Boltzmann Diffusive Limit Beyond the Navier-Stokes Approximation Yan Guo

Brown University

Abstract

Given a normalized Maxwellian μ and $n \ge 1$, we establish the global in time validity of a diffusive expansion

$$F^{\varepsilon}(t,x,v) = \mu + \sqrt{\mu} \{ \varepsilon f_1(t,x,v) + \varepsilon^2 f_2(t,x,v) + \dots \varepsilon^n f_n^{\varepsilon}(t,x,v) \}, \quad (1)$$

for a solution F^{ε} to the rescaled Boltzmann equation (diffusive scaling)

$$\varepsilon \partial_t F^\varepsilon + v \cdot \nabla_x F^\varepsilon = \frac{1}{\varepsilon} Q(F^\varepsilon, F^\varepsilon), \qquad (2)$$

inside a periodic box \mathbf{T}^3 . We assume that in the initial expansion (1) at t = 0, the coefficients $f_m(0, x, v)$ has arbitrary divergent free velocty field as well as temperature field for all $1 \le m \le n$ while $f_1(0, x, v)$ has small amplitude in H^2 . For $m \ge 2$, $f_m(t, x, v)$ are determined by a sequence of linear Navier-Stokes-Fourier systems iteratively. More importantly, the remainder $f_n^{\varepsilon}(t, x, v)$ is proven to decay in time uniformly in ε , via an unified nonlinear energy method. In particluar, our reuslts lead to error estimate for $f_1(t, x, v)$, the well-known Navier-Stokes-Fourier approximation and beyond. The collision kernel Q includes hard-sphere, the cutoff inverse-power, as well as the Coulomb interactions.