Rigged Hilbert spaces attached to pairs of operators

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

1. Rigged Hilbert spaces from pairs of semi-bounded operators
2. Large extensions of operators

1. Rigged Hilbert spaces from pairs

A pair of symmetric, semi-bounded operators S, T on a Hilbert space \mathfrak{B}^{0} gives rise to a rigged Hilbert space structure when the operators have a common domain $D=D_{S}=D_{T}$ dense in \mathfrak{B}^{0} stabilized by them, that is, when $S(D) \subset D$ and $T(D) \subset D$, as follows.

Without loss of generality, suppose that S, T are non-negative and $S+T \geq 1$, in the sense that

$$
\langle S v, v\rangle_{\mathfrak{B}^{0}} \geq 0 \quad\langle T v, v\rangle_{\mathfrak{B}^{0}} \geq 0 \quad\langle(S+T) v, v\rangle_{\mathfrak{B}^{0}} \geq\langle v, v\rangle_{\mathfrak{B}^{0}} \quad(\text { for all } v \in D)
$$

The \mathfrak{B}^{1}-norm relative to S, T is

$$
\langle v, w\rangle_{B^{1}}=\langle(S+T) v, w\rangle_{\mathfrak{B}^{0}} \quad(\text { for } v, w \in D)
$$

and \mathfrak{B}^{1} is the completion of D with respect to this norm. The \mathfrak{B}^{k}-norm is described inductively:

$$
\langle v, w\rangle_{\mathfrak{B}^{k}}=\langle S v, S w\rangle_{\mathfrak{B}^{k-2}}+\langle T v, T w\rangle_{\mathfrak{B}^{k-2}} \quad(\text { for } v, w \in D \text { and } k \geq 2)
$$

and \mathfrak{B}^{k} is the Hilbert-space completion. Let $\mathfrak{B}^{+\infty}$ be the projective limit. The maps $\mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-1}$ induced by the denseness of D in every \mathfrak{B}^{k} are continuous injections with dense images, thus giving a rigged Hilbert-space

$$
\ldots \longrightarrow \mathfrak{B}^{k} \longrightarrow \mathfrak{B}^{k-1} \longrightarrow \ldots \longrightarrow \mathfrak{B}^{2} \longrightarrow \mathfrak{B}^{1} \longrightarrow \mathfrak{B}^{0}=V
$$

By design, S and T are continuous $D \rightarrow D$ with \mathfrak{B}^{k}-topology on the source and \mathfrak{B}^{k-2}-topology on the target:

$$
|S v|_{\mathfrak{B}^{k-2}}^{2} \leq|(S v)|_{\mathfrak{B}^{k-2}}^{2}+|(T v)|_{\mathfrak{B}^{k-2}}^{2}=|v|_{\mathfrak{B}^{k}}^{2} \quad(\text { for } v \in D)
$$

and similarly for T. Thus, S, T extend by continuity to continuous maps $S^{\#}, T^{\#}: \mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-2}$ for all $k \geq 2$, and, then, to continuous maps $\mathfrak{B}^{+\infty} \rightarrow \mathfrak{B}^{+\infty}$. The triangle inequality shows continuity of $S+T$:

$$
|(S+T) v|_{B^{k-2}} \leq|S v|_{B^{k-2}}+|T v|_{B^{k-2}} \leq 2|v|_{\mathfrak{B}^{k}} \quad(\text { for } v \in D)
$$

so $S+T$ likewise extends by continuity to $(S+T)^{\#}: \mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-2}$ for all $k \geq 2$, and then to $\mathfrak{B}^{+\infty} \rightarrow \mathfrak{B}^{+\infty}$.
Non-commutative polynomials in S, T are to be understood as having domain D. Non-commutative monomials Q of total degree d are proven continuous $\mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-d}$ by induction on d, for Q of degree d giving a continuous linear map $\mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-d}$ for all $k \geq d$,

$$
|(Q \cdot S) v|_{\mathfrak{B}^{k-d-1}}^{2}=|Q(S v)|_{\mathfrak{B}^{k-d-1}}^{2}<_{Q}|S v|_{\mathfrak{B}^{k-1}}^{2} \leq|v|_{\mathfrak{B}^{k}}^{2} \quad(\text { for } v \in D)
$$

and similarly for $Q \cdot T$. Symmetry of S, T shows that this induction gives the same outcome as induction by adding factors on the left. The triangle inequality gives an induction on the number of summands in Q to prove a similar continuity for all non-commutative polynomials: for a polynomial Q of total degree d, and M a monomial of total degree at most d,

$$
|(Q+M) v|_{\mathfrak{B}^{k-d}} \leq|Q v|_{\mathfrak{B}^{k-d}}+|M v|_{\mathfrak{B}^{k-d}}<_{Q, M}|v|_{\mathfrak{B}^{k}} \quad(\text { for } v \in D)
$$

Thus, all polynomials Q in S, T of total degree at most d extend by continuity to $Q^{\#}: \mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-d}$, and to continuous maps of $\mathfrak{B}^{+\infty}$ to itself.

2. Large extensions of operators

For Hilbert spaces with a complex conjugation stabilizing D, operators S, T commuting with the conjugation have large extensions, still denoted $S^{\#}, T^{\#}$, to the dual of $\mathfrak{B}^{+\infty}$.

For $k \geq 1$, let \mathfrak{B}^{-k} be the complex-linear Hilbert-space dual of \mathfrak{B}^{k}, with hermitian inner product $\langle,\rangle_{\mathfrak{B}^{-k}}$ coming from the norm

$$
|\lambda|_{-k}=\sup _{v \in \mathfrak{B}^{k}:|v|_{k} \leq 1}|\lambda v| \quad \quad\left(\text { for } \lambda \in \mathfrak{B}^{-k}\right)
$$

The natural complex-bilinear pairing on $\mathfrak{B}^{k} \times \mathfrak{B}^{-k}$ is

$$
\langle,\rangle_{\mathfrak{B}^{k} \times \mathfrak{B}^{-k}}: \mathfrak{B}^{k} \times \mathfrak{B}^{-k} \longrightarrow \mathbb{C} \quad \text { by } \quad\langle v, \lambda\rangle_{\mathfrak{B}^{k} \times \mathfrak{B}^{-k}}=\lambda(v) \quad\left(v \in \mathfrak{B}^{k} \text { and } \lambda \in \mathfrak{B}^{-k}\right)
$$

The maps

$$
\ldots \longrightarrow \mathfrak{B}^{k} \longrightarrow \mathfrak{B}^{k-1} \longrightarrow \ldots \longrightarrow \mathfrak{B}^{2} \longrightarrow \mathfrak{B}^{1} \longrightarrow \mathfrak{B}^{0}
$$

give Hilbert-space adjoints

$$
\left(\mathfrak{B}^{0}\right)^{*} \longrightarrow \mathfrak{B}^{-1} \longrightarrow \mathfrak{B}^{-2} \longrightarrow \ldots \longrightarrow \mathfrak{B}^{-(k-1)} \longrightarrow \mathfrak{B}^{-k} \longrightarrow \ldots
$$

These two collections of maps can be spliced together, and the hermitian inner products compared with the complex-bilinear pairings, when when \mathfrak{B}^{0} has a complex-conjugate-linear conjugation map, as follows. The conjugation $v \rightarrow \bar{v}$ should have expected properties: $\overline{\bar{v}}=v, \overline{\alpha \cdot v}=\bar{\alpha} \cdot \bar{v}$ for complex α, and $\langle v, \bar{w}\rangle_{\mathfrak{B}^{0}}=\langle w, \bar{v}\rangle_{\mathfrak{B}^{0}}$. Suppose D is stabilized by $v \rightarrow \bar{v}$, and that S and T commute with $v \rightarrow \bar{v}$.

A compatible conjugation map is induced on \mathfrak{B}^{k} and \mathfrak{B}^{-k}, and $i: D \rightarrow \mathfrak{B}^{+1}$ and $j: \mathfrak{B}^{+1} \rightarrow \mathfrak{B}^{0}$ commute with the conjugation.

Using the conjugation on \mathfrak{B}^{0}, let $\Lambda: \mathfrak{B}^{0} \rightarrow\left(\mathfrak{B}^{0}\right)^{*}$ be the complex-linear isomorphism of \mathfrak{B}^{0} with its complex-linear dual by $\Lambda(x)(y)=\langle y, \bar{x}\rangle_{\mathfrak{B}^{0}}=\langle x, \bar{y}\rangle_{\mathfrak{B}^{0}}$. The continuous injection $j: \mathfrak{B}^{+1} \rightarrow \mathfrak{B}^{0}$ dualizes to $j^{*}:\left(\mathfrak{B}^{0}\right)^{*} \rightarrow \mathfrak{B}^{-1}$ by $\left(j^{*} \mu\right)(x)=\mu(j x)$ for $\mu \in\left(\mathfrak{B}^{0}\right)^{*}$ and $x \in \mathfrak{B}^{+1}$, and we have the splicing

with $\mathfrak{B}^{-\infty}=\operatorname{colim} \mathfrak{B}^{-k}$ the strong dual of $\mathfrak{B}^{+\infty}$. [1]
[2.0.1] Note: Thus, for $k, \ell \geq 0$, letting $\varphi: \mathfrak{B}^{k} \rightarrow \mathfrak{B}^{-\ell}$ be the injective map induced by the identity map $D \rightarrow D$, the comparison of hermitian and complex-bilinear forms is essentially described by

$$
\langle v, w\rangle_{\mathfrak{B}^{k}}=\langle v, \overline{\varphi v}\rangle_{\mathfrak{B}^{k} \times \mathfrak{B}^{-k}} \quad\left(\text { for } v, w \in \mathfrak{B}^{k}\right)
$$

[2.0.2] Note: Since D injects to \mathfrak{B}^{0} and is dense in \mathfrak{B}^{0}, every $\mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-1}$ for $k \geq 1$ is injective with dense image. The injectivity and dense image of $\mathfrak{B}^{+1} \rightarrow \mathfrak{B}^{0}$ give injective adjoint $\left(\mathfrak{B}^{0}\right)^{*} \rightarrow \mathfrak{B}^{-1}$ with dense
${ }^{[1]}$ For general categorical reasons, $\mathfrak{B}^{+\infty}$ is the dual of $\mathfrak{B}^{-\infty}$, but $\left(\mathfrak{B}^{+\infty}\right)^{*}=\mathfrak{B}^{-\infty}$ needs the fact that a continuous linear map from a limit of Banach spaces to a normed space necessarily factors through a limitand.
image. Since S is symmetric and commutes with conjugation, the extensions $S^{\#}, T^{\#}$ are compatible with the complex-linear identification $\Lambda: \mathfrak{B}^{0} \rightarrow\left(\mathfrak{B}^{0}\right)^{*}$.

[2.1] Large extensions of operators

The extended operators $S^{\#}, T^{\#}: \mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-2}$ for $k \geq 2$ have adjoints $\left(S^{\#}\right)^{*}$ and $\left(T^{\#}\right)^{*}$ mapping $\mathfrak{B}^{-(k-2)} \rightarrow \mathfrak{B}^{-k}$.

For even indices k, compatibility with conjugation and the complex-linear isomorphism $\Lambda: \mathfrak{B}^{0} \approx\left(\mathfrak{B}^{0}\right)^{*}$ allows us to consider these adjoints as extensions of $S^{\#}, T^{\#}$, and denote them simply by the same symbols, $S^{\#}$ and $T^{\#}$.

To connect positive and negative odd indices k, the conjugation allows us to extend $S^{\#}, T^{\#}$ to maps $\mathfrak{B}^{+1} \rightarrow \mathfrak{B}^{-1}$, by

$$
\left(S^{\#} x\right)(y)=\langle x, \bar{y}\rangle_{\mathfrak{B}^{1}} \quad\left(T^{\#} x\right)(y)=\langle x, \bar{y}\rangle_{\mathfrak{B}^{1}} \quad\left(x, y \in \mathfrak{B}^{+1}\right)
$$

Again, these extensions are indeed compatible with $\mathfrak{B}^{+1} \rightarrow \mathfrak{B}^{0} \approx\left(\mathfrak{B}^{0}\right)^{*} \rightarrow \mathfrak{B}^{-1}$.
Thus, S, T extend to $S^{\#}, T^{\#}: \mathfrak{B}^{k} \rightarrow \mathfrak{B}^{k-2}$ for all $k \in \mathbb{Z}$, inducing $S^{\#}, T^{\#}: \mathfrak{B}^{+\infty} \rightarrow \mathfrak{B}^{+\infty}$ and the large extensions $S^{\#}, T^{\#}: \mathfrak{B}^{-\infty} \rightarrow \mathfrak{B}^{-\infty}$, denoted by the same symbols. [2]

Then non-commutative polynomials Q in S, T with real coefficients are likewise compatible with conjugation, so have large extensions $Q^{\#}$. Writing a non-commutative polyomial's arguments as x, y, the compatibility of such polynomials with formation of large extensions is

$$
Q(S, T)^{\#}=Q\left(S^{\#}, Q^{\#}\right)
$$

[2] Laplacians on test functions give the archetype for $S^{\#}: \mathfrak{B}^{+\infty} \rightarrow \mathfrak{B}^{+\infty}$, and the extension to distributional differentiation is the archetype for the large extension $S^{\#}: \mathfrak{B}^{-\infty} \rightarrow \mathfrak{B}^{-\infty}$.

