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Glacial Cycles

Temperatures in the Cenozoic Era
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Hansen, et al, Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J. 2 (2008)

Glacial Cycles

Benthic Data (5180)
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed
benthic d180 records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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180 as a Climate Proxy

The isotope 160 preferentially
evaporates from the ocean and is
sequestered in glaciers, leaving the
heavier isotope 180 more highly
concentrated in the ocean. Thus
oceanic concentration of the isotope
180 is higher during glacial periods.
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Foraminifera absorb more 180 into their
skeletons when the water temperature is lower
and when more 80 is in the water.

Thus higher concentrations of 180 in foraminifera
fossils indicate lower ocean temperatures and
higher glacier volume.
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180 in Foraminifera Fossils During the Past 1.0 Myr
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Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed
benthic d180 records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.
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Recent (last 400 Kyr) Temperature Cycles

Vostok Ice Core Data

J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok
ice core, Antarctica, Nature 399, 429-436.
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What Causes Glacial Cycles?

Widely Accepted Hypothesis

The glacial cycles are driven by the variations in the Earth’s orbit
(Milankovitch Cycles), causing a variation in incoming solar
radiation (insolation).

This hypothesis is widely accepted, but also widely regarded as
insufficient to explain the observations.

The additional hypothesis is that there are feedback
mechanisms and/or triggering mechanisms that amplify the
Milankovitch cycles. What these feedbacks are and how they
work are not fully understood.
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Heat Balance
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Historical Overview of Climate Change Science, IPCC AR4, p.96
http://ipcc-wgl.ucar.edu/wgl/Report/AR4WG1_Print_CHO1.pdf
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Eccentricity
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John Imbrie & Katherine Palmer Imbrie, Ice Ages: Solving the Mystery, Harvard Univ. Press, 1979.
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Eccentricity
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Eccentricity

Perihelion: 91.5 Ve gees
Aphelion: 94.5
Change in radius:
3/93=3.2% F—
oo

Change in insolation: Aghalion 1 A% ofionmiss
6.4%

Six percent less insolation
in the southern winter than
the northern winter.

e

6.4% of 342 W/m? = Mg

22 W/m?




Glacial Cycles Glacial Cycles

Global Annual Average Insolation

Earth’s Orbit
Solar output: K ~4x10” Watts

Kepler’s First Law: The orbit of every
planet is an ellipse with the Sun at one of
the two foci.

Solar intensity at distance » from the sun:
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Total annual solar input (P = one year (in seconds)):

"k k(" a
J e 5 dt:% 5 Joules
o 4r(1) o r(t)

Eccentricity =c/a

Glacial Cycles Glacial Cycles

Global Annual Average Insolation Global Annual Average Insolation

Specific angular momentum (angular momentum per unit mass): Kepler's Third Law:
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Planetary Motion Global Annual Average Insolation

Laskar:
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Fig. 11. Variation of the semi-major axis of the Earth-Moon barycen-

i ter (in AU) from[=250 1o +250 Myr)
The orbits of all the planets can be

computed (both forward and backward Semi major axis does not change much:
in time) for billions of years. . . . .
.005% corresponding to .01% change in global average insolation

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth, Aszronomy &
Astrophysics 428, 261-285.

Jacques Laskar (1955-)
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Eccentricity

Note periods of about 100 kyr and 400 kyr.
The effect due to eccentricity is more significant, but not that much:
As e varies between 0 and 0.06, (1-e2)Y2 varies between 1 and
1.0018, or about 0.2%. (Twenty times the effect due to a.)

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth, Astronomy &
Astrophysics 428, 261-285.
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Obliquity

http://upload.wikimedia.org/wikipedia/commons/6/61/AxialTiltObliquity.png

Glacial Cycles
Obliquity
time (Kyr)

Note period of about 41 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth, Astronomy &
Astrophysics 428, 261-285.
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Precession

http://earthobservatory.nasa.gov/Library/Giants/Milankovitch/milankovitch_2_html
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Precession Index

1000 900 200 700 500 500 400 300 200 100 o

time (kvr)

index = e Sinp, where e = eccentricity and p = precession angle
(measured from spring equinox)

Note period of about 23 Kyr.

J. Laskar, et al (2004) A long-term numerical solution for the insolation quantities of the Earth, Astronomy &
Astrophysics 428, 261-285.
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ilankovitch Cycles
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Eccentricity
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John Imbrie & Katherine Palmer Imbrie, ice Ages: Solving the Mystery, Harvard Univ. Press, 1979.
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Daily Average Insolation at Summer Solstice at 65° N
Insolation at a point on the Earth’s surface
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(p,y) = (latitude, longitude)
(r,0) = position of Earth in orbital plane
£ = obliquity angle
p = precession angle

Daily average insolation at latitude ¢ at summer solstice
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Who was Milankovitch?

Milutin Milankovitch was a Serbian
mathematician and professor at the
University of Belgrade.

In 1920 he published his seminal work on
the relation between insolation and the
Earth’s orbital parameters.

In 1941 he published a book explaining his
entire theory.

His work was not fully accepted until 1976.
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What happened in 1976?

Hays, Imbrie, and Shackleton, “Variations in the Earth's James D. Hays
Orbit: Pacemaker of the Ice Ages,” Science 194, 10 o =
December 1976. E =0l

W

John Imbrie

“It is concluded that changes in the earth's orbital
geometry are the fundamental cause of the succession
of Quaternary ice ages.”

Nicholas Shackleton
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Solar Forcing (Hays, et al)
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Hays, et al, Science 194 (1976), p. 1125
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Climate Response, Hays, et al
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Three different temperature proxies from sea sediment data.

Hays, et al, Science 194 (1976), p. 1125
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Hays, et al, Summary

1) Three indices of global climate have been monitored in the
record of the past 450,000 years in Southern Hemisphere
ocean-floor sediments.

2) ... climatic variance of these records is concentrated in three
discrete spectral peaks at periods of 23,000, 42,000, and
approximately 100,000 years. These peaks correspond to the
dominant periods of the earth's solar orbit, and contain
respectively about 10, 25, and 50 percent of the climatic
variance.

Hays, et al, Science 194 (1976), p. 1125
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Hays, et al, Summary

3) The 42,000-year climatic component has the same period as
variations in the obliquity of the earth's axis and retains a constant
phase relationship with it.

4) The 23,000-year portion of the variance displays the same periods
(about 23,000 and 19,000 years) as the quasiperiodic precession
index.

5) The dominant, 100,000-year climatic component has an average
period close to, and is in phase with, orbital eccentricity. Unlike the
correlations between climate and the higher-frequency orbital variations
(which can be explained on the assumption that the climate system
responds linearly to orbital forcing), an explanation of the correlation
between climate and eccentricity probably requires an assumption of
nonlinearity.

Hays, et al, Science 194 (1976), p. 1125
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Hays, et al, Summary

6) It is concluded that changes in the earth's orbital geometry are
the fundamental cause of the succession of Quaternary ice ages.

7) A model of future climate based on the observed orbital-climate
relationships, but ignoring anthropogenic effects, predicts that the
long-term trend over the next seven thousand years is toward
extensive Northern Hemisphere glaciation*.

*Quoted by George Will, Washington Post, February 5, 2009

Hays, et al, Science 194 (1976), p. 1125
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The Coming Ice Age
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History of Discovery

Agassiz announces glacial theory

Evidence of multiple ice ages discovered in Illinois
Magnetic reversals discovered

180 theory developed
climate fluctuations found in ocean cores

Fourier e

paleomagnetic time scale developed

Hays, et al

1800 1820 40 1860, 1880 1900 19&0 1940 1960 1980 2000

Milankovitch explains glacial cycles
Croll explains glacial cycles
Humboldt debunks Adhemar

Adhemar explains glacial cycles
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Church of Saint Sulpice, Paris
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Church of Saint Sulpice, Paris

Glacial Cycles

Church of Saint Sulpice, Paris
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Next Week

Glacial Cycles: Theory Since 1976.




