



Energy Balance Models

References

Classic Papers:

M. I. Budyko, The effect of solar radiation variation on the climate of the Earth, *Tellus* 21 (1969), 611-619.

W. D. Sellers, A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System, *Journal of Applied Meteorology* 8 (1969), 392-400.

Recent Interpretation:

K.K. Tung, Topics in Mathematical Modeling, Princeton University Press, 2007. (Chapter 8)

Energy Balance Models

Homogeneous Earth

$$R\frac{dT}{dt} = Q(1-\alpha) - (A+BT)$$

 $T = \mbox{global mean temperature (°C)}$ $Q = \mbox{mean solar input (W/m²)}$ $\alpha = \mbox{mean albedo}$ $A+BT = \mbox{outward radiation (linear approximation)}$ $R = \mbox{heat capacity of Earth's surface}$

Tung's values:

$$\begin{split} T &= \text{global mean temperature (°C)} \\ \underbrace{Q} &= 343 \text{ W/m}^2 \\ A &= 202 \text{ W/m}^2 \\ B &= 1.9 \text{ W/(m}^2 \text{ °C)} \\ \alpha &= \alpha_1 = 0.32 \text{ (water and land)} \\ \alpha &= \alpha_2 = 0.62 \text{ (ice)} \end{split}$$

Energy Balance Models

Homogeneous Earth

$$R\frac{dT}{dt} = Q(1-\alpha) - \left(A + BT\right)$$

Equilibrium temperature

$$T_{eq} = \frac{Q(1-\alpha)-A}{B}$$

ice free Earth: $\alpha=\alpha_{l},~T_{eq}$ = 16.4 °C snowball Earth: $\alpha=\alpha_{2},~T_{eq}$ = -37.7 °C

According to Tung, glaciers form if $\ T \le T_c =$ -10 °C and melt if $\ T \ge T_c.$

Since 16.4 > -10, no glacier would form on an ice free Earth. Since -37.7 < -10, no glacier would melt on a snowball Earth.

Energy Balance Models

Inhomogeneous Earth

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha(y,\eta)) - (A+BT) + C(\overline{T}-T)$$

Now the annual average surface temperature $\ T$ is a function of $\ y \ = \mbox{sine}(\mbox{latitude}).$

The albedo $\,\alpha\,$ is a function of $\,y\,$ and the location $\,\eta\,$ of the ice boundary. The outward radiation $\,A+BT\,$ is as before.

Heat transport across latitudes is assumed to be linear and is given by $C \left(\overline{T} - T \right)$

where $C = 3.04 \text{ W/m}^2$

The global annual average insolation is Q , with the same value as above, while $\mathit{s(y)}$ is the relative insolation, normalized to satisfy

 $\int_{0}^{1} s(y) dy$

Energy Balance Models

Inhomogeneous Earth

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha(y,\eta)) - (A+BT) + C(\overline{T}-T)$$

The variable $\,y\,$ is chosen instead of the latitude, because the global annual mean temperature is given by

$$\overline{T}(t) = \int_{0}^{1} T(y,t) dy$$

We assume symmetry with respect to the equator, so the variable $\,y\,$ takes on values between $\,0\,$ and $\,1.\,$

We assume an ice boundary at $y=\eta$, with ice toward the pole and no ice toward the equator. The albedo is therefore

$$\alpha \left(y, \eta \right) = \begin{cases} \alpha_1, & y < \eta, \\ \alpha_2, & y > \eta. \end{cases}$$

Rate of solar energy absorption at y = sine(latitude):

$$Qs(y)(1-\alpha(y,\eta))$$

Energy Balance Models

Inhomogeneous Earth

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha(y,\eta)) - (A+BT) + C(\overline{T}-T)$$

Look for an equilibrium solution having an ice line at $y=\eta$

$$T = T_{\eta}^{*}(y)$$

This equilibrium satisfies

$$Qs(y)(1-\alpha(y,\eta))-(A+BT_{\eta}^{*}(y))+C(\overline{T}_{\eta}^{*}-T_{\eta}^{*}(y))=0$$

Next step: Solve for the equilibrium temperature profile, assuming we know the ice boundary.

Energy Balance Models

Inhomogeneous Earth

$$Qs(y)(1-\alpha(y,\eta))-(A+BT_{\eta}^{*}(y))+C(\overline{T}_{\eta}^{*}-T_{\eta}^{*}(y))=0$$

Integrate

$$\int_{0}^{1} \left(Qs(y) \left(1 - \alpha(y, \eta) \right) - \left(A + BT_{\eta}^{*}(y) \right) + C \left(\overline{T}_{\eta}^{*} - T_{\eta}^{*}(y) \right) \right) dy = 0,$$

$$Q \Big(1 - \overline{\alpha} \left(\eta \right) \Big) - A - B \overline{T}_{\eta}^* = 0$$

where

$$\overline{\alpha}(\eta) = \int_0^1 \alpha(y, \eta) s(y) dy = \int_0^\eta \alpha_1 s(y) dy + \int_\eta^1 \alpha_2 s(y) dy$$
$$= \alpha_1 S(\eta) + \alpha_2 (1 - S(\eta)) = \alpha_2 - (\alpha_2 - \alpha_1) S(\eta),$$

and where

$$S(\eta) = \int_{0}^{\eta} s(y) dy$$

Given the ice line η , the global mean temperature is

$$\overline{T}_{\eta}^{*} = \frac{1}{B} (Q(1 - \overline{\alpha}(\eta)) - A)$$

Energy Balance Models

Inhomogeneous Earth

Equilibrium equation (given ice line):

$$Qs(y)(1-\alpha(y,\eta))-(A+BT_{\eta}^{*}(y))+C(\overline{T}_{\eta}^{*}-T_{\eta}^{*}(y))=0$$

Global mean temperature:

$$\overline{T}_{\eta}^{*} = \frac{1}{B} (Q(1 - \overline{\alpha}(\eta)) - A)$$

Solve for equilibrium temperature profile:

$$T_{\eta}^{*}(y) = \frac{1}{B+C} (Qs(y)(1-\alpha(y,\eta)) - A + C\overline{T}_{\eta}^{*})$$

where

$$\alpha(y,\eta) = \begin{cases} \alpha_1, & y < \eta, \\ \alpha_2, & y > \eta. \end{cases}$$

$$\overline{\alpha}(\eta) = \alpha_2 - (\alpha_2 - \alpha_1) \int_0^{\eta} s(y) dy$$

Energy Balance Models

Inhomogeneous Earth

$$T_{\eta}^{*}(y) = \frac{1}{B+C} (Qs(y)(1-\alpha(y,\eta)) - A + C\overline{T}_{\eta}^{*})$$

Additional assumption: At equilibrium, the average temperature across the ice boundary is T_c = -10 °C

$$\begin{split} T_{\eta}^{*}\left(\eta-\right) &= \frac{1}{B+C} \Big(\mathcal{Q}s\left(\eta\right)\left(1-\alpha_{1}\right)-A+C\overline{T}_{\eta}^{*}\right) \\ T_{\eta}^{*}\left(\eta+\right) &= \frac{1}{B+C} \Big(\mathcal{Q}s\left(\eta\right)\left(1-\alpha_{2}\right)-A+C\overline{T}_{\eta}^{*}\right) \\ T_{c} &= \frac{T_{\eta}^{*}\left(\eta-\right)+T_{\eta}^{*}\left(\eta+\right)}{2} = \frac{1}{B+C} \Big(\mathcal{Q}s\left(\eta\right)\left(1-\alpha_{0}\right)-A+C\overline{T}_{\eta}^{*}\right) \end{split} \tag{s is continuous)}$$

$$\alpha_0 = \frac{\alpha_1 + \alpha_2}{2}$$

Energy Balance Models

Inhomogeneous Earth

Now we can solve for the ice boundary.

$$\frac{1}{B+C} \left(Qs(y) (1-\alpha_0) - A + C\overline{T}_{\eta}^* \right) = T_c$$

where
$$\overline{T}_{\eta}^{*} = \frac{1}{B} \Big(Q \Big(1 - \overline{\alpha} \, \Big(\eta \Big) \Big) - A \Big)$$

$$\frac{1}{B+C} \left(Qs(\eta) (1-\alpha_0) - A + \frac{C}{B} \left(Q (1-\overline{\alpha}(\eta)) - A \right) \right) = T_c$$

which reduces to

$$\frac{Q}{B+C}\bigg(s(\eta)\big(1-\alpha_0\big)+\frac{C}{B}\bigg(1-\alpha_2+\big(\alpha_2-\alpha_1\big)\int_0^\eta s(y)\,dy\bigg)\bigg)-\frac{A}{B}-T_c=0$$

which can be solved numerically for η











