Huybers' Model:

Extending the current model & Identifying Deglaciations

Cameron Thieme

Mentor: Richard McGehee (U of Minn)

Outline of Talk

- Brief Introduction to Huyber's Model
 - Motivation
 - Model
- Summer Project Goals
 - Difficulties of Original Problems Forcing a New Focus
- Definition of Deglaciation Events
 - Problems
 - Duct-tape fixes
 - More sophisticated Approaches
- Conclusions/Future Directions

Motivation behind Huybers' model

- Mid-Pleistocene Problem (MPT)
- "Did the main forcing for glacial cycles change from obliquity to eccentricity?" (40kyr phase) (100kyr phase)

Power spectrum analysis to confirm 40k and 100k periods

Dominant peak at ~ 0.25 = 40kyr period

Dominant peak at $\sim 0.1 = 100$ kyr period

"Did the main forcing for glacial cycles change from obliquity (40kyr period) to eccentricity (100kyr period) at -1 Mil year?"

"No, it did NOT change. It has been ONLY obliquity (40kyr) pacing the glacial cycles for the last <u>2 Million years</u>"

Huybers' Model

Figure: Model simulation for last 2 Mil years with a=0.05, b=126, c=20

BLUE: Threshold function T_t RED: Glacial volume V t

How did obliquity give rise to the shift to 100kyr period?

- "...An explanation for the 100 Ka glacial cycles only requires a change in the likelihood of skipping an obliquity cycle, rather than new sources of long-period variability."
 - Peter Huybers, 2007

Why 2 Million years?

- Huybers had data for the last <u>5 Mil</u> years, but model is only for <u>2 Mil</u>
- His model argues that

$$a = 0.05, b = 126, c = 20$$

produces 40k average for -2 Mil \sim -1 Mil, 100k average for -1 Mil to present

Summer Project Goal

Extend the model to fit all of the available data (last 5 Mil)

- Need to refit the parameters a,b,c in threshold function to produce
 - 40kyr dominant period for -5 Mil to -1 Mil,
 - 100kyr dominant period for -1 Mil to 0 years

First Attempt at Parameter estimation of a,b,c in the threshold function

- Assuming $T_t = at + b + c\theta_t$, (i.e. linear trend)
- Reverse fitting of data using power spectrum

Reverse fitting of data using power spectrum

POWER SPECTRUM

CORRESPONDING DATA

AFTER

Smoothed spectrum

But that didn't work...

 This method reproduces deglaciation events that do not at all align with actual deglaciation times, but reproduces only the **frequency**

How did obliquity give rise to the shift to 100kyr period?

- "...An explanation for the 100 Ka glacial cycles only requires a change in the likelihood of skipping an obliquity cycle, rather than new sources of long-period variability."
 - Peter Huybers, 2007

Is skipping obliquity cycles the reason Huyber's model fits the data?

Threshold function with obliquity term

Threshold function without obliquity term

Change the shape of Threshold?

- Piecewise linear?
 - When to "tyrn on" the slope?

Logistic?

With Linear, ONLY Gradual increase in period possible

Logistic Threshold to be explored more...

One hurdle in determining a good model fit

- Both the deglaciation event times and frequency are important in determining whether the model fits well
- Do we have a reasonable definition for when deglaciation happens?

How to determine a deglaciation event?

- (Huybers) Decrease in ice volume between a local minimum and the following maximum must exceed one standard deviation(SD) of the data
 - This definition was adequate for the last 2 Mil years, but SD decreases more significantly throughout the last 5 Mil

Amplitude of deviation varies significantly, throughout the last 5 Mil

Duct-tape for Deglaciation definition for parameter estimation code

Keep Huybers' definition of deglaciation, except change SD to be calculated in 2 periods

This point is also a good candidate for when to turn on the slope for piecewise linear threshold

Huybers v. Lisiecki and Raymo: Some Discrepancies

The real problem with the definition of deglaciation

Adding more Duct-Tape

- Insert a parameter which tells the algorithm to ignore small blips in the data
- Opens up algorithm to questions as to why the parameter was chosen
 - Valid geological reason or just so that it looks pretty?
- Unclear that the same parameter would work for multiple data sets
 - Same major problem as Huybers

Empirical Mode Decomposition

- Used as an alternative to smoothing over 5Kya running averages.
- Uses the Hilbert-Huang transformation to break the input signals into complete and nearly orthogonal components
 - Intrinsic Mode Functions:
 - 1. There is at most one extrema between zero crossings.
 - 2. The function has a mean value of zero

Empircal Mode Decomposition Outline

- Obtain a cubic spline of the local maxima of the input data, and one for the local minima. Then average these to get the mean function, m(t).
- If we view the input signal as a function S(t), let h(t)=S(t)-m(t).
 - Define a new mean function, $m_h(t)$, as above, but using h(t) instead of the input signal.
- Iterate the above process until h(t) is an IMF, and then set h(t)=c₁(t)
- Iterate that entire process to get the set of IMF's: c₁, c₂,

Example of EMD

tps://www.clear.rice.edu/elec301/Projects02/empiricalMode/app.html

Why use the EMD for this problem?

- The EMD is useful in analyzing non-linear and nonstationary data sets.
 - The non-stationarity of the sediment-core data was one of the initial reasons that Huyber's algorithm could not be directly adopted to a larger time scale; the standard deviation was much greater in more recent years.
- The EMD retains the discrete time domain of its input; this is crucial for its use in identifying the deglaciation events.
 - Compare this to the issues that were had using Fourier analysis.

In Conclusion...

- It is clear that Huybers had to carefully present several components of the data to get his model to fit as well as it did.
 - start date, the definition of deglaciation, ice core samples
- His general idea of a gradual change in response to obliquity may still have some truth to it, especially given the variability of the amplitude of glacial cycles.

Future Work

- Find a more robust definition of deglaciation that can be extended to a larger data set.
- Rework the model to fit better with an arbitrary length of data.

