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The Scattering Problem

B Star passing “close” to our solar
system
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The Scattering Problem

B Star passing “close” to our solar
system

B Hyperbolic Restricted 3-Body
Problem
B Changes in some orbital
elements = changes in
climate
» Eccentricity
» Obliquity
» Precession
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Logistics of the HR3BP

B Move around in the plane — let
Sun be at origin
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Logistics of the HR3BP

B Move around in the plane — let
Sun be at origin

M Masses add to 1
B 2D

B Formula for eccentricity vector

> (g1, 92) — position

> g=+/aq +a

» ¢ — angular momentum
> 41— “mass”

» (p1, p2) — momentum
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Changes in Eccentricity in 2D Case

ecoentricity
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Change in eccentricity over time due to the passing star. Light Blue — m; = my = 0.5, Red — m; = 0.6, my, = 0.4, Orange —
my = 0.7, my = 0.3, Green — m; = 0.8, mp = 0.2, Purple = m; = 0.9, mp = 0.1.
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Questions...

B How do changes in the eccentricity affect changes in the climate?
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The Budyko Energy Balance Model

oT
ot

B T(y,t) — surface temperature at time t at latitude arcsin(y)
B R — heat capacity of the surface of the planet
|
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The Budyko Energy Balance Model

RIT = Qsly)(1-a)
| S —

incoming radiation

T(y,t) — surface temperature at time t at latitude arcsin(y)
R — heat capacity of the surface of the planet

Q@ — annual radiation from the Sun

s(y) — latitudinal distribution of energy

(1 — ) — fraction of radiative energy absorbed by the planet
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The Budyko Energy Balance Model

RIT = Qs(y) (1 - ) ~ (A+BT(y.0)

incoming radiation OLR

T(y,t) — surface temperature at time t at latitude arcsin(y)
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The Budyko Energy Balance Model

RIT = Qsly) (1) ~(A+BT(.1)) — € (T(r.1) ~ T(1))

incoming radiation OLR heat transport*

T(y,t) — surface temperature at time t at latitude arcsin(y)
R — heat capacity of the surface of the planet

Q@ — annual radiation from the Sun

s(y) — latitudinal distribution of energy

(1 — ) — fraction of radiative energy absorbed by the planet

A, B, C — empirical parameters

T(t) — annual average temperature
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The Budyko-Widiasih Model

Add in the dynamic ice line equation:
dn _
dt

B 7 — ice line location
[ |
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The Budyko-Widiasih Model

Add in the dynamic ice line equation:

an _

(T~ T(n)

B 7 — ice line location

W 7. — critical temperature
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Eccentricity

Wikipedia

The main component of Earth's orbit affecting the global annual incoming
solar radiation (insolation), Qs(y) , averaged over the entire surface of
Earth over an entire year, is the eccentricity of the ellipse that defines the
orbit of Earth.



Questions...

B How do changes in the eccentricity affect changes in the climate?

Insolation!

B Insolation can take on many different patterns, what about other
planets?
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Exoplanets around M-dwarf Stars

B There exists a habitable zone
around M-Dwarf stars (red
dwarf)
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Exoplanets around M-dwarf Stars

B There exists a habitable zone
around M-Dwarf stars (red
dwarf)

» Range in mass from about
0.075 to 0.50 solar mass

» Surface temperature < 4,000
K

» Most common type of star in
the neighborhood of the Sun
in the Milky Way

B This zone is so close to the star
that gravitational tides are

phys.org expected to lock a planet into

spin-orbit resonance states.
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Spin-Orbit Resonances

Spin-orbit resonance is defined as

rotation period

spin period
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Spin-Orbit Resonances

Spin-orbit resonance is defined as

rotation period

spin period

Ex. Our Moon rotates once every 27 days, the same period as its orbit, so
that it always keeps the same face toward Earth. (p = 1).

Ex. Mercury rotates three times during every two orbits, so p = 3/2.
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How does Eccentricity and Spin-Orbit Resonance Change
Habitability?

The outer edge of the habitable zone is defined as the furthest distance
at which liquid water on a planetary surface is not completely frozen.
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How does Eccentricity and Spin-Orbit Resonance Change
Habitability?

The outer edge of the habitable zone is defined as the furthest distance
at which liquid water on a planetary surface is not completely frozen.

These exoplanets have larger orbital eccentricities than those in our solar
system, which can lead to dramatic variations of stellar insolation

B 0<e<0.934
B Median: ~ 0.110
B Mean: ~0.172

According to [6], when p =1, we have the most stable climate and the
widest habitable zone and eccentricity shrinks the width of the habitable
zone.
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p = 1 Spin-Orbit Resonance State, [6]

(b)e=0.1
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Long-term mean surface temperatures for different eccentricities. Units are K. The black arrow shows the migrations of the
substellar points during an orbital cycle.
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p = 2 Spin-Orbit Resonance, e = 0.4
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Insolation for Other Spin-Orbit Resonance States
(e =0.4), [6]
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Incident stellar flux at the top of the atmosphere averaged over one orbital cycle for different spin-orbit resonance states. The

contour interval is 100 Wm™2.
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Temperature for Other Spin-Orbit Resonance States
(e =0.4), [6]
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Annual mean surface temperature averaged over one orbital cycle for different spin-orbit resonance states. Black curve shows
the sea ice boundaries.
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p = 1 is the Most Stable Climate, [6]

B “Striped ball” climate (half-integer resonances) is much warmer than
eyeball climate (integer resonances)
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p = 1 is the Most Stable Climate, [6]

B “Striped ball” climate (half-integer resonances) is much warmer than
eyeball climate (integer resonances)

B For p =1.0,1.5, and 2.5, surface albedos are stable

B Fastest increase in surface temperature if planet is moved closer to
parent star happens with p = 2.5

B Harder to get p = 1.0,2.0 to transition into snowball state, requires a
greater decrease in insolation
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Questions...

B How do changes in the eccentricity affect changes in the climate?
Insolation!

B Insolation can take on many different patterns, what about other
planets?
Exoplanets around M-Dwarf Stars

B Can we adapt the Budyko-Sellers Model to take into account the
spin-orbit resonances and eccentricity differences on these exoplanets?
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Questions...

B How do changes in the eccentricity affect changes in the climate?
Insolation!

B Insolation can take on many different patterns, what about other
planets?
Exoplanets around M-Dwarf Stars

B Can we adapt the Budyko-Sellers Model to take into account the
spin-orbit resonances and eccentricity differences on these exoplanets?
Well, that's what we're working on!
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Nondimensionalizing the Budyko Model

Non-dimensional constants:

5 A+BT
N Q
_C

=B

This yields the nondimensional Budyko equation

9 _

55 = S (1 —a(y,1)) =0 = (7, 1) =7 (¢(7, 1) —P(1))
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Budyko Model with Eccentricity as a Parameter
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Budyko Model with Eccentricity as a Parameter

Qo
Q= Q)= V1-—e?
s(y) — s(y,e) = % /027r ! a € c::)(:) f(v,p, B, e,lat,lon) dv

sines and cosines

Here...
B v = true anomaly
B 5 = obliquity
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Budyko Model with Eccentricity as a Parameter

Qo
Q= Q)= V1-—e?
s(y) — s(y,e) = % /027r ! a € c::)(:) f(v,p, B, e,lat,lon) dv

sines and cosines

Here...
B v = true anomaly
B 3 = obliquity

How does this change affect the model?
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Bifurcation Diagram for e

L L L L e
0.0 0.1 02 0.3 0.4

Green branch is stable, the other two are unstable.

Note: to make this diagram, we used a simplification of the insolation function
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Future Directions

B Look at more bifurcation diagrams for e
B Look at other spin-orbit resonances (relate it to [6])
B Recreate pictures from [6] using the Budyko Model

B Consider a dynamic albedo equation



Thank You!
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