Volume of $S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})$ and $S p_{n}(\mathbb{Z}) \backslash S p_{n}(\mathbb{R})$

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/
[This document is http://www.math.umn.edu/~garrett/m/v/volumes.pdf]
[Minor edits to the Feb 19, 2005 version.]
We follow Siegel to prove by induction that, up to elementary normalizations,

$$
\operatorname{vol}(S L(n, \mathbb{Z}) \backslash S L(n, \mathbb{R}))=\zeta(2) \zeta(3) \zeta(4) \zeta(5) \ldots \zeta(n)
$$

Mysterious ζ (odd) values appear. In contrast, for symplectic groups

$$
\operatorname{vol}(S p(n, \mathbb{Z}) \backslash S p(n, \mathbb{R}))=\zeta(2) \zeta(4) \zeta(6) \zeta(8) \ldots \zeta(2 n)
$$

In particular, for symplectic groups the values of zeta at odd integers do not appear.
In both cases, Poisson summation plays a critical role. To express volumes of other classical groups, Poisson summation must be replaced by subtler devices.

- Volume of $S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{R})$
- Comparison with $S L(2, \mathbb{Z}) \backslash \mathfrak{H}$
- Volume of $S L(n, \mathbb{Z}) \backslash S L(n, \mathbb{R})$ by induction
- Symplectic groups

1. Volume of $S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{R})$

Let $G=S L(2, \mathbb{R})$ and $\Gamma=S L(2, \mathbb{Z})$. To describe a right G-invariant measure on $\Gamma \backslash G$, it suffices to tell how to integrate compactly-supported continuous functions on $\Gamma \backslash G$. One first proves that, given a compactlysupported continuous function F on $\Gamma \backslash G$, there is a compactly-supported continuous function f on G so that

$$
F(g)=\sum_{\gamma \in \Gamma} f(\gamma \cdot g)
$$

Then define

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{G} f(g) d g
$$

(and verify that this is well-defined, meaning that it is independent of the choice of f).
To describe the measure on G, let K be the usual special orthogonal group

$$
K=S O(2)=\left\{g \in G: g^{\top} g=1_{2}\right\}
$$

and let P be the standard parabolic subgroup

$$
P=\left\{\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \in G\right\}
$$

with subgroup

$$
P^{+}=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right): a>0, b \in \mathbb{R}\right\}
$$

Recall the Iwasawa decomposition

$$
G=P^{+} \cdot K \approx P^{+} \times K
$$

The normalization of the Haar measure on G can be chosen so that for any absolutely integrable function φ on G

$$
\int_{G} \varphi(g) d g=\int_{P^{+}} \int_{K} \varphi(p k) d k d p
$$

where the Haar measure on K gives it total measure 2π, and where the left Haar measure $d p$ on P^{+}is normalized as follows. Let $p=n a$ where

$$
n=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \quad a=\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)
$$

and take

$$
d p=d(n a)=\frac{d n d a}{t^{2}}
$$

Choose an auxiliary Schwartz function f on \mathbb{R}^{2} and define a function F on G by

$$
F(g)=\sum_{v \in \mathbb{Z}^{2}} f(v g)
$$

By design, this function F is left Γ-invariant. By evaluating

$$
\int_{\Gamma \backslash G} F(g) d g
$$

in two different ways we will determine the volume of $\Gamma \backslash G$.
For a fixed positive integer ℓ, the set $\{(c, d): \operatorname{gcd}(c, d)=\ell\}$ is an orbit of Γ in \mathbb{Z}^{2}. We choose $(0,1)$ as a convenient base point and observe that

$$
\mathbb{Z}^{2}-\{0\}=\{\ell \cdot(0,1) \cdot \gamma: \gamma \in \Gamma, \ell>0\}
$$

The stabilizer of $(0,1)$ in Γ is

$$
N_{\mathbb{Z}}=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{Z}\right\}
$$

so we have a bijection

$$
\mathbb{Z}^{2}-\{0\} \longleftrightarrow\{\ell>0\} \times N_{\mathbb{Z}} \backslash \Gamma
$$

given by

$$
\ell \cdot(0,1) \gamma \leftarrow \ell \times N_{\mathbb{Z}} \gamma
$$

Let

$$
N=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{R}\right\} \subset G
$$

By unwinding the iterated integral

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} f(0) d g+\int_{\Gamma \backslash G} \sum_{v \neq 0} f(v g) d g=\int_{\Gamma \backslash G} f(0) d g+\sum_{\ell>0} \int_{N_{\mathbb{Z}} \backslash G} f(\ell \cdot(0,1) g) d g
$$

where $N_{\mathbb{Z}}=N \cap \Gamma=P^{+} \cap \Gamma$. By expressing the Haar integral on G in terms of an iterated integral on P^{+} and K

$$
\int_{\Gamma \backslash G} f(0) d g+\sum_{\ell>0} \int_{N_{\mathbb{Z}} \backslash P} \int_{K} f(\ell \cdot(0,1) p k) d g
$$

We choose the function f on \mathbb{R}^{2} to be rotation invariant. Then

$$
f(\ell(0,1) p k)=f(\ell(0,1) p)
$$

and the integral becomes

$$
\int_{\Gamma \backslash G} f(0) d g+2 \pi \cdot \sum_{\ell>0} \int_{N_{\mathbb{Z}} \backslash P} f(\ell(0,1) p) d p
$$

since the total measure of K is 2π. Write the Haar measure on P in terms of $N=\left\{\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)\right\}$ and $M=\left\{\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right)\right\}$, to obtain

$$
\int_{\Gamma \backslash G} f(0) d g+2 \pi \sum_{\ell} \int_{M} \int_{N_{\mathbb{Z}} \backslash N} f(\ell(0,1) n m) d n t^{-2} d m
$$

where $m=\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$. Note that

$$
f(\ell(0,1) n m)=f(\ell(0,1) m)
$$

so the integral over $n=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ in N is just

$$
\int_{N_{\mathbb{Z}} \backslash N} 1 d x=\int_{\mathbb{R} / \mathbb{Z}} 1 d x=1
$$

Thus, the whole integral is

$$
\begin{gathered}
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} f(0) d g+2 \pi \cdot \sum_{\ell} \int_{M} f(\ell(0,1) m) \frac{d m}{t^{2}}=\int_{\Gamma \backslash G} f(0) d g+2 \pi \cdot \sum_{\ell} \int_{0}^{\infty} f\left(\ell\left(0, t^{-1}\right)\right) t^{-2} \frac{d t}{t} \\
=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+2 \pi \cdot \sum_{\ell} \int_{0}^{\infty} f(0, \ell t) t^{2} \frac{d t}{t}
\end{gathered}
$$

upon replacing t by t^{-1}. Replacing t by t / ℓ gives
$\int_{\Gamma \backslash G} F(g) d g=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+2 \pi \cdot \sum_{\ell} \ell^{-2} \int_{0}^{\infty} f(0, t) t^{2} \frac{d t}{t}=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+2 \pi \zeta(2) \cdot \int_{0}^{\infty} f(0, t) t^{2} \frac{d t}{t}$
Further, using again the rotation invariance of f,

$$
\int_{0}^{\infty} f(0, t) t^{2} \frac{d t}{t}=\int_{0}^{\infty} f(0, t) t d t=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} f(x) d x=\frac{1}{2 \pi} \hat{f}(0)
$$

Thus, the factors of 2π cancel, and altogether

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} \sum_{x \in \mathbb{Z}^{2}} f(x g) d g=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+\zeta(2) \hat{f}(0)
$$

On the other hand, via Poisson summation,

$$
\sum_{v \in \mathbb{Z}^{2}} f(v g)=\frac{1}{|\operatorname{det} g|} \sum_{v \in \mathbb{Z}^{2}} \hat{f}\left(v^{\top} g^{-1}\right)=\sum_{v \in \mathbb{Z}^{2}} \hat{f}\left(v^{\top} g^{-1}\right)
$$

(since $\operatorname{det} g=1$). The group Γ is stable under transpose-inverse, so we can do a completely analogous computation with the roles of f and \hat{f} reversed, finally obtaining

$$
f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+\zeta(2) \hat{f}(0)=\int_{\Gamma \backslash G} F(g) d g=\hat{f}(0) \cdot \operatorname{vol}(\Gamma \backslash G)+\zeta(2) f(0)
$$

from which follows

$$
(f(0)-\hat{f}(0)) \cdot \operatorname{vol}(\Gamma \backslash G)=(f(0)-\hat{f}(0)) \cdot \zeta(2)
$$

Take f such that $f(0) \neq \hat{f}(0)$ to obtain

$$
\operatorname{vol}(\Gamma \backslash G)=\zeta(2)
$$

2. Comparison with $S L(2, \mathbb{Z}) \backslash \mathfrak{H}$

We now reconcile the previous computation with the computation, in a somewhat different normalization, of the volume of $S L(2, \mathbb{Z}) \backslash \mathfrak{H}$, where \mathfrak{H} is the upper half-plane with the usual linear fractional transformation action of $S L(2, \mathbb{R})$. Integrating the traditional measure $d x d y / y^{2}$ on the usual fundamental domain

$$
\mathbb{F}=\left\{z=x+i y \in \mathfrak{H}:|x| \leq \frac{1}{2}|z| \geq 1\right\}
$$

one obtains $\pi / 3$. It is worthwhile to see that this value is compatible with the group-theoretic value $\zeta(2)=\pi^{2} / 6$ obtained above.

First, $\mathfrak{H} \approx G / K$ by $g(i) \leftarrow g$, since K is the isotropy group of the point $i \in \mathfrak{H}$. But at the same time the center $\left\{ \pm 1_{2}\right\}$ of G, which also lies inside K, acts trivially on \mathfrak{H}. This effectively gives $\{ \pm 1\} \backslash K$ total measure 1 , thus giving K total measure 2, rather than 2π.

Second, the usual coordinates $z=x+i y$ on \mathfrak{H} correspond to coordinates

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{y} & 0 \\
0 & 1 / \sqrt{y}
\end{array}\right)
$$

rather than

$$
\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
t & 0 \\
0 & 1 / t
\end{array}\right)
$$

as above. The change of coordinates has the effect of doubling the measure in the y-coordinate by comparison to the t-coordinate.

Thus, based on the $\Gamma \backslash G$ computation above, we would expect the measure of \mathbb{F} to be

$$
\operatorname{vol}(\Gamma \backslash G) \times \frac{2}{2 \pi} \times 2=\frac{\pi}{3}=\frac{\pi^{2}}{6} \times \frac{2}{2 \pi} \times 2=\frac{\pi}{3}
$$

This does match the direct computation in the $z=x+i y$ coordinates.

3. Volume of $S L(n, \mathbb{Z}) \backslash S L(n, \mathbb{R})$ by induction

Now we prove by induction that, reasonably normalized,

$$
\operatorname{vol}\left(S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})\right)=\zeta(2) \zeta(3) \zeta(4) \zeta(5) \ldots \zeta(n)
$$

The normalization of measure needs explanation. First, let $G=S L(n, \mathbb{R})$ and $\Gamma=S L(n, \mathbb{Z})$. Given a compactly-supported continuous function F on $\Gamma \backslash G$, there is a compactly-supported continuous function f on G so that

$$
F(g)=\sum_{\gamma \in \Gamma} f(\gamma \cdot g)
$$

Then define

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{G} f(g) d g
$$

This is well-defined, meaning that it is independent of the choice of f. Thus, a right G-invariant measure on the quotient $\Gamma \backslash G$ is completely specified by choice of a Haar measure on G.

We reduce the normalization of a Haar measure on G to measures on subgroups. Let $K=S O(n)$, and let P^{+}be the collection of upper-triangular real matrices with positive diagonal entries. Then $K \cap P^{+}=1_{n}$ and by the Iwasawa decomposition $G=P^{+} \cdot K$. For a choice of Haar measure on K and choice of left Haar measure on P^{+}, for f compactly supported and continuous on G, the integral

$$
f \rightarrow \int_{P^{+}} \int_{K} f(p k) d k d p
$$

is a Haar integral on G. The normalization of the left Haar measure on P^{+}is completely elementary, given by

$$
d\left(\begin{array}{ccccc}
p_{11} & p_{12} & \ldots & p_{1 n} \\
0 & p_{22} & \ldots & & \\
& & \ddots & & \\
& & & p_{n-1, n-1} & \frac{1}{p_{11} p_{22} \ldots p_{n-1, n-1}}
\end{array}\right)=\prod_{1 \leq i<n} p_{i i}^{i+1-2 n} \cdot \prod_{1 \leq i<n} \frac{d p_{i i}}{p_{i i}} \cdot \prod_{i<j} d p_{i j}
$$

where the leading factor is the modular function on P^{+}.
Let f be a Schwartz function on \mathbb{R}^{n} and define a function F on G by

$$
F(g)=\sum_{v \in \mathbb{Z}^{n}} f(v g)
$$

This function is left Γ-invariant. Consider

$$
\int_{\Gamma \backslash G} F(g) d g
$$

Let

$$
Q=\left\{\left(\begin{array}{cc}
h & * \\
0 & 1
\end{array}\right): h \in S L_{n-1}(\mathbb{R})\right\}
$$

be the subgroup of G fixing $e=(0,0, \ldots, 0,1)$ under right multiplication. By linear algebra over \mathbb{Z},

$$
\mathbb{Z}^{n}-\{0\}=\sum_{\ell>0} \sum_{\gamma \in Q_{\mathbb{Z}} \backslash \Gamma} \ell \cdot e \cdot \gamma
$$

where ℓ ranges over positive integers and $Q_{\mathbb{Z}}=Q \cap \Gamma$. Then

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} f(0) d g+\sum_{\ell} \int_{\Gamma \backslash G} \sum_{\gamma \in\left(Q_{\mathbb{Z}} \backslash \Gamma\right)} f(\ell e \gamma g) d g
$$

where $Q_{\mathbb{Z}}=Q \cap \Gamma$. By unwinding, this is

$$
\operatorname{vol}(\Gamma \backslash G) f(0)+\sum_{\ell} \int_{Q_{\mathbb{Z}} \backslash G} f(\ell e g) d g
$$

Let

$$
P^{+}=\left\{\left(\begin{array}{cc}
h & * \\
0 & \frac{1}{\operatorname{det} h}
\end{array}\right): \operatorname{det} h>0\right\}
$$

Paul Garrett: Volume of $S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})$ and $S p_{n}(\mathbb{Z}) \backslash S p_{n}(\mathbb{R})$ (April 20, 2014)

$$
\begin{aligned}
M & =\left\{\left(\begin{array}{cc}
h & 0 \\
0 & 1
\end{array}\right): h \in S L_{n-1}(\mathbb{R})\right\} \\
A^{+} & =\left\{\left(\begin{array}{cc}
t^{\frac{1}{n-1}} \cdot 1_{n-1} & 0 \\
0 & t^{-1}
\end{array}\right): t>0\right\} \\
N & =\left\{\left(\begin{array}{cc}
1_{n-1} & v \\
0 & 1
\end{array}\right): v \in \mathbb{R}^{n-1}\right\}
\end{aligned}
$$

Then $P^{+}=N M A^{+}$and $Q=N M$. Let $N_{\mathbb{Z}}=N \cap \Gamma$ and $M_{\mathbb{Z}}=M \cap \Gamma$. Via the Iwasawa decomposition $G=P^{+} \cdot K$, and using induction, normalize the invariant integral so that for left-invariant functions Φ

$$
\int_{Q_{\mathbb{Z}} \backslash G} \Phi(g) d g=\operatorname{vol}\left(S^{n-1}\right) \cdot \int_{A^{+}} \int_{Q_{\mathbb{Z}} \backslash N M} \int_{K} \Phi(n m a k) t^{-n} d k d n d m d a
$$

where $\operatorname{vol}\left(S^{n-1}\right)$ is the natural measure of the $(n-1)$-sphere S^{n-1}, and where

$$
\left.a=\left(\begin{array}{cc}
t^{\frac{1}{n-1}} \cdot 1_{n-1} & 0 \\
0 & t^{-1}
\end{array}\right): t>0\right\}
$$

The measure given by $t^{-n} d n d m d a$ is a left Haar measure on P^{+}. The integral becomes

$$
\operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S^{n-1}\right) \cdot \sum_{\ell} \int_{A^{+}} \int_{Q_{\mathbb{Z}} \backslash N M} \int_{K} f(\ell \cdot e \cdot n m a k) t^{-n} d k d n d m d a
$$

The integrand is invariant under $N M$, and the volume of $N_{\mathbb{Z}} \backslash N_{\mathbb{R}}$ is 1 , so the whole becomes

$$
\operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S^{n-1}\right) \cdot \operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \sum_{\ell} \int_{A^{+}} \int_{K} f(\ell \cdot e \cdot a k) t^{-n} d k d a
$$

For f right K-invariant this becomes

$$
\begin{aligned}
& \operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S^{n-1}\right) \cdot \operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \sum_{\ell} \int_{A^{+}} f(\ell e a) t^{-n} d a \\
= & \operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S^{n-1}\right) \cdot \operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \sum_{\ell} \int_{0}^{\infty} f\left(\ell e t^{-1}\right) t^{-n} \frac{d t}{t} \\
= & \operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S^{n-1}\right) \cdot \operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \sum_{\ell} \frac{1}{\ell^{n}} \int_{0}^{\infty} f(e t) t^{n} \frac{d t}{t}
\end{aligned}
$$

upon replacing t by t^{-1}. Using the rotation-invariance of f,

$$
\operatorname{vol}\left(S^{n-1}\right) \cdot \int_{0}^{\infty} f(e t) t^{n} \frac{d t}{t}=\int_{\mathbb{R}^{n}} f(x) d x=\hat{f}(0)
$$

Altogether,

$$
\int_{\Gamma \backslash G} F(g) d g=\operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \zeta(n) \cdot \hat{f}(0)
$$

By Poisson summation,

$$
F(g)=\sum_{v \in \mathbb{Z}^{n}} f(v g)=\sum_{v \in \mathbb{Z}^{n}} \hat{f}\left(v^{\top} g^{-1}\right)=F\left({ }^{\top} g^{-1}\right)
$$

$$
\text { Paul Garrett: Volume of } S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R}) \text { and } S p_{n}(\mathbb{Z}) \backslash S p_{n}(\mathbb{R}) \text { (April 20, 2014) }
$$

The automorphism $g \rightarrow^{\top} g^{-1}$ preserves measure on G and stabilizes Γ. Since $f^{\wedge}(0)=f(0)$,

$$
\begin{aligned}
& \operatorname{vol}(\Gamma \backslash G) f(0)+\operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \zeta(n) \cdot \hat{f}(0)=\int_{\Gamma \backslash G} F(g) d g \\
& =\operatorname{vol}(\Gamma \backslash G) \hat{f}(0)+\operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \zeta(n) \cdot f(0)
\end{aligned}
$$

Taking f such that $f(0) \neq \hat{f}(0)$,

$$
\operatorname{vol}\left(S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})\right)=\operatorname{vol}\left(S L_{n-1}(\mathbb{Z}) \backslash S L_{n-1}(\mathbb{R})\right) \cdot \zeta(n)
$$

By induction,

$$
\operatorname{vol}\left(S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})\right)=\zeta(2) \zeta(3) \zeta(4) \zeta(5) \ldots \zeta(n)
$$

The normalizations of measure appearing in the induction match the normalization described at the outset. For the contribution of K this is by design. The contribution of the subgroups P^{+}is less clear. The normalization effectively given by the induction would put coordinates on diagonal matrices of determinant 1 by

$$
\left(\begin{array}{lllllll}
t_{1} t_{2}^{\frac{1}{2}} t_{3}^{\frac{1}{3}} \ldots t_{n-1}^{\frac{1}{n-1}} & & & & & & \\
& t_{1}^{-1} t_{2}^{\frac{1}{2}} t_{3}^{\frac{1}{3}} \ldots t_{n-1}^{\frac{1}{n-1}} & & & & & \\
& & t_{2}^{-1} t_{3}^{\frac{1}{3}} \ldots t_{n-1}^{\frac{1}{n-1}} & & & & \\
& & & t_{3}^{-1} t_{4}^{\frac{1}{4}} \ldots t_{n-1}^{\frac{1}{n-1}} & & & \\
& & & t_{4}^{-1} \ldots t_{n-1}^{\frac{1}{n-1}} & & \\
& & & & \ddots & \\
& & & & & t_{n-1}^{-1}
\end{array}\right)
$$

versus the coordinates

$$
\left(\begin{array}{ccccc}
t_{1} & & & & \\
& t_{2} & & & \\
& & \ddots & & \\
& & & t_{n-1} & \\
& & & & \frac{1}{p_{11} p_{22} \ldots p_{n-1, n-1}}
\end{array}\right)
$$

The lower right $(n-1)$-by- $(n-1)$ minor of the former has exponents

$$
\left(\begin{array}{ccccc}
-1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n-1} \\
0 & -1 & \frac{1}{3} & \cdots & \frac{1}{n-1} \\
0 & 0 & -1 & \cdots & \frac{1}{n-1} \\
& & & \ddots & \\
& & & & -1
\end{array}\right)
$$

which has determinant ± 1, so the change-of-measure going from one set of coordinates to the other is trivial. Thus, the measure used in the induction match the measure described at the beginning.

4. Symplectic groups

Let $G=S p(n, \mathbb{R})$ be the usual symplectic group of $2 n$-by- $2 n$ matrices, and $\Gamma=S p(n, \mathbb{Z})$. With reasonably normalized measure,

$$
\operatorname{vol}(S p(n, \mathbb{Z}) \backslash S p(n, \mathbb{R}))=\zeta(2) \zeta(4) \zeta(6) \zeta(8) \ldots \zeta(2 n)
$$

The measure on $\Gamma \backslash G$ is determined from a Haar measure on G by the requirement that

$$
\int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} \varphi(\gamma \cdot g) d g=\int_{G} \varphi(g) d g
$$

for compactly-supported continuous φ on G. To specify a Haar measure on G, let

$$
K=\left\{\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right): A+i B \in U(n)\right\} \approx U(n)
$$

with the usual unitary group

$$
U(n)=\left\{h \in G L(n, \mathbb{C}): h^{*} h=1_{n}\right\}
$$

where h^{*} is h-conjugate-transpose. And let P^{+}be the subgroup of $S p_{n}(\mathbb{R})$ consisting of elements of the form

$$
\left(\begin{array}{cccccccc}
t_{1} & * & * & \cdots & * & \cdots & & * \\
0 & t_{2} & * & \cdots & \vdots & & & \\
\vdots & & \ddots & & & & & \vdots \\
0 & \ldots & 0 & t_{n} & * & & \cdots & * \\
0 & \cdots & & 0 & t_{1}^{-1} & 0 & \cdots & 0 \\
\vdots & & & & * & t_{2}^{-1} & & \vdots \\
& & & \vdots & \vdots & & \ddots & 0 \\
0 & & \ldots & 0 & * & & & t_{n}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
A & * \\
0 & { }^{\top} A^{-1}
\end{array}\right) \quad \text { (A upper-triangular) }
$$

Let N be the unipotent radical of P^{+}(consisting of unipotent matrices in P^{+}). In these coordinates, a left Haar measure on P^{+}is

$$
t_{1}^{-2 n} t_{2}^{-2 n+2} \ldots t_{n-1}^{2 n-2} t_{n}^{2 n} d n \frac{d t_{1}}{t_{1}} \ldots \frac{d t_{n}}{t_{n}}
$$

where $d n$ is a Haar measure on N. Give K the Haar measure so that it has total measure

$$
\operatorname{vol}\left(S^{1}\right) \operatorname{vol}\left(S^{3}\right) \operatorname{vol}\left(S^{5}\right) \ldots \operatorname{vol}\left(S^{2 n-3}\right) \operatorname{vol}\left(S^{2 n-1}\right)
$$

where $\operatorname{vol}\left(S^{k}\right)$ is the standard volume of the k-sphere in \mathbb{R}^{k+1}. Then

$$
\varphi \rightarrow \int_{P^{+}} \int_{K} f(p k) d p d k
$$

is a Haar integral on G.
Let f be a Schwartz function on $\mathbb{R}^{2 n}$, and define

$$
F(g)=\sum_{v \in \mathbb{Z}^{2 n}} f(v \cdot g)
$$

viewing $v \in \mathbb{Z}^{2 n}$ as a row vector. Evaluating $\int_{\Gamma \backslash G} F(g) d g$ in two different ways will allow evaluation of the volume of $\Gamma \backslash G$.
First, Γ is transitive on primitive elements in $\mathbb{Z}^{2 n}$ (those whose entries have greatest common divisor 1), so

$$
\mathbb{Z}^{2 n}-\{0\}=\{\ell \cdot e \cdot \gamma: \ell>0, \gamma \in \Gamma\}
$$

where

$$
e=(\underbrace{0, \ldots, 0}_{n}, 1, \underbrace{0, \ldots, 0}_{n-1})
$$

Paul Garrett: Volume of $S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})$ and $S p_{n}(\mathbb{Z}) \backslash S p_{n}(\mathbb{R})($ April 20, 2014)
that is, with the lone 1 at the $(n+1)^{t h}$ place. The isotropy group of e in G is

$$
Q=\left\{\left(\begin{array}{llll}
1 & * & * & * \\
0 & a & * & b \\
0 & 0 & 1 & 0 \\
0 & c & * & d
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p_{n-1}(\mathbb{R})\right\}
$$

and the other entries are of suitable sizes. Then

$$
\int_{\Gamma \backslash G} F(g) d g=\operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\sum_{\ell>0} \int_{\Gamma \backslash G} \sum_{\gamma \in Q_{\mathbb{Z}} \backslash \Gamma} f(\ell \cdot e \cdot \gamma g) d g
$$

Let

$$
\begin{gathered}
\left.P^{+}=\left\{\left(\begin{array}{cccc}
t & * & * & * \\
0 & a & * & b \\
0 & 0 & t^{-1} & 0 \\
0 & c & * & d
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p(n-1, \mathbb{R})\right\}, t>0\right\} \\
M=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a & 0 & b \\
0 & 0 & t^{-1} & 0 \\
0 & c & 0 & d
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p(n-1, \mathbb{R}), t>0\right\} \\
A^{+}=\left\{\left(\begin{array}{cccc}
t & 0 & 0 & 0 \\
0 & 1_{n-1} & 0 & 0 \\
0 & 0 & t^{-1} & 0 \\
0 & 0 & 0 & 1_{n-1}
\end{array}\right) \in P^{+}\right\} \quad N=\left\{\left(\begin{array}{cccc}
1 & * & * & * \\
0 & 1_{n-1} & * & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & * & 1
\end{array}\right) \in Q\right\}
\end{gathered}
$$

Then

$$
P^{+}=N \cdot M \cdot A^{+} \quad Q=N \cdot M
$$

Note that $t^{-2 n} \cdot d n d m d a$ is a left Haar measure on P^{+}, with coordinate $a \in A^{+}$as just above. Unwinding the integral, it is

$$
\begin{gathered}
\int_{\Gamma \backslash G} F(g) d g=\operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\sum_{\ell>0} \int_{Q_{\mathbb{Z}} \backslash G} f(\ell \cdot e \cdot g) d g \\
=\operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S^{2 n-1}\right) \cdot \sum_{\ell>0} \int_{A^{+}} \int_{M_{\mathbb{Z}} \backslash M} \int_{N_{\mathbb{Z}} \backslash N} \int_{K} f(\ell \cdot e \cdot n m a k) t^{-2 n} d k d m d n d a
\end{gathered}
$$

which for right K-invariant f is

$$
\begin{aligned}
& \operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S^{2 n-1}\right) \cdot \operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \sum_{\ell>0} \int_{A^{+}} f(\ell \cdot e \cdot a) t^{-2 n} d a \\
= & \operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S^{2 n-1}\right) \cdot \operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \sum_{\ell>0} \int_{0}^{\infty} f\left(\ell \cdot t^{-1} \cdot e\right) t^{-2 n} \frac{d t}{t}
\end{aligned}
$$

Replacing t by t / ℓ gives

$$
\begin{gathered}
\operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S^{2 n-1}\right) \cdot \operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \zeta(2 n) \int_{0}^{\infty} f(t \cdot e) t^{-2 n} \frac{d t}{t} \\
=\operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \zeta(2 n) \int_{\mathbb{R}^{2 n}} f(x) d x \\
=\operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \zeta(2 n) \hat{f}(0)
\end{gathered}
$$

On the other hand, by Poisson summation

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} \sum_{v \in \mathbb{Z}^{2 n}} f(v g)=\int_{\Gamma \backslash G} \sum_{v \in \mathbb{Z}^{2 n}} \hat{f}\left(v^{\top} g^{-1}\right)=\int_{\Gamma \backslash G} \sum_{v \in \mathbb{Z}^{2 n}} \hat{f}(v g)
$$

since the involution $g \rightarrow^{\top} g^{-1}$ preserves the Haar measure, and preserves Γ. Thus,

$$
\begin{aligned}
& \operatorname{vol}(\Gamma \backslash G) \cdot f(0)+\operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \zeta(2 n) \hat{f}(0) \\
= & \operatorname{vol}(\Gamma \backslash G) \cdot \hat{f}(0)+\operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right) \cdot \zeta(2 n) f(0)
\end{aligned}
$$

For f such that $f(0) \neq \hat{f}(0)$, solve for the volume

$$
\operatorname{vol}\left(S p_{n}(\mathbb{A}) \backslash S p_{n}(\mathbb{R})\right)=\zeta(2 n) \cdot \operatorname{vol}\left(S p_{n-1}(\mathbb{Z}) \backslash S p_{n-1}(\mathbb{R})\right)
$$

Since $S p(1)=S L(2)$, by induction, as claimed

$$
\operatorname{vol}(S p(n, \mathbb{Z}) \backslash S p(n, \mathbb{R}))=\zeta(2) \zeta(4) \zeta(6) \zeta(8) \ldots \zeta(2 n)
$$

Verification that the measure used in the induction agree with the measure specified at the outset is straightforward.

