## A stunt using traces

> Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Specific choices of physical objects on which to do harmonic analysis can be enlightening. With $\Delta u=-u^{\prime \prime}$, consider a very simple Sturm-Liouville problem:

$$
\Delta u=f \text { on }[a, b] \text { with } u(a)=u(b)=0
$$

A Green's function ${ }^{[1]}$ for this problem is ${ }^{[2]}$

$$
G(x, y)= \begin{cases}(y-a)(b-x) /(b-a) & (\text { for } a \leq y<x \leq b) \\ (x-a)(b-y) /(b-a) & (\text { for } a \leq x<y \leq b)\end{cases}
$$

The associated eigenvalue problem,

$$
(\Delta-\lambda) u=0
$$

with the same boundary conditions, specialized to $a=0$ and $b=1$, is easily solved directly, yielding eigenvectors

$$
u_{n}(x)=\sin (\pi n x) \quad(\text { for } n \geq 1)
$$

The trace of the inverse mapping

$$
T: f \longrightarrow \int_{0}^{1} G(x, y) f(y) d y
$$

can be evaluated two ways: sum the inverses of the eigenvalues for the differential operator, and as the integral along the diagonal, ${ }^{[3]} \int_{a}^{b} G(x, x) d x$ of the kernel

$$
G(x, y)= \begin{cases}y(x-1) & (\text { for } 0 \leq y<x \leq 1) \\ x(y-1) & (\text { for } 0 \leq x<y \leq 1)\end{cases}
$$

Thus,

$$
\sum_{n \geq 1} \frac{1}{(\pi n)^{2}}=\int_{0}^{1} x(1-x) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

One can also evaluate $\zeta(2 k)$ by computing the iterated kernel and taking its trace. For $\zeta(4)$ this is still not too unpleasant.

Naturally, one should have some care about taking traces of operators.

[^0]
[^0]:    [1] We are not appealing to any apocryphal existence argument for Green's functions in general.
    [2] To be annihilated by $\Delta$ (in $x$ ) away from $x=y$, for fixed $y f(x)=G(x, y)$ is piecewise linear, say $f(x)=A(x-a)$ for $a \leq x<y$ and $f(x)=B(x-b)$ for $y<x \leq b$, where $A$ and $B$ depend upon $y$. So that $f(x)$ is continuous at $x=y$ these two linear fragments must match at $x=y$, so $A(y-a)=B(y-b)$. The first derivative in $x$ is then $A$ to the left of $y$ and $B$ to the right. For the negative second derivative to be $\delta, A-B=1$. Solving for $A$ and $B$ gives the indicated $G(x, y)$. Application of $\Delta$ to $G(x, y)$ in $x$ gives a $\delta$ at $y$ as desired, but also multiples of $\delta$ at the endpoints $a, b$. Thus, the problem is posed on the space of functions vanishing at the endpoints. The minor conundrum is that vanishing at endpoints does not make sense in $L^{2}(0,1)$.
    [3] That the trace is the integral of the integral kernel along the diagonal is not trivially proven. Expressing the operator $T$ as a limit of finite-rank operators allowing an analogous computation of trace is one argument that this trace exists and that the diagonal integral computes it.

