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Energy Balance Models

Homogeneous Earth

R _p(1-a)-(4+BT)

Equilibrium temperature

1-a)-4
7, - 209

B
T, =16.4°C
T,=-37.7°C

ice free Earth: o = a,,
eq

snowball Earth: a = a,,
According to Tung, glaciers form if 7< 7, =-10 °C and meltif 7> 7,

Since 16.4 > -10, no glacier would form on an ice free Earth
Since -37.7 < -10, no glacier would melt on a snowball Earth.
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Homogeneous Earth

RIL _o(1-a)-(4+BT)
dt
T = global mean temperature (°C)
Q = mean solar input (W/m?)
a = mean albedo
A+BT = outward radiation (linear approximation)
R = heat capacity of Earth’s surface

Tung’s values:
T = global mean temperature (°C)
0 = 343 Wim?
A = 202 W/m?
B = 1.9 W/(m?°C)
o =a,=0.32 (water and land)
a =a,=0.62 (ice)
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Inhomogeneous Earth

RE:Q( )(1-a(y.n))-(4+BT)+C(T-T)

ot
Now the annual average surface temperature 7 is a function of
y = sine(latitude).
The albedo « is a function of y and the location # of the ice boundary.
The outward radiation A+BT is as before.
Heat transport across latitudes is assumed to be linear and is given by
c(T-1)
where C = 3.04 W/m2
The global annual average insolation is O, with the same value as above,
while s(y) is the relative insolation, normalized to satisfy

J‘:S(y)dy
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Inhomogeneous Earth

or =
RE:QS(Y)(]'*“(YW))’(A+BT)+C(T7T)
The variable y is chosen instead of the latitude, because the global annual
mean temperature is given by
— 1
T()=[.7(v.)dy

We assume symmetry with respect to the equator, so the variable y takes
on values between 0 and 1.

We assume an ice boundary at y = #, with ice toward the pole and no ice
toward the equator. The albedo is therefore

@, y<i,
R

Rate of solar energy absorption at y = sine(latitude):

0s(y)(1-a(v.m))
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Inhomogeneous Earth

‘Qs(y)(l-a(y,q))-(A+Bz;(y))+c(fq‘-r;(y)):o‘

Integrate:
[(0s(r)a-aly.m)~(4+BT; (»)+C(T; -T; ()))dv =0,
01-a(r))-4-8T; -0
where 1 ” 1
a(n)=[ a(yn)s(y)dy=[ as(y)dy+ [ as(y)dy

= ZZ]S(I])+ a, (1*5‘(7])) =a, 7(0:2 7a])S(l7),

and where
S(m)=[s(»)ar

Given the ice line 7, the global mean temperature is

L (0(1-(n))- 4)
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Inhomogeneous Earth

aor _
RS =0s(y)(1-a(y.n))-(4+BT)+C(T-T)
Look for an equilibrium solution having an ice line aty =
T=1;(»)

This equilibrium satisfies

|05 (1) () ~(4+B7; () + €(7; -7, () =]

Next step: Solve for the equilibrium temperature profile, assuming we
know the ice boundary.
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Inhomogeneous Earth

Equilibrium equation (given ice line):
Os(y)(1-a(y.n))~(4+ BT, (»)+C (T, -1, (y))=0
Global mean temperature:

T :%(Q(l—&(ry))—/i)

n

Solve for equilibrium temperature profile:

Ty (v)= B1C(Qf(y)(lfa(y,ﬂ))*/ﬂcﬁ')

@, y<mn,
a(yvﬂ):{a] v
- .

ﬁ(n):az—(az—al)I;7s(y)dy

where
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Inhomogeneous Earth

T,‘(y):#(QS(y)(lfa(m))*A+CTJ)
B+C

Additional assumption: At equilibrium, the average temperature across the
ice boundaryis 7, =-10 °C

5 (1-)= 5 o (0s(n)-a) - 4+ CT)
1 B (s is continuous)
T (n *)ZW(QS(U)(P%)* A+ CT,:')
L)+ (n+) 1 -
T, :%ZW(QS(W)(]-’%)’A*CZ, )
where
= a+a,

2
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Inhomogeneous Earth

Now we can solve for the ice boundary.

(s a)- A+ T )=,
where
7y = 5 (0l-a(n)-4)

"
Therefore,

1 C _
m[g:(r])(l—au)—A+E(Q(1—a(r]))—A)j: T
which reduces to
Q c " N o4
F2(sa-a)s S, o) [[s0)ab) |- 270
which can be solved numerically for 7 .
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Inhomogeneous Earth

What about s(p) , the relative insolation function?

s(y) :%J:K 1—(,]17;;2 sinﬂcosy—ycosﬂ)zdy

where £ = obliquity. (Current value is about 23.5°.)

Tung and North's quadratic approximation:

s(y)=1-0241(3y* 1)
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Inhomogeneous Earth

Relative Insolation Function

green = quadratic
approximation (Tung
and North)

mauve = formula using
obliquity of 23.5°

relative insolation

sinelatitude)
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equilibrium ice boundaries
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Inhomogeneous Earth

equilibrium temperature profiles
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Tung conclusions:

four equilibrium solutions: 8 | ————, \
snowball: stable % 10 0
large cap: unstable g L
small cap: stable £
ice free: stable -0

-40

50

00 02 04 06 08 10
sin(latitude)

——icefree =—snowball ==smallcap ===big cap
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Inhomogeneous Earth

equilibrium temperature profiles
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four equilibrium solutions: g
snowball: stable ER 0~
g
large cap: unstable s % L
small cap: stable §
ice free: unstable -0
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Inhomogeneous Earth

What'’s next?

Ri—f:Qs(y)(l—a(y,n))—(A+BT)+C(f—T)

What if we use the information from the Milankovitch cycles as input
to the energy balance model? Can we model the glacial cycles?

Q is determined by eccentricity.
s(y) is determined by obliquity.

To be continued ... .




