Glacial Cycles

Temperatures in the Cenozoic Era
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180 in Foraminifera Fossils During the Past 4.5 Myr
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records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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180 in Foraminifera Fossils During the Past 1.0 Myr
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Recent (last 400 Kyr) Temperature Cycles

Vostok Ice Core Data

J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature 399, 429-436.
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What Causes Glacial Cycles?

Widely Accepted Hypothesis

The glacial cycles are driven by the variations in the Earth’s orbit
(Milankovitch Cycles), causing a variation in incoming solar
radiation (insolation).

This hypothesis is widely accepted, but also widely regarded as
insufficient to explain the observations.

The additional hypothesis is that there are feedback
mechanisms that amplify the Milankovitch cycles. What these
feedbacks are and how they work is not fully understood.
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Solar Forcing (Hays, et al)

307 A Ortital data B 23K lasolation [ Insolaticn
_p)fpust 468000 | 55°5 ur. €0°N
23K years) Winter (3 Summer
(past 458,000 4 (past 468,000
. i) years) years)
H Bangwidih 10 — ’in '| — fif)
L. 19K i
E 0 | 41K s || |l
;.' 9K & ) | / \(lgp(
f  ——Obliquity | |
s J L 4 7T Precession h | | IJ VK
ofed M JU S

L

fo 033 067 100 .133 167 0 033 067 00 133 67 O 033 067 100 .33 167 f
/fwomw 15 10 TS5 & 003 15 16 75 6 oo 3 15 10 75 6 1/

Frequency (cycles/1000 years)

Hays, et al, Science 194 (1976), p. 1125

Glacial Cycles

Climate Response, Hays, et al

€. daviriana
logs Pif}

{0 033 067 100 133 187 0 033 087 100 133 ab7
1/ 10030 15 10 75 & 10030 18 10 75 6

Frequemey [cyches/1000 years)

0 033 067 .100 .133 167 1
1030 15 1 735 6 17

Three different temperature proxies from sea sediment data.

Hays, et al, Science 194 (1976), p. 1127
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Hays Summary

Forcing Response
precession ‘ ‘ eccentricity
Increasing A P
contribution obliquity ‘ ‘ obliquity
eccentricity ‘ ‘ precession

The explanation is that there are nonlinear feedbacks.

Is there another explanation?

Hays, et al, Science 194 (1976), p. 1127
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Climate Response (Zachos, et al)
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Zachos, et al, Science 292 (2001), p. 689
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Zachos Summary

Forcing Response

precession ‘ ‘ obliquity

Increasing T .
contribution obliquity ‘ ‘ eccentricity
eccentricity ‘ ‘ precession

Nonlinear effects?
Forcing is defined as the maximum insolation at latitude 65° N.

Is there another definition of forcing?

Zachos, et al, Science 292 (2001), p. 689
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Heat Balance
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Historical Overview of Climate Change Science, IPCC AR4, p.96
http://ipcc-wgl.ucar.edu/wgl/Report/AR4WG1_Print_CHO1.pdf

Glacial Cycles
Ice Albedo Feedback Model
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insolation albedo outward heat
radiation  transport

y = sine of latitude
T(y) = annual mean temperature
Qs(y) = annual mean insolation
O = global annual mean insolation

This equation has a stable equilibrium consisting of polar ice caps.

The latitude of the equilibrium ice boundary and the equilibrium global annual
mean temperature are functions of the parameters.

K.K.Tung, Topics in Mathematical Modeling, Princeton (2007), Chapt 8
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Ice Albedo Feedback Model

(1-a(y.n))-(4+BT)+C(T-T)

Idea

Instead of solar forcing (maximum insolation at 65 N latitude), use the global
annual mean temperature predicted by the model.

Using Kepler’s Laws, we can compute:
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a = semimajor axis

e = eccentricity
f = obliquity
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Ice Albedo Feedback Model
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Note that O, the global annual mean insolation depends only on the
semimajor axis and the eccentricity.

Note that s(y), the insolation distribution by latitude, depends only on the
obliquity.
Note that the effect due to precession disappears when averaged over a year.
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Global Annual Average Insolation
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Fig. 11. Variation of the semi-major axis of the Earth-Moon barveen-
ter (in AU from| =250 10 +250 Myr.
Semi major axis does not change much:
.005% corresponding to .01% change in global average insolation

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Global Annual Average Insolation

Eccentricity
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Note periods of about 100 Kyr and 400 Kyr.
As e varies between 0 and 0.06, (1-¢2)2 varies between 1 and 0.0018,
or about 0.2%. (Twenty times the effect due to a.)

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Relative Insolation Function
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Note period of about 41 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Relative Insolation Function
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Annual Mean Insolation
(as a function of latitude)

0s(y)

y = sine of latitude
QO = global annual mean insolation
(depends primarily on eccentricity)

s(y) = relative insolation as a function of latitude
(depends only on obliquity)

We can use the ice-albedo feedback model to compute the equilibrium ice
line, the global mean temperature, and the polar mean temperature as
functions of eccentricity and obliquity.
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Global Annual Mean Temperature

Computed global
mean temperature for
extremes in
eccentricity and
obliquity
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Polar Annual Mean Temperature

Computed polar mean
temperature for
extremes in
eccentricity and
obliquity

Glacial Cycles

Conclusions
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Conclusions

Model Prediction Response
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When the usual definition of forcing is replaced by the predictions of the ice-
albedo feedback model, the relative effects due to the Milankovitch cycles
agree with the observed data.
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Climate and the Earth’s Glacial Cycles

Heat Balance

Historical Overview of Climate Change Science, IPCC AR4, p.96
http://ipcc-wgl.ucar.edu/wgl/Report/AR4WG1_Print_CHOl1.pdf

Climate and the Earth’s Glacial Cycles

Not Explained By Ice Albedo Feedback

insolation albedo  outward heat
radiation  transport

The observed amplitude of temperature variation is about
5 times higher than that predicted by the model.

Other feedback mechanisms (e.g. greenhouse gases) clearly
matter.

The long-term trends are also not in the model and are not
explained by Milankovitch cycles.

Glacial Cycles

Temperatures in the Cenozoic Era
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Hansen, et al, Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J. 2 (2008)




A. Power spectrum of climate for

the last 4.5 Myr. Note the peaks at

41Kyr and 100 Kyr.

B. Power spectrum of climate for
the period 25 Myr bp to 20.5 Myr

bp. Note the new peak at 400 Kyr
and the “split” peaks at 126Kyr and

95 Kyr.
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More from Zachos
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Zachos, et al, Science 292 (2001), p. 689




