Glacial Cycles

Temperatures in the Cenozoic Era
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Hansen, et al, Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J. 2 (2008)
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180 as a Climate Proxy

The isotope 160 preferentially evaporates from the ocean and is
sequestered in glaciers, leaving the heavier isotope 180 more highly
concentrated in the ocean. Thus oceanic concentration of the
isotope 80 is higher during glacial periods.

Foraminifera absorb more 180 into their skeletons when the water
temperature is lower and when more 80 is in the water.

Thus higher concentrations of 180 in foraminifera fossils indicate
lower ocean temperatures and higher glacier volume.
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180 in Foraminifera Fossils During the Past 4.5 Myr
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d180
records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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180 in Foraminifera Fossils During the Past 1.0 Myr
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d180
records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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Recent (last 400 Kyr) Temperature Cycles

Vostok Ice Core Data

J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature 399, 429-436.
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What Causes Glacial Cycles?

Widely Accepted Hypothesis

The glacial cycles are driven by the variations in the Earth’s orbit
(Milankovitch Cycles), causing a variation in incoming solar
radiation (insolation).

This hypothesis is widely accepted, but also widely regarded as
insufficient to explain the observations.

The additional hypothesis is that there are feedback
mechanisms that amplify the Milankovitch cycles. What these
feedbacks are and how they work are not fully understood.
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Heat Balance

Historical Overview of Climate Change Science, IPCC AR4, p.96
http://ipcc-wgl.ucar.edu/wgl/Report/AR4WG1_Print_CHO1.pdf
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Eccentricity
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John Imbrie & Katherine Palmer Imbrie, Ice Ages: Solving the Mystery, Harvard Univ. Press, 1979.

Glacial Cycles

Eccentricity
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Eccentricity
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Global Annual Average Insolation

Solar output: K Watts
Solar intensity at distance » from the sun:
K
Q(t): 2 Wm’*
4;rr(t)
Cross section of Earth: r? m?
KrE2

. . K w

Global solar input: 4r(t)z

Total annual solar input ( P = one year (in seconds)):
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Global Annual Average Insolation

Specific angular momentum (angular momentum per unit mass):
Q=r%0 mis?

Total annual solar input:
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Mean annual solar input: )
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Mean annual solar intensity on the Earth’s surface:
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Global Annual Average Insolation

Kepler’s Third Law:

Pr~a¥? a = semimajor axis
Derived from Kepler:
1-e® ~aQ? e = eccentricity
Mean annual solar intensity:
K _Ra%d’ _ Ka® 2
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Global Annual Average Insolation
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Semi major axis does not change much:
.005% corresponding to .01% change in global average insolation

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Eccentricity
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Note periods of about 100 Kyr and 400 Kyr.
The effect due to eccentricity is more significant, but not that much:
As e varies between 0 and 0.06, (1-e2)12 varies between 1 and 0.0018,
or about 0.2%. (Twenty times the effect due to a.)

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Obliquity

http://upload.wikimedia.org/wikipedia/commons/6/61/Axial Ti Itobliquity . png
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Obliquity
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Note period of about 41 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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Precession

http://earthobservatory.nasa.gov/Library/Giants/Milankovitch/milankovitch_2._html
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Precession Index

time (kyr)

index = e Sinp, where e = eccentricity and p = precession angle
(measured from spring equinox)

Note period of about 23 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth,
Astronomy & Astrophysics 428, 261-285.
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http://en.wikipedia.org/wiki/Milankovitch_cycles
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Daily Average Insolation at Summer Solstice at 65° N
Insolation at a point on the Earth’s surface
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(p,y) = (latitude, longitude)
(r,0) = position of Earth in orbital plane
f = obliquity angle
p = precession angle

Daily average insolation at latitude ¢ at summer solstice
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Daily Average Insolation at Summer Solstice at 65° N
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Solar Forcing (Hays, et al)
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Climate Response, Hays, et al
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Three different temperature proxies from sea sediment data.

Hays, et al, Science 194 (1976), p. 1127
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Hays, et al, Summary

1) Three indices of global climate have been monitored in the
record of the past 450,000 years in Southern Hemisphere
ocean-floor sediments.

2) ... climatic variance of these records is concentrated in three
discrete spectral peaks at periods of 23,000, 42,000, and
approximately 100,000 years. These peaks correspond to the
dominant periods of the earth's solar orbit, and contain
respectively about 10, 25, and 50 percent of the climatic
variance.

Hays, et al, Science 194 (1976), p. 1131
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Hays, et al, Summary

3) The 42,000-year climatic component has the same period as
variations in the obliquity of the earth's axis and retains a constant
phase relationship with it.

4) The 23,000-year portion of the variance displays the same periods
(about 23,000 and 19,000 years) as the quasiperiodic precession
index.

5) The dominant, 100,000-year climatic component has an average
period close to, and is in phase with, orbital eccentricity. Unlike the
correlations between climate and the higher-frequency orbital variations
(which can be explained on the assumption that the climate system
responds linearly to orbital forcing), an explanation of the correlation
between climate and eccentricity probably requires an assumption of
nonlinearity.

Hays, et al, Science 194 (1976), p. 1131
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Hays, et al, Summary

6) It is concluded that changes in the earth's orbital geometry are
the fundamental cause of the succession of Quaternary ice ages.

7) Amodel of future climate based on the observed orbital-climate
relationships, but ignoring anthropogenic effects, predicts that
the long-term trend over the next seven thousand years is toward
extensive Northern Hemisphere glaciation*.

*Quoted by George Will, Washington Post, February 5, 2009

Hays, et al, Science 194 (1976), p. 1131

Glacial Cycles
The Coming Ice Age
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History of Discovery
Agassiz announces glacial theory

Evidence of multiple ice ages discovered in lllinois
Magnetic reversals discovered

180 theory developed
— h : .
... climate fluctuations found in ocean cores

S e paleomagnetic time scale developed
Hays, et al
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Milankovitch explains glacial cycles
Croll explains glacial cycles

Humboldt debunks Adhemar

Adhemar explains glacial cycles




