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Ice-Albedo Feedback Glacial Cycles

Climate in the Cenozoic Era
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What Causes Glacial Cycles?

Widely Accepted Hypothesis

The glacial cycles are driven by the variations in the Earth’s orbit
(Milankovitch Cycles), causing a variation in incoming solar
radiation (insolation).

This hypothesis is widely accepted, but also widely regarded as
insufficient to explain the observations.

The additional hypothesis is that there are feedback
mechanisms that amplify the Milankovitch cycles. What these
feedbacks are and how they work are not fully understood.
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Precession

Precession

http://earthobservatory . nasa.gov/Library/Giants/Milankovitch/mi lankovitch_2. html
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Eccentricity
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Note periods of about 100 Kyr and 400 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Obliquity
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Note period of about 41 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,

Astronomy & Astrophysics 428, 261-285.
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Precession Index
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index = e Sinp, where e = eccentricity and p = precession angle
(measured from spring equinox)

Note period of about 23 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Eccentricity Power Spectrum
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Why obliquity and eccentricity?

Incoming Solar Radiation (Insolation), averaged over the entire
globe and over a full year, depends only on eccentricity e, not on
either obliquity or precession.

Insolation as a function of latitude, averaged over a full year,
depends on eccentricity e and obliquity /3, but not precession.

1=0(s(1f)
where
s(y,ﬂ):%L”\/l—(\/l—yz sinﬁcosy—ycosﬂ)zdy

y =sin(latitude)
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Why obliquity over eccentricity?

Possible explanation: Ice-albedo feedback

Ice reflects more energy than land or water.
more ice — less energy — colder — more ice
less ice — more energy — warmer — less ice
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Heat Balance

Historical Overview of Climate Change Science, IPCC AR4, p.96
http://ipcc-wgl.ucar.edu/wgl/Report/AR4WG1_Print_CHO1.pdf
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Budyko-Sellers Model

or =
Ro-= 0s(y)(1-a(y.n))-(4+BT)+C(T-T)
[E— L B Y S
insolation albedo re-radiation  transport

T=T(y,t): annual mean surface temperature
y=sin(latitude)  ye[0,1]

Q: global annual mean insolation

s(¢): relative annual mean insolation [is(r)dv=1
y=n: iceboundary

a,  y<i,
a(y,ﬂ):{a‘ o albedo
o0 V>0

T(t)= j:T(y, t)dy: global annual mean temperature
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Solve for equilibrium solution 7*(y) .
Set right hand side = 0.

equilibrium temperature profiles
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Budyko-Sellers Model

R%: Qx(y)(l—a(y,r]))—(/l+BT)+C(T—T)

Note that the equilibrium solution 7*(y) depends on Q and
s(y), which depend on the eccentricity e and the obliquity /3.
Therefore, the equilibrium location # of the ice boundary and
the equilibrium global mean temperature (GMT) depend on the

eccentricity and the obliquity.
We can use the computed values of eccentricity and obliquity to
compute the ice boundary and GMT over the glacial cycles.

s(y,ﬂ)=%fu \/l—(\[l—yz sinﬂcosy—ycosﬂ)zdy
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Budyko-Sellers Model
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The ice-albedo feedback model correctly predicts the _ )
dominance of obliquity, but it fails to explain most of the 41 Kyr dominates 100 Kyr dominates

other features of the climate data. r A - It \
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Model output 100,000 Year Problem: What's up with the last million years?

Did eccentricity reassert itself? Or something else?
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Huyber’s Analysis of Deglaciations Huyber’s Analysis of Deglaciations
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The deglaciations are triggered by obliquity cycles, but
sometimes they don'’t trigger. When cycles are skipped, the
deglaciations can be separated by 80 Kyr or 120 Kyr,
creating the appearance of 100 Kyr cycles.
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Peter Huybers, "Glacial variability over the last two million years: an extended depth-derived
agemodel, continuous obliquity pacing, and the Pleistocene progression,” Quaternary Science
Reviews 26, 37-55 (2007).
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Huyber’s Triggering Model Huyber’s Triggering Model
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Huyber's Triggering Model Vostok Core Sample Data

Petit, et al, Nature 399 (June 3 1999), pp.429-436
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What about greenhouse gases and the carbon cycle?

/

Andrew Hogg suggested a model incorporating the carbon cycle.

atmos CO2 ppm
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Hogg’s Model Hogg’'s Model
s
e _5(0)+G(C)-oT,
dt . . )
dC dr g G
—=V—-(Wy+W,C)+ B(C,x —C)max| ——¢,0|. = z
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Andrew McC. Hogg, "Glacial cycles and carbon dioxide: A model,"
Letters 35 (2008).
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Hogg’s Model

Hogg's model shows how the carbon cycle can act as a feedback
amplifying and modifying the insolation forcing, but the forcing is

somewhat artificial, and the triggering mechanism is difficult to justify.

Also, it does not solve the 100,000-year problem.

What if the 100,000 year glacial cycle is not driven by
eccentricity, but is a natural oscillation of the Earth’s climate?

Saltzman and Maasch suggested just such a model.
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Salzman-Maasch Model

Milankovitch forcing

global ice mass — X =—X — Y —uM (1)
atmospheric CO, —> Y =—pZ+rY +sZ*-Z%Y

deep ocean temperature —> 7= 7q(X +Z)

Barry Salzman and Klrk A. Maasch, "A Low-Order Dynamlcal Model of Global Climatic Variability Over the
Full * Journal of 95 (D2), 1955-1963 (1990)
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Salzman-Maasch Model
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Fig. 7. Unfarced (free) solution for (4)-(6) with ¢ = 1.2, s = 0.8,

p and r varying linearly between 0.8 — 1.0 and 0.7 —+ 0.8,
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Salzman-Maasch Model
forced
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Salzman-Maasch Model

The Salzman-Maasch model shows how the carbon cycle and the
ocean currents can interact to produce unforced oscillations with
periods of about 100,000 years. The same model with slightly
different parameters can exhibit stationary behavior. By forcing the
model with Milankovitch cycles and by slowly varying the parameters
over the last two million years, they can produce a bifurcation from
small oscillations tracking the Milankovitch cycles to large oscillations
with a dominant 100,000 year period.

Seems like a nice idea, but it is not widely accepted as the
explanation.
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Current Project

The Mathematics and Climate Research Network (MCRN) has a
Webinar working group developing a model incorporating ice-albedo
feedback with the carbon cycle.

Local expert: Samantha Oestriecher
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The 100,000-Year Problem
Summary

100 Kyr cycles during the last million years, but 41 Kyr cycles before
that.

Why?

Huybers: Obliquity rules, but glaciers started skipping beats.
Alternating 80 Kyr and 120 Kyr looks like 100 Kyr

Saltzman & Maasch: Under some conditions, the climate naturally
oscillates at 100 Kyr. Those conditions arose 1 Myr ago. Before that,
the climate tracked Milankovitch.

Other ... ?




