance has the natural meaning, that 〈gx, gy〉 = 〈x, y〉 for all g ∈ G, x, y ∈ V .
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The subgroup P is the standard parabolic subgroup, N its unipotent radical, and M the standard Levi
component of P . The subgroup P is the semidirect product of M and N , with M normalizing N . This wo
is the longest Weyl element.

The important tangible family of representations of G is the principal series of representations Iχ of G
attached to characters (meaning one-dimensional representations)

χ : M −→ C
×

For G = SL(2) we have M ≈ k× so these characters are characters χ1 of k× via

χ

(
a 0
0 a−1

)
= χ1(a)

For G = GL(2) we have M ≈ k× × k× and these characters are pairs (χ1, χ2) of characters of k× via

χ

(
a 0
0 d

)
= χ1(a)χ2(d)

In either case, extend χ to P by being identically 1 on N . Then the χth principal series representation of G
attached to χ is [5] to be the C-vectorspace of functions

Iχ = IndGP χ = { C-valued functions f on G : f(pg) = χ(p) f(g) for all p ∈ P , g ∈ G }

The action of G on IndGPχ is by the right regular representation

Rg(f)(x) = f(xg)

An important aspect of representations of G induced from subgroups is that they are constructed, so
exist. One would hope to construct many (if not all) irreducibles by inducing. As below, principal series
representations with χ(wmw−1) 6= χ(m) (for m ∈ M) are irreducible, and these irreducibles are about half
of all irreducibles of G.

Induced representations have a computationally convenient feature, namely, [6]

[2.0.1] Theorem: (Frobenius Reciprocity) For a representation σ of a subgroup H of G, and for a
representation V of G, there is a natural isomorphism

F : HomG(V, IndGH σ) ≈ HomH(ResGH V, σ)

[5] This is an induced representation, more generally defined as follows for finite groups. For a representation σ of a

subgroup K of a group H,

IndHK σ = { σ-valued functions f on H : f(kh) = χ(k) f(h) for all k ∈ K, h ∈ H }

This simplifies when σ is one-dimensional, as with Iχ, by identifying the representation space with C, yielding

complex-valued functions rather than representation-space-valued functions on G. The action of H on IndHKσ is by

the right regular representation

Rh(f)(x) = f(xh)

[6] In the long run, it is better to characterize the induced representation as an object making Frobenius Reciprocity

hold, rather than constructing a representation and then proving that it has the property. Frobenius Reciprocity is

an instance of an adjunction relation for adjoint functors.
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of C-vectorspaces, where ResGH is the forgetful functor which considers G-representations as mere H-
representations. For v ∈ V , the isomorphism F is

F (Φ)(v) = Φ(v)(1G)

and its inverse is (
F−1(ϕ)(v)

)
(g) = Rg (ϕ(v))

(Given the formulas, the proof is straightforward.) ///

For a one-dimensional irreducible σ : H → C× of a group H, a σ-isotypic representation V of H is a
(possibly large) representation V of H on which H acts entirely by σ, in the sense that [7]

h · v = σ(h) · v (for all v ∈ V , h ∈ H)

For a representation V of H, the σ-isotype V σ of V is the smallest subrepresentation i : V σ → V of V such
that any H-morphism

ϕ : W −→ V

of a σ-isotypic H-representation W uniquely factors through V σ, namely there is a unique ϕo : W → V σ

such that
ϕ = i ◦ ϕo : W −→ V σ → V

Existence of the isotype is proven by the construction:

V σ =
∑

ϕ:σ→V
Imϕ

Proof that the construction meets the defining characterization is an exercise.

The σ-co-isotype Vσ of a representation V of H is the smallest H-space quotient of V such that any
H-homomorphism ϕ : V →W with W σ-isotypic factors through Vσ. A construction is

Vσ = V/
⋂

ϕ:V→σ
kerϕ

Proof that the construction meets the defining characterization is an exercise.

[2.0.2] Remark: In situations where complete reducibility holds, co-isotypes are subrepresentations,
thus are isotypes. Nevertheless, it is useful to make clear this distinction, since co-isotypes are not isotypes
generally.

Consider a representation V of G as a representation of the subgroup N . Our convention is that the trivial
representation of N is a one-dimensional vector space on which N acts trivially. Changing the notation
slightly from the previous paragraph, the Jacquet module JNV of V is defined to be

Jacquet module JNV of V = co-isotype for trivial representation of N = VN

The Jacquet functor JN is
JN : V −→ VN

It is an exercise that, since M normalizes N , JNV = VN is a representation of M . Thus, the Jacquet functor
JN is a functor from G-representations to M -representations.

[7] For irreducibles of dimension greater than 1 the notion of an isotypic representation is more delicate, varying

more with the context.
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We will generally suppress the explicit notation ResGH for a forgetful restriction functor, as its application
will be clear from context.

Combining the defining property of the Jacquet module with Frobenius Reciprocity,

[2.0.3] Corollary: For representations V of G there is a C-linear isomorphism

HomG(V, Iχ) ≈ HomM (VN , χ)

(Proof is an exercise.)

[2.0.4] Corollary: An irreducible representation V of G with VN 6= {0} is isomorphic to a
subrepresentation of a principal series Iχ for some χ. On the other hand, for VN = {0}, (non-zero) V
is not isomorphic to a subrepresentation of any principal series.

Proof: The representation space VN of the group M is finite-dimensional, hence has an irreducible quotient
ϕ : VN → χ. (Exercise.) In particular, this map ϕ is not 0. Since M is abelian χ is one-dimensional.
(Exercise.) Thus, via the inverse L−1 of the isomorphism

L : HomG(V, Iχ) ≈ HomM (VN , χ)

we obtain a non-zero T−1ϕ ∈ HomG(V, Iχ). ///

A representation V is supercuspidal when VN = {0}. Thus, by this definition and by the above corollary,
the irreducibles of G either imbed into a principal series or are supercuspidal. (For larger groups such as
GL(3, k) and SL(3, k) there is a larger array of intermediate cases.)

The next issue is assessment of the irreducibility of the principal series Iχ, proving below that Iχ is irreducible
if χ is regular, meaning that χw 6= χ, where for m ∈M the character χw is

χw(m) = χ(wmw−1)

We continue to exploit the connection between imbeddability into principal series and non-vanishing of the
Jacquet functor. The first observation is that if V were a proper subrepresentation of a principal series
representation Iχ, then the quotient Iχ/V would be non-zero, and thus would have an irreducible quotient
π. We want to show that πN 6= 0, so that (from above) π is a subrepresentation of some principal series Iβ ,
giving a non-zero G-intertwining Iχ → Iβ .

[2.0.5] Proposition: For a G-representation V , the kernel of the Jacquet map JN : V → VN is generated
by all expressions

v − n · v

for v ∈ V and n ∈ N . Also,

ker JN = {v ∈ V :
∫
N

n · v dn = 0}

(where we have written an integral even though the group N is finite.)

Proof: Under any N -map r : V →W with N acting trivially on W ,

r(v − nv) = rv − r(nv) = rv − n(rv) = rv − rv = 0

so the elements v−nv are in the kernel of the quotient map to the Jacquet module. On the other hand, the
linear span of these elements is stable under N , so we may form the quotient of V by these elements. This
proves that the first description of the kernel is correct.
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To prove the second characterization, suppose that∫
N

n · v dn = 0

Then

v = v − 0 = v − 1
meas (N)

∫
N

n · v dn =
1

meas (N)

∫
N

(v − n · v) dn

a finite sum, expressing v as a linear combination of the desired form. On the other hand,∫
N

n · (v − no · v) dn =
∫
N

n · v dn−
∫
N

(nno · v dn =
∫
N

n · v dn−
∫
N

n · v dn = 0

by changing variables in the second integral. ///

[2.0.6] Theorem: The Jacquet functor JN : V → VN is an exact functor, meaning that for f : A → B
and g : B → C are maps such that

0→ A→ B → C → 0

is a short exact sequence of G-representations, the induced maps on Jacquet modules give an exact sequence

0→ AN → BN → CN → 0

[2.0.7] Remark: This theorem can be interpreted as asserting that the group homology of N is always
trivial (above degree 0), in the following sense. Even in a somewhat larger context, it is true that co-isotype
functors are right exact and isotype functors are left exact, for reasons noted in the proof below. Given a
projective resolution

. . .
d
−→F 2

d
−→F 1

d
−→F 0 → V → 0

of an N -representation V (by N -representations F i) the group homology of V the homology

Hn(V ) =
ker d on FnN
d(Fn+1

N )

of the sequence

. . .
d
−→F 2

N

d
−→F 1

N

d
−→F 0

N → 0

where, in particular, H0(V ) = VN . That is, the higher group homology modules are the left derived functors
of the (trivial representation) co-isotype functor. The long exact sequence attached to a short exact sequence

0→ A→ B → C → 0

is

. . .→ H2(A)→ H2(B)→ H2(C)
δ
−→H1(A)→ H1(B)→ H1(C)

δ
−→H0(A)→ H0(B)→ H0(C)→ 0

From this and H0(V ) = VN we have the universal result that

H1(B)→ H1(C)
δ
−→AN −→ BN → CN → 0

is exact. Similar remarks apply to isotypes and cohomology.

6



Paul Garrett: GL(2) and SL(2) over finite fields (April 19, 2009)

Proof: The right half-exactness is a general property of co-isotypes. [8] That is, the surjectivity of
g : BN → CN follows from that of q ◦ g : B → CN by a very general mechanism. Likewise, since the
composite g ◦ f : A→ C is 0, certainly

q ◦ g ◦ f : A→ CN

is 0, so the composite AN → BN → CN is 0.

The injectivity of AN → BN and the fact that the image of AN in BN is the whole kernel of BN → CN are
less general, using here the finiteness of the group N . Let a ∈ A such that q(fa) = 0 ∈ BN . Then∫

N

n · fa dn = 0

Since f commutes with the action of N , this gives

f

(∫
N

n · a dn
)

= 0

By the injectivity of f ∫
N

n · a dn = 0

so qa = 0 ∈ AN . This proves exactness at the left joint.

When g(qb) = 0, q(gb) = 0, so ∫
N

n · gb dn = 0

and then the N -homomorphism property of g, namely ng = gn, gives

g

(∫
N

n · b dn
)

= 0

Thus, the integral is in the kernel of g, so is in the image of f . Let a ∈ A be such that

fa =
∫
N

n · b dn

Without loss of generality, meas (N) = 1. Then∫
N

n′ · fa dn′ =
∫
N

∫
N

n′n · b dn dn′ =
∫
N

∫
N

n · b dn dn′

by replacing n by n′−1n. This gives ∫
N

n · (fa− b) dn = 0

Thus, q(fa− b) = 0 and f(qa) = qb. This finishes the proof of exactness at the middle joint. ///

As usual, the C-linear dual or contragredient representation V ∗ of a G-representation V is the dual C-
vectorspace with the action

(g · λ)(v) = λ(g−1 · v)

for λ ∈ V ∗, v ∈ V , and g ∈ G. Being more careful, since there are two different representations involved, let
(π, V ) be the given representation, and (π∗, V ∗) the dual. The definition of π∗ is

(π∗(g)(λ)) (v) = λ
(
π(g−1)(v)

)
[8] The fact that the right-exactness instantiates a general property of co-isotypes does not mean that the proof is

trivial. The left-exactness of isotypes V → V σ is easier to prove.
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The mapping v × λ→ λ(v) will also be denoted by

v × λ→ λ(v) = 〈v, λ〉

[2.0.8] Proposition: V is irreducible if and only if V ∗ is irreducible.

Proof: If V has a proper subrepresentation U , then the inclusion U → V yields a surjection V ∗ → U∗.
Since U is non-zero and is not all of V there is a functional which is identically 0 on U but not identically
0 on V . Thus, the latter surjection has a proper kernel, which is a proper subrepresentation of V ∗. On
the other hand, the same argument shows that for a proper subrepresentation Λ of V ∗ there is x ∈ V ∗∗

vanishing identically on Λ but not identically vanishing on V ∗. The finite-dimensionality implies that the
natural inclusion V ⊂ V ∗∗ is an isomorphism. ///

[2.0.9] Proposition: For a G-representation V , let J∗N : (VN )∗ → V ∗ be the natural dual M -map
µ→ JN ◦ µ obtained from JN : V → VN . Then

JN ◦ J∗N : (VN )∗ → (V ∗)N

is an isomorphism, where the latter JN is the map V ∗ → (V ∗)N .

Proof: In fact, µ→ µ ◦ JN injects (VN )∗ to the subspace (V ∗)N of N -fixed vectors in V ∗, since for n ∈ N
and v ∈ V we directly compute

(n · (µ ◦ JN ))(v) = (µ ◦ JN )(nv) = µ(JN (nv)) = µ(JN (v)) = (µ ◦ JN )(v)

The N -fixed vectors (V ∗)N inject to (V ∗)N , since for an N -fixed vector λ∫
N

nλ dn =
∫
N

λ dn = meas (N) · λ

(invoking the description above of the kernel of the quotient map to the Jacquet module). Thus, JN ◦ J∗N is
an injection.

At this point we use a special feature to prove that the map is an isomorphism. Since finite-dimensional
spaces are reflexive, apply the previous argument to V ∗ in place of V to obtain

((V ∗)N )∗ → (V ∗∗)N ≈ VN

Generally, when X → Y is injective and Y ∗ → X∗ is injective, both maps are isomorphisms, so we have the
desired result. ///

This allows us to prove a result complementary to the earlier assertion that irreducibles V are
subrepresentations of principal series if and only if VN 6= 0. First, another useful property of induced
representations:

[2.0.10] Proposition: For a finite-dimensional representation σ of a subgroup K of a finite group H,
the C-linear dual of the induced representation IndHKσ is(

IndHKσ
)∗
≈ IndHK (σ∗)

via the pairing

〈f, λ〉 =
∫
K\H

〈f(h), λ(h)〉σ dh
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where 〈, 〉σ is the pairing on σ × σ∗.

Proof: By definition of the dual representation, the function

h −→ 〈f(h), λ(h)〉σ

is left K-invariant, so gives a function on the quotient K\H. To complete the proof we must use special
features, the finiteness of H and the reflexiveness of σ. Consider functions f and λ supported on single
points in K\H, with values in dual bases of σ and σ∗. These form dual bases for the indicated induced
representations. ///

[2.0.11] Corollary: For V an irreducible quotient of a principal series, VN 6= 0 and V imbeds into a
principal series.

Proof: Consider a surjection

IndGPχ
ϕ
−→ V

By dualizing, and by the previous proposition, we have an injection

ϕ∗ : V ∗ →
(

IndGPχ
)∗
≈ IndGP (χ∗)

Thus, V ∗ imbeds into a principal series. From above, this implies that (V ∗)N is non-trivial. Thus, by the
isomorphism just above, (VN )∗ is non-trivial. Thus, VN must be non-trivial, so V imbeds to some principal
series. ///

Thus, failure of irreducibility of Iχ gives rise to G-maps

Iχ → Iβ

which are neither injections nor surjections. To study this, we have the following result, due to Mackey in
the finite case, and extended by Bruhat to p-adic and Lie groups. For w in the Weyl group W = {1, wo}
and for a character χ of M , let

χw(m) = χ(wmw−1)

The following result uses the finiteness of the group G.

[2.0.12] Theorem: The complex vectorspace HomG(Iχ, Iβ) of G-maps from one principal series to
another is

HomG(Iχ, Iβ) ≈
⊕
w∈W

HomM (χw, β)

Generally, for two subgroups A and B of a finite group H, and for one-dimensional representations α, β of
them, we have a complex-linear isomorphism

HomH(IndHAα, IndHBβ) ≈
⊕

w∈A\H/B

Homw−1Aw∩B(αw, β)

[2.0.13] Remark: The decomposition over the double coset A\H/B is an orbit decomposition or Mackey
decomposition or Mackey-Bruhat decomposition of the space of H-maps.

Proof: By Frobenius Reciprocity

HomH(IndHAα, IndHBβ) ≈ HomB(IndHAα, β)
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As a B-representation space, IndHAα breaks up into a sum over B-orbits on A\H, indexed by w ∈ A\H/B.
Via the natural bijection

A\AwB → (w−1Aw ∩B)\B by Awb→ (w−1Aw ∩B)b

functions on AwB with the property
f(awb) = α(a) f(wb)

for a ∈ A and b ∈ B become functions on B with

f(bob) = α(wbow−1) f(b)

for bo in w−1Aw ∩B. Thus,

HomH(IndHAα, IndHBβ) ≈
⊕

w∈A\H/B

HomB(IndBw−1Aw∩B α
w, β)

For two B-representations X and Y , there is a natural dualization isomorphism

HomB(X,Y ∗) ≈ HomB(X ⊗ Y,C) ≈ HomB(Y,X∗)

Thus, since finite-dimensional spaces are reflexive, using formulas from above for duals of induced
representations,

HomH(IndHAα, IndHBβ) ≈
⊕

w∈A\H/B

HomB(β−1, IndBw−1Aw∩B (αw)−1)

≈
⊕

w∈A\H/B

Homw−1Aw∩B(β−1, (αw)−1)

by Frobenius Reciprocity again. Dualizing once more,

HomH(IndHAα, IndHBβ) ≈
⊕

w∈A\H/B

Homw−1Aw∩B(αw, β)

as claimed.

For principal series representations,
P ∩ w−1Pw

always contains M , and we do not care what fragment of N it may or may not contain since both α and β
have been extended trivially to N . This gives the assertion for principal series. ///

[2.0.14] Corollary: For regular χ the only G-maps of the principal series Iχ to itself are scalars.

Proof: The property that χ be regular is exactly that χw 6= χ. Thus, from the theorem

HomG(Iχ, Iχ) ≈ HomM (χ, χ) ≈ C

since χ is one-dimensional. ///

The proof of the following corollary is contrary to the spirit of our discussion, as it invokes Complete
Reducibility, but it indicates facts which we will also verify by a more generally applicable method.

[2.0.15] Corollary: For regular χ the principal series Iχ is irreducible and G-isomorphic to Iχw .
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Proof: (Again, this is a bad proof in the sense that it uses Complete Reducibility.) For any subrepresentation
W of Iχ there is a subrepresentation U such that Iχ = U ⊕W . The projection to U by u ⊕ w → u is a
G-representation. But by the corollary above for regular χ this map must be a scalar on Iχ so either U
or W is 0, proving irreducibility. Then the non-zero intertwining from Iχ to Iχw cannot avoid being an
isomorphism. ///

We’ll give another proof of the irreducibility of regular Iχ shortly. But at the moment we cheat in another
way to count irreducibles of G = GL(2, k), comparing to the number we’ve constructed by regular principal
series.

Recall that the number of irreducible complex representations of a finite group is the same as the number of
conjugacy classes in the group.

In G = GL(2, k) with k finite with q elements, by elementary linear algebra (Jordan form) there are conjugacy
classes

central
(
x 0
0 x

)
q − 1 of them

non-semi-simple
(
x 1
0 x

)
q − 1 of them (x 6= 0)

non-central split semi-simple
(
x 0
0 y

)
(q − 1)(q − 2)/2 of them (x 6= y)

anisotropic semi-simple . . . (q2 − q)/2 of them
where the anisotropic elements are conjugacy classes consisting of matrices with eigenvalues lying properly
in the unique quadratic extension of k. Conjugation by the longest Weyl element accounts for the division
by 2 in the non-central split semi-simple case. The division by 2 in the non-split semisimple accounts for the
Galois action being given by a conjugation within the group.

These conjugacy classes match in an ad hoc fashion with specific representations. Match the central conjugacy
classes with the one-dimensional representations (composing determinant with characters k× → C×). Match
the non-semi-simple classes with the complements (cheating here) to the determinant representations inside
the irregular principal series, called special representations. Match the regular principal series with non-
central split semi-simple classes. Thus, numerically, there are bijections

central ←→ one-dimensional
non-semi-simple ←→ special

non-central split semi-simple ←→ regular principal series
anisotropic semi-simple ←→ supercuspidal (?!)

We assign the leftovers to supercuspidal irreducibles by default, since we have no immediate alternative for
counting them. From our present viewpoint supercuspidals are defined in a negative sense as being the things
for which we have no construction.

3. Whittaker functionals, Whittaker models

A more extensible approach to studying the irreducibility of regular principal series representations is by
distinguishing a suitable one-dimensional subspace of representations and tracking its behavior under G-
maps. In fact, it turns out to be better in general to do a slightly subtler thing and distinguish a one-
dimensional space of functionals, as follows. For a non-trivial character (one-dimensional representation)
ψ of N , identify its representation space with C. For a representation V of G an N -map V → ψ is a
Whittaker functional. A Whittaker model for V is a (not identically 0) element of HomG(V, IndGN , ψ).
When

dimCHomN (V, ψ) = 1
(as in the following result) one speaks of the uniqueness of Whittaker functionals, or uniqueness of Whittaker
models, since Frobenius reciprocity would then give

dimCHomN (V, ψ) = dimCHomG(V, IndGNψ)

11
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[3.0.1] Remark: Emphasis on Whittaker functionals arose in part from consideration of Fourier
expansions of modular forms.

[3.0.2] Remark: For GL(2) the choice of non-trivial ψ does not matter since M acts transitively on
non-trivial ψ:

ψ(
(
a 0
0 1

)(
1 x
0 1

)(
a−1 0
0 1

)
) = ψ

(
1 ax
0 1

)
More precisely:

[3.0.3] Proposition: For GL(2) (not SL(2)), with ψ and ψ′ two non-trivial characters on N , there is a
unique m ∈M/Z such that

ψ′(n) = ψ(mnm−1) (for all n ∈ N )

Therefore, there is a G-isomorphism
T : IndGNψ ≈ IndGNψ

′

given by
Tf(g) = f(mg)

Proof: The first assertion amounts to the fact that every ψ : Fq → C× is of the form

ψ(x) = ψo(trFq/Fp
x)

where Fp is the prime field under Fq and tr is the Galois trace. [9] The formula written gives a G-map,
because left multiplication by m commutes with right multiplication by g. The map is arranged to convert
left equivariance by ψ into left equivariance by ψ′. ///

[3.0.4] Remark: For SL(2) the choice of ψ does matter, since the number of orbits of characters on N
under the M -action in that case is the cardinality of k×/(k×)2, which is 2.

[3.0.5] Proposition: For all χ on M ,

dimCHomN (IndGP χ, ψ) = 1

Proof: By Frobenius Reciprocity and the (Mackey) orbit decomposition, as earlier,

HomN (IndGP χ, ψ) ≈
⊕

w∈P\G/N

Homw−1Nw∩Nχ
w, ψ

For w = 1, since χ is trivial on N , the space of homomorphisms from χw to ψ is 0. Thus, there is only
one non-zero summand, corresponding to the longest Weyl element w = wo, and this summand gives a
one-dimensional space of N -maps. ///

Given the uniqueness, an explicit formula for the Whittaker functional becomes all the more interesting, to
allow normalization and comparison.

[9] This classification of characters on Fq is substantially a corollary of the larger fact that the trace pairing on a finite

separable extension is non-degenerate: that is, for a finite separable field extension K/k, the symmetric k-bilinear

k-valued form 〈, 〉 on K ×K defined by 〈x, y〉 = trK/k(xy) is non-degenerate, in the sense that for every x ∈ K there

is y ∈ K such that 〈x, y〉 6= 0.

12
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[3.0.6] Proposition: Let w be the longest Weyl element. For f ∈ IndGPχ the formula

Λf =
∫
N

f(wn)ψ(n) dn ∈ C

defines a non-zero element Λ of HomN (IndGP χ, ψ).

Proof: It is formal, by changing variables in the integral, that the indicated expression is an N -map to ψ.
To see that it is not identically 0 it suffices to see that it is non-zero on a well-chosen f . In particular, exploit
the finiteness and take f to be 1 at w and 0 otherwise. Then

Λf =
∫
N

f(wν)ψ(ν) dν = meas {1} 6= 0

as desired. ///

[3.0.7] Proposition: For finite-dimensional representations V of N

HomN (V, ψ) = 0 ⇐⇒ HomN (V ∗, ψ∗) = 0

Proof: For a non-zero Whittaker functional Λ ∈ HomN (V, ψ), pick x in the second dual V ∗∗ such that
x(Λ) 6= 0. Then(∫

N

nxψ(n) dn
)

(Λ) =
∫
N

(nx)(Λ)ψ(n) dn =
∫
N

x(n−1Λ)ψ(n) dn =
∫
N

x(Λ) dn = x(Λ) ·meas (N)

which shows that
∫
N
nxψ(n) dn is not 0. For ν ∈ N∫

N

nν · xψ(n) dn = ψ∗(ν)
∫
N

n · xψ(n) dn

by replacing n by nν−1. ///

We can use the Whittaker functionals Λ to redo our study of intertwinings T : Iχ → Iχw among principal
series.

[3.0.8] Proposition: A finite-dimensional representation V of G with

HomN (V, ψ) = C

and with
HomN (V ∗, ψ∗) = C

is irreducible if and only if the Whittaker functional in HomN (V, ψ) generates the dual V ∗ and the Whittaker
functional in HomN (I∗χ, ψ

∗) generates the second dual V ∗∗ ≈ V .

Proof: On one hand, if V is irreducible, then (from above) the dual is irreducible, so certainly is generated
(under G) by the (non-zero) Whittaker functional. The same applies to the second dual. This is the easy
part of the argument. On the other hand, suppose that the Whittaker functionals generate (under G) the
dual and second dual. A proper subrepresentation Λ of V ∗ cannot contain the Whittaker functional, since
the Whittaker functional generates the whole representation. Thus, the image of the Whittaker functional
in the quotient Q = V ∗/Λ is not 0. From just above, since Q contains a non-zero Whittaker functional so
must Q∗ (for the character ψ∗). But then the natural inclusion

Q∗ ⊂ V ∗∗

13
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shows that the Whittaker vector generates a proper subrepresentation of V ∗∗, contradiction. ///

[3.0.9] Proposition: The dual I∗χ of a principal series Iχ fails to be generated by a Whittaker functional
Λ if and only if there is a non-zero intertwining T : I∗χ → I∗χw in which TΛ = 0, for some w in the Weyl
group W .

Proof: If Λ generates a proper subrepresentation V of I∗χ, then there is an irreducible non-zero quotient
Q of I∗χ/V . From above, Q again imbeds into some principal series Iω. This yields a non-zero intertwining
I∗χ → Iω in which the Whittaker functional is mapped to 0. ///

Recall that the only principal series representation admitting a non-zero intertwining from Iχ is Iχw , for w
in the Weyl group. For a character ω : k× → C×, define a Gauss sum

g(ω, ψ) =
∫
k×

ω(x)ψ
(

1 x
0 1

)
dx

where the measure gives each element of k× measure 1. Let

Λχf =
∫
N

f(won)ψ(n) dn

be the normalized Whittaker functional in I∗χ.

[3.0.10] Proposition: Let w = wo be the longest Weyl element. Under the intertwining T : Iχ → Iχw

given by

Tv(g) =
∫
N

v(wng) dn

the normalized Whittaker functional Λχw in (Iχw )∗ is mapped by the adjoint T ∗ to

T ∗(Λχw ) = g(χ, ψ) · Λχ ∈ (Iχ)∗

Proof: Using the uniqueness of the Whittaker functionals on principal series, it suffices to compute the
values of the images on a well-chosen function f .

ΛwTf =
∫
N

Tf(wn)ψ(n) dn =
∫
N

∫
N

f(wνwn)ψ(n) dν dn

To compare this to

Λf =
∫
N

f(wn)ψ(n) dn

take f to be
f(nmw) = χ(m)

for n ∈ N and m ∈ M , and 0 otherwise. That is, f is supported on Pw and is 1 at w. Then wn ∈ Pw if
and only if n = 1. Thus,

Λf = ψ(1) ·meas {1} = meas {1}

On the other hand, the condition wνwn ∈ Pw is met in a more complicated manner. Indeed, letting

ν =
(

1 x
0 1

)
we have the standard identity for x 6= 0

wνw =
(
−1 0
x −1

)
=
(

1 −1/x
0 1

)(
1/x 0
0 x

)(
0 −1
1 0

)(
1 −1/x
0 1

)
14
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Note that this identity works in both GL(2) and in SL(2). Thus, wνwn ∈ Pw if and only if

n =
(

1 1/x
0 1

)
and in that case

wνwn =
(

1 −1/x
0 1

)(
1/x 0
0 x

)(
0 −1
1 0

)
Thus, for G = GL(2)

ΛχwTf = meas {·}
∫
k×

χ2

χ1
(x)ψ∗

(
1 1/x
0 1

)
dx

where meas {·} is the measure of a singleton. Replacing x by 1/x, since meas {·} = meas {1}, we conclude
that with the intertwining

Tv(g) =
∫
N

v(wng) dn

the normalized Whittaker functional Λχw is mapped to g(χ, ψ) times the Whittaker functional Λχ under the
adjoint T ∗. For G = SL(2) the conclusion is nearly identical, with χ2 replaced by χ−1

1 , in effect. ///

[3.0.11] Corollary: For χ regular the corresponding Gauss sum is non-zero, hence the Whittaker
functional is never annihilated by a non-zero intertwining, hence the Whittaker functional generates I∗χ.
Likewise the corresponding Whittaker functional generates I∗∗χ . Thus, Iχ is irreducible.

Proof: We recall a computation that proves the Gauss sum is non-zero for χ1 6= χ2. Let the measure on k×

give singleton sets measure 1.

|g(χ, ψ)|2 =
∫
k×

∫
k×

χ1

χ2
(x/y)ψ

(
1 x− y
0 1

)
dx dy =

∫
k×

∫
k×

χ1

χ2
(x)ψ

(
1 y(x− 1)
0 1

)
dx dy

replacing x by xy. For fixed x 6= 1, the integral over y would be over k× if it were not missing the y = 0
term, so it is ∫

k

ψ

(
1 y(x− 1)
0 1

)
dy − 1 = −1

For x = 1, the integral is q − 1, where |k| = q. Thus,

|g(χ, ψ)|2 = q −
∫
k×

χ1

χ2
(x) dx = q − 0

for χ1 6= χ2. Thus, the Gauss sum is non-zero. Thus, the adjoint T ∗ of the intertwining T : Iχ → Iχw just
above does not annihilate the Whittaker functional. Since χ is regular, χw is regular, and every non-zero
intertwining of Iχ to itself is a non-zero multiple of the identity, so again the Whittaker functional is not
annihilated by the adjoint T ∗.

Thus, the Whittaker functional generates the dual I∗χ. Similarly, the corresponding Whittaker functional
generates the second dual, and from above we conclude that Iχ is irreducible. ///

[3.0.12] Remark: The previous discussion is a simple example illustrating the spirit of Casselman’s 1980
use of spherical vectors to examine irreducibility of unramified principal series of p-adic reductive groups.

[3.0.13] Remark: For irregular χ we could invoke complete reducibility and the computation (above)
that for irregular χ

dimC HomG(Iχ, Iχ) = cardP\G/P = 2

to see that Iχ is a direct sum of two irreducibles. Further, we can immediately identify the one-dimensional
subrepresentation χ1 ◦ det of Iχ for irregular χ = (χ1, χ1) for GL(2). It is immediate that χ1 ◦ det has no
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Whittaker functional, so we can anticipate that (still using complete reducibility) the other irreducible in
irregular Iχ has a Whittaker functional. This other irreducible is a special representation.

4. Uniqueness of Whittaker functionals/models

So far we have no tangible description for the supercuspidal irreducibles V , by definition those for which
VN = 0. In particular, we cannot address uniqueness of Whittaker functionals for supercuspidals by explicit
computation since we have no tangible models for these irreducibles, but their Whittaker models exist simply
because the Jacquet modules are trivial (see just below). We can note that, for a representation V of G, by
Frobenius Reciprocity

HomN (V, ψ) ≈ HomG(V, IndGN ψ)

That is, Whittaker functionals correspond to G-intertwinings to the Whittaker space IndGN ψ.

[4.0.1] Proposition: A supercuspidal irreducible V of GL(2) has a Whittaker model.

Proof: As a representation of N (by restriction), V is a sum of irreducibles. Since V is supercuspidal
its Jacquet module is trivial and the trivial representation of N does not occur. Thus, a non-trivial
representation ψ of N does occur. Since N is abelian, this irreducible is one-dimensional. Then, since
V is stable under that action of M , and (as observed earlier) M is transitive on non-trivial characters on N ,
every non-trivial ψ of N occurs in V . ///

[4.0.2] Remark: The analogous result about Whittaker models for supercuspidal representations is more
complicated for SL(2), as we will see later.

[4.0.3] Theorem: Let ψ be a non-trivial character on N . The endomorphism algebra

HomG(IndGN ψ, IndGN ψ)

is commutative. Thus, we have Uniqueness of Whittaker functionals : For an irreducible representation V of
G

dimCHomN (V, ψ) ≤ 1

Equivalently, we have Uniqueness of Whittaker models

dimCHomG(V, IndGN ψ) ≤ 1

[4.0.4] Remark: For GL(2), the only case where the dimension of intertwinings is 0 rather than 1 is for
the one-dimensional representations, that is, for composition of determinant with characters of k×.

Proof: First, we see how commutativity of the endomorphism ring implies that multiplicities are ≤ 1. Use
complete reducibility, so

IndGN ψ ≈
⊕
V

mV · V

where V runs through isomorphism classes of irreducibles and mV is the multiplicity of V . Then

EndG(IndGN ψ) ≈
∏
V

MmV
(C)

where Mn(C) is the ring of n-by-n matrices with complex entries. Thus, this endomorphism ring is
commutative if and only if all the multiplicities are 1.
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To study the endomorphism ring, use the Mackey-Bruhat orbit decomposition of the space of intertwinings
from one induced representation to another in the case that the two induced representations are the same.
Thus, given

T ∈ HomG(IndGA α, IndGB β)

let KT be a function on G×G such that

Tf(g) =
∫
G

KT (g, h) f(h) dh

The fact that T is a G-map gives, for all x ∈ G,∫
G

KT (gx, h) f(h) dh = Tf(gx) = (RxTf)(g)

= (TRxf)(g) =
∫
G

KT (g, h) f(hx) dh =
∫
G

KT (g, hx−1) f(h) dh

by replacing h by hx−1, where Rx is the right regular representation. Thus, the kernel KT is just a function
of a single variable, and the intertwining T can be rewritten as

Tf(g) =
∫
G

KT (gh−1) f(h) dh

Since T maps to IndGBβ, and maps from IndGAα, it must be that

KT (bxa) = β(b) ·KT (x) · α(a)

for all b ∈ B, g ∈ G, a ∈ A. A direct computation shows that

KS◦T = KS ∗KT

for S, T ∈ HomG(IndGA α, IndGB β) where the convolution is as usual

(f ∗ ϕ)(g) =
∫
G

f(gx−1)ϕ(x) dx

Thus, to prove commutativity of the endomorphism ring it is necessary and sufficient to prove commutativity
of the convolution ring R of complex-valued functions u on G with the equivariance properties

u(bxa) = β(b) · u(x) · α(a)

for a ∈ A, b ∈ B, x ∈ G.

Note that, for A = B and α = β, the convolution of two such functions falls back into the same class.

Following Gelfand-Graev and others, to prove commutativity of such a convolution ring, it suffices to find
an involutive anti-automorphism σ of G such that for u on G with the property

u(bxa) = ψ(b) · u(x) · ψ(a)

we have
u(gσ) = u(g) (for all g ∈ G)

To verify that this criterion for commutativity really works, use notation

uσ(g) = u(gσ)

17
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and let u, v be two such functions. Then

(uσ ∗ vσ)(x) =
∫
G

u((xg−1)σ) v(gσ) dg =
∫
G

u(g xσ) v(g−1) dg

by replacing g by (gσ)−1. Replacing g by g(xσ)−1 turns this into∫
G

u(g) v(xσg−1) dg = (v ∗ u)σ(x)

That is,
(u ∗ v)σ = vσ ∗ uσ

Therefore, if u = uσ and v = vσ then

u ∗ v = (u ∗ v)σ = vσ ∗ uσ = v ∗ u

and the convolution ring is commutative.

To apply the Gelfand-Graev involution idea, we need to classify functions u such that, as above,

u(bxa) = ψ(b) · u(x) · ψ(a)

since these are the ones that could occur as Mackey-Bruhat kernels. We use the Bruhat decomposition,
namely that

G = NM ∪NMwN (disjoint union, with w =
(

0 1
1 0

)
)

where M is diagonal matrices and w is a slightly different normalization of longest Weyl element. The group
M normalizes N , but does not preserve ψ, since for m ∈M

ψ(mnm−1) 6= ψ(n)

for all n ∈ N unless m is actually in the center Z of G, the scalar matrices. The two-sided equivariance
condition entails

ψ(n)u(m) = u(nm) = u(m ·m−1nm) = u(m)ψ(m−1nm)

This does not hold for all n ∈ N unless m is central. Thus, the left and right N,ψ-equivariant functions
supported on NM are those whose support is NZ. For the equivariant functions supported on NMwN , there
is no such issue, sinceN∩wNw−1 = {1}. Thus, theN×N orbits which can support such equivariant functions
are those with representatives z ∈ Z and mw with m ∈ M . All such functions are linear combinations of
functions

f(nz) = ψ(n) (for n ∈ N , 0 otherwise)

for fixed z ∈ Z and, for fixed m ∈M ,

f(nmwν) = ψ(n)ψ(ν) (for n, ν ∈ N , 0 otherwise)

In this situation, with w the long Weyl element normalized as above, take involutive anti-automorphism

gσ = wg>w−1

This is the identity on the center Z, on N , and on elements mw with m ∈M . Thus, it is the identity on all
such equivariant functions. Thus, this convolution ring meets the Gelfand-Graev criterion for commutativity.

///
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[4.0.5] Remark: The kernels KT introduced in the proof have analogues in more complicated settings,
and would more generally be called Mackey-Bruhat distributions. That is, the relevant kernel would not in
general be given by a function, but by a Schwartz distribution.

[4.0.6] Remark: Without complete reducibility, the principle that commutativity of an endomorphism
ring implies that multiplicities are all ≤ 1 acquires a more complicated form. One version is the Gelfand-
Kazhdan criterion. The same approach, namely Mackey-Bruhat and Gelfand-Graev, yield further facts
whose analogues are more complicated over non-finite fields.

[4.0.7] Remark: For irregular χ, we have already seen that Iχ decomposes as the direct sum of two
non-isomorphic irreducibles. Thus, for given ψ, one of these subrepresentations has a Whittaker model and
one does not. For GL(2), the irregular principal series always have one-dimensional subrepresentation, which
fails to have a Whittaker model. For SL(2), it is less clear.

5. Summary for GL(2)

There are (q − 1)(q − 2)/2 isomorphism classes of irreducible principal series (with Iχ ≈ Iχw ), namely the
regular ones (i.e., with χw 6= χ). These all have Whittaker models. Their Jacquet modules are 2-dimensional.
They are of dimension |P\G| = q + 1.

There are q−1 one-dimensional representations, obtained by composing characters with determinant. Their
Jacquet modules are 1-dimensional, not surprisingly. These do not have Whittaker models.

There are q−1 special representations, subrepresentations of irregular principal series. Their Jacquet modules
are 1-dimensional. They have Whittaker models (since every unramified principal series has a Whittaker
functional and one-dimensional representations do not admit such.) Special representations are of dimension
q.

There are q(q − 1)/2 supercuspidal irreducibles, by definition having 0-dimensional Jacquet module, all
having a Whittaker model. Each has dimension q − 1.

[5.0.1] Remark: Since M is transitive on non-trivial characters on N , there is (up to G-isomorphism)
only one Whittaker space. This is not true for SL(2).

[5.0.2] Remark: One numerical check for the above categorization is the fact (from decomposition of
the biregular representation) that the sum of the squares of the dimensions of the irreducibles is the order
of the group. Thus, we should have (in the same order that we reviewed them)

(q2 − 1)(q2 − q) = (cardinality of GL(2) over field with q elements)

= (irreducible principal series) + (one-dimensional) + (special) + (supercuspidal)

=
(q − 1)(q − 2)

2
· (q + 1)2 + (q − 1) · 12 + (q − 1) · q2 +

q(q − 1)
2

· (q − 1)2

Remove a factor of q − 1 from both sides, leaving a supposed equality

(q2 − 1)q =
(q − 2)

2
· (q + 1)2 + 1 + q2 +

q(q − 1)
2

· (q − 1)

Anticipating a factor of q throughout, combine the first two summands on the right-hand side to obtain
(multiplying everything through by 2, as well)

2(q2 − 1)q =
(
q3 − 3q

)
+ 2q2 + q(q − 1)2

which allows removal of the common factor of q, to have the supposed equality

2(q2 − 1) = q2 − 3 + 2q + (q − 1)2
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The degree is low enough to multiply out, giving an alleged equality

2q2 − 2 = q2 − 3 + 2q + q2 − 2q + 1

which is easy to verify. The reduction steps were reversible, so this counting check succeeds.

[5.0.3] Remark: Another numerical check would be by counting the irreducibles with Whittaker models,
versus the dimension of the space of endomorphisms of the Whittaker space, since the latter is commutative
(above). The number of irreducibles with Whittaker models is

(irreducible principal series) + (special) + (supercuspidal)

=
(q − 1)(q − 2)

2
+ (q − 1) +

q(q − 1)
2

= (q − 1)
[
q − 2

2
+ 1 +

q

2

]
= q(q − 1)

On the other hand, the dimension of the space of endomorphisms of the Whittaker space (from the proof of
commutativity of the endomorphism ring, above) is the cardinality

(number of left-and-right N ×N orbits supporting left-and-right ψ-equivariant functions)

= card(N\NZ/N tN\PwoP/N) = card(Z) + card(M) = (q − 1) + (q − 1)2 = q(q − 1)

where Z is the center of GL(2). They match.

6. Conjugacy classes in SL(2), odd q

Before pairing up conjugacy classes and irreducibles for SL(2) over a finite field with q elements, we must
take greater pains to identify conjugacy classes. For SL(2) the parity of q matters, while it did not arise for
GL(2). In G = SL(2, k) with k finite with q elements, the collection of conjugacy classes is more complicated
than the pure linear algebra of GL(2, k). The non-semisimple elements’ conjugacy classes are most disturbed
by the change from GL(2) to SL(2). Let $ be a non-square in k×, and take q odd.

central
(
x 0
0 x

)
2 of them (x = ±1)

non-semisimple
(
x 1
0 x

)
2 of them (x = ±1)

non-semisimple
(
x $
0 x

)
2 of them (x = ±1)

non-central split semi-simple
(
x 0
0 x−1

)
(q − 3)/2 of them (x 6= ±1)

non-split semi-simple . . . (q − 1)/2 of them

where the anisotropic elements are conjugacy classes of matrices with eigenvalues lying properly in the
(unique) quadratic extension of k, and with Galois norm 1. The division by 2 in the latter is because the
Galois action is given by a conjugation in the group. In the case of split semi-simple elements the division
by 2 reflects the fact that conjugation interchanges a and a−1. Verification that these are exactly the SL(2)
conjugacy classes is at least mildly interesting, and we carry out this exercise to have specifics used later.

Sketch the discussion for odd q. First, observe that if g ∈ G has elements in its centralizer C(g) in GL(2)
having determinants running through all of k×, then

{xgx−1 : x ∈ SL(2)} = SL(2) ∩ {xgx−1 : x ∈ GL(2)}

That is, with the hypothesis on the centralizer, the intersection with SL(2) of a GL(2) conjugacy class does

not break into proper subsets under SL(2) conjugation. For g central or of the form g =
(
a 0
0 a−1

)
the

20



Paul Garrett: GL(2) and SL(2) over finite fields (April 19, 2009)

element
(
d 0
0 1

)
in the centralizer has determinant d ∈ k×, meeting this hypothesis. Now consider non-split

semi-simple elements g. It is elementary that such g lies in an imbedded copy of the norm-one elements K1

in the unique quadratic extension K of k. The group K× imbeds compatibly in GL(2), and determinant
on the imbedded copy is the Galois norm. Since norm is surjective on finite fields, non-split semi-simple
conjugacy classes also meet the hypothesis above, so there is no change from GL(2) to SL(2).

The non-semi-simple classes are subtler. First, non-semisimple elements umust have rational eigenvalues, and
the non-semi-simplicity then implies that such u stabilizes a unique line λ in k2. By the transitivity of SL(2)

on lines, all non-semi-simple conjugacy classes in SL(2) have representatives of the form u =
(
a ∗
0 a−1

)
with non-zero upper with a = ±1, stabilizing the obvious line λ. If another such matrix v =

(
b ∗
0 b−1

)
with non-zero upper right entry is conjugate to u, say x−1vx = u, then vx = xu and

vx · λ = xu · λ

from which
vx · λ = x · λ

since u fixes λ. This implies that v fixes xλ, so xλ = λ (since v fixes exactly one line), and necessarily x is
of the form

x =
(
b ∗
0 b−1

)
for some b ∈ k×. By this point, the remaining computations are not hard. Specifically, conjugation by

upper-triangular matrices in SL(2) acting on matrices
(
a ∗
0 a−1

)
adjusts the upper-right entry only by

squares in k×. Since k× is cyclic, there are exactly two orbits. Thus, as asserted above, the non-semi-simple
conjugacy classes have representatives(

1 1
0 1

) (
−1 1

0 −1

) (
1 $
0 1

) (
−1 $

0 −1

)
where $ is a non-square in k×.

7. Irreducibles of SL(2), q odd

Now we classify irreducibles of G = SL(2) over a finite field with an odd number of elements q. Unlike the
case of GL(2), for SL(2) there are two inequivalent families of Whittaker models, as there are two characters
ψ and ψ′ on N , not related to each other by conjugation by M , unlike GL(2). Fix two such SL(2)-unrelated
ψ and ψ′, and refer to the ψ-Whittaker and ψ′-Whittaker models or functionals.

First, parallel to the discussion of principal series for GL(2), the principal series

Iχ = IndGP χ

for the q − 3 regular χ’s on M are irreducible, and there is an isomorphism

Iχ → Iχ−1

so there are (q − 3)/2 irreducibles occurring as principal series. There are exactly two irregular characters
here, the trivial character and the (unique) other character that assumes values ±1. Let the corresponding
principal series be denoted I1 and I−1. Just as for GL(2)

I1 = C⊕ special
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where C is the trivial representation. The same techniques show that

I−1 = direct sum of two irreducibles

but neither of the two irreducibles is one-dimensional. Both of these have one-dimensional Jacquet modules,
since they both imbed into a principal series.

[7.0.1] Remark: At least for q ≥ 3 one can show that the derived group of G = SL(2,Fq) is G itself, so
there can be no non-trivial one-dimensional representations of G.

It remains true for SL(2) that for either Whittaker model, ψ or ψ′, there is a unique Whittaker functional
on a (regular or not) principal series Iχ. The trivial representation has no Whittaker model of either type, so
the special representation has a Whittaker model of both types. Irreducible principal series have Whittaker
models of both types.

The nature of the Whittaker models (or lack thereof) is not clear yet for the irreducibles into which the
irregular I−1 decomposes.

[7.0.2] Proposition: A supercuspidal irreducible for SL(2) has either a ψ-Whittaker model or a ψ′-
Whittaker model.

Proof: A supercuspidal, which by definition has a trivial Jacquet module, must have a non-trivial ψ-isotype
for N for some ψ. As observed in the discussion of the Whittaker spaces for GL(2), conjugation by M gives
G-isomorphic Whittaker spaces. Thus, if ψ and ψ′ are representatives for the two M -orbits, a supercuspidal
must have one or the other Whittaker model. ///

[7.0.3] Proposition: The number of irreducibles of SL(2) with ψ-Whittaker models is q + 1. The
number of irreducibles with ψ′-Whittaker models is q + 1. The number irreducibles which have both types
of Whittaker models is q − 1.

Proof: The argument used in the GL(2)-case, following Mackey-Bruhat and Gelfand-Graev, succeeds here.
The support of a left and right ψ-equivariant distribution on SL(2) must have support on

NZ tNMwoN

and (keeping in mind that q is odd) the dimension of the space of all such is the cardinality

card N\(NZ tNMwoN)/N = 2 + (q − 1) = q + 1

The same conclusion works for any non-trivial character. If, instead, we require left ψ′-equivariance and
right ψ-equivariance with M -inequivalent characters, we claim that only the larger Bruhat cell can support
appropriate distributions, so the dimension is q − 1. Indeed, this is exactly the assumption that ψ and ψ′

are not conjugated to each other by any element of the Levi component M in SL(2). ///

Thus, the two non-isomorphic types of Whittaker models have exactly q− 1 isomorphism classes in common
out of q + 1 in each. The (q − 3)/2 irreducible principal series account for some of these common ones. The
special representation (in I1) is another that lies in both, since the trivial representation lies in neither, and
I1 has a unique Whittaker vector (for either character).

[7.0.4] Lemma: One of the two irreducible summands of I−1 lies in one Whittaker space and the other
lies in the other Whittaker space.

Proof: When an irreducible V has non-trivial

ψ :
(

1 x
0 1

)
→ ψo(x)
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isotype for N , under the action of M it also has a non-trivial

ψa :
(
a 0
0 a−1

)(
1 x
0 1

)(
a 0
0 a−1

)
→ ψo(a2x)

isotype for N . There are (q− 1)/2 characters in such an M -orbit. Thus, if ψ and ψ′ are M -inequivalent and
V has both ψ-Whittaker and ψ′-Whittaker models, V has a non-trivial isotype for all of the q− 1 non-trivial
characters on N . As remarked above, the two summands in I−1 both have one-dimensional Jacquet modules
(trivial N -isotypes), and are not one-dimensional. Thus, the dimension of each summand in I−1 is at least

1 + (q − 1)/2 = (q + 1)/2

The dimension of the whole I−1 is q + 1, so it must be that each has dimension exactly (q + 1)/. Thus,
indeed, one has one type of Whittaker model, and the other has the other type. ///

So far, each Whittaker space has the unique special representation (from I1), (q− 3)/2 irreducible principal
series, and 1 from among the two summands of I−1. Each supercuspidal irreducible has at least one Whittaker
model from among the two. Only the trivial (one-dimensional) representation has no Whittaker model of
either type.

The previous proposition shows that there are 4 irreducibles with exactly one Whittaker model, and that two
of these have a ψ-model and two have a ψ′-model. The two irreducible summands of I−1 account for two of
these. The remaining irreducibles are (by definition) supercuspidal. Thus, there are exactly 2 supercuspidal
irreducibles of SL(2) having a single type of Whittaker model.

We can do a numerical check. Again, the number of conjugacy classes in SL(2) over a field with an odd
number q of elements is

(central)+(non-semi-simple)+(new non-semi-simple)+(non-central split semisimple)+(non-split semisimple)

= 2 + 2 + 2 +
(q − 3)

2
+

(q − 1)
2

= q + 4

Thus, excluding the trivial representation, there are q + 3 irreducibles with at least one type of Whittaker
model. There are q− 1 irreducibles in common between the two types of Whittaker models, and each model
has dimension q + 1, so the total indeed is

2 · (q + 1)− (q − 1) = q + 3

[7.0.5] Remark: Remarks just above also show that the supercuspidal irreducibles with both types
of Whittaker models are of dimension q − 1 (the number of all non-trivial characters of N), while the 2
supercuspidal irreducibles with only one type of model are of dimension (q − 1)/2, distinguishing these two
smaller supercuspidals among supercuspidals.
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