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Lecture 10: Multiple Equilibria of the THC

10.1 Introduction – 2-box model

We have, in the previous lectures, laid the groundwork for this one, which is arguably the

central lecture concerning a conceptual understanding of the role of ocean circulation in climate

dynamics.  We introduce a box model, which represents the North Atlantic thermohaline

circulation (THC) in its simplest possible form: The entirety of the low latitudes is represented by

a single, well mixed box, as are the entire high latitudes. The model was introduced by Stommel

over forty years ago (Stommel (1961)); we use here the simplification of Marotzke (1990).

Despite its simplicity, the model displays an astonishing range of phenomena, many of which are

central to a general theoretical understanding of dynamical systems.1  All aspects of this model

can be calculated analytically, and exactly, with the exception of the explicit time-dependent

behaviour under time-varying forcing.
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Heuristically, we assume that the atmosphere controls the ocean temperature and the

surface fresh-water loss or gain, E (in m/s). Using the preceding lecture, we saw that this

approximation is equivalent to assuming a Haney restoring law for heat flux with infinitely

strong coupling; or, we use the extreme case of mixed thermohaline boundary conditions. We

will see in the lectures on the coupled box model, later in this course, how to view this

approximation as the limiting case of the coupled system. For now, let us proceed with the

assumption that T1 , T2 , and E are prescribed as external parameters2.

Again, as in the preceding lecture, we will use a virtual surface salinity flux, HS:

0SH S E D= (10.1)

where D is depth and S0 a reference salinity.

The boxes are connected by pipes near the surface and the bottom; the pipes are assumed

to have vanishing volume but are conduits for the flow. The thermohaline circulation strength is

denoted by q (strictly speaking, q represents THC/Volume; q has units of s-1). We use the sign

convention that q>0 denotes poleward surface flow, implying equatorward bottom flow and,

conceptually, sinking at high latitudes. This is the picture that we are used to when thinking about

the North Atlantic THC. Conversely, q<0 means equatorward surface flow and poleward bottom

flow. We assume a very simple flow law for q, namely, that it depends linearly on the density

difference between high and low latitudes:

[ ]1 2
0

k
q ρ ρ

ρ
= − (10.2)

where ρ0 is a reference density and k is a hydraulic constant, which contains all dynamics, that is, the

connection between density and the flow field. The equation of state is

( )0 1 ; 1,2i i iT S iρ ρ α β= − + = , (10.3)

where α and β are, respectively, the thermal and haline expansion coefficients,

( ) ( )0 01 1T Sα ρ ∂ ρ β ρ ∂ ρ≡ − ≡ . (10.4)

                                                
2 This is where we depart from Stommel (1961) and instead follow Marotzke (1990). Stommel

(1961) used Haney-type conditions for both temperature and salinity, but with a longer restoring

timescale for salinity. As a consequence, the original Stommel box model cannot readily be

solved analytically.
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For simplicity, we employ a linear equation of state; that is, both α and β are assumed constant.

The flow law, (10.2), thus becomes, using (10.3),

( ) ( )2 1 2 1q k T T S Sα β= − − −   (10.5)

As we assume that the temperatures are fixed by the atmosphere and enter the problem as

external parameters, we need not formulate a heat conservation equation. The salt conservation

equations for the Stommel model are

( )1 2 1SS H q S S= − + −� , (10.6)

( )2 2 1SS H q S S= − −� , (10.7)

which may require a little explanation. We postulate that flow into a box carries with it the

properties, in particular the salinity, of the originating box. (We note in passing that this is

equivalent to “upstream differencing”). So, if q>0, the upper pipe brings water with salinity S2

into Box 1, while the lower pipe takes water with S1 out of Box 1. If q<0, it is the lower pipe that

imports S2 into Box 1, while the upper pipe exports S1 out of Box 1. In either case, S2 is imported

into Box 1, while S1 is exported out of Box 1, both at a rate given by the modulus of q. This is

what (10.6) expresses. Mutatis mutandis, the same holds for Box 2 and (10.7).

We introduce the following abbreviations for meridional differences of temperature, salinity,

and density:

2 1 2 1 1 2; ;T T T S S S ρ ρ ρ≡ − ≡ − ≡ − , (10.8)

which implies that

[ ]
0

k
q k T Sρ α β

ρ
= = − . (10.9)

Under normal conditions, net evaporation occurs at the warmer low latitudes and net

precipitation at the colder high latitudes; in other words, temperature and salinity are expected to

be both high at low latitudes and both low at high latitudes. In their influence on the THC, two

cases can be distinguished. When the temperature difference dominates the salinity difference in

their influence on density, high-latitude density is greater than the low-latitude density.

Therefore, q>0, and the surface flow is poleward. One can say that the temperature difference, T,

drives the THC and the salinity difference, S, brakes the THC, as seen from

[ ]0 :q q q k T Sα β> = = − . (10.10)
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Conversely, when the salinity difference dominates the temperature difference, high-

latitude density is lower than the low-latitude density, q<0, the surface flow is equatorward. Now,

S drives the THC, and T brakes it:

[ ]0 :q q q k S Tβ α< = − = − (10.11)

The sum of the salt conservation equations (10.6) and (10.7) gives

1 2 0S S+ =� � , (10.12)

reflecting that total salt mass is conserved. (One consequence of this simplification is that we

cannot determine the mean salinity from the set of equations we use here. Processes other than

evaporation, precipitation, and oceanic transport of salinity must be invoked for the

determination of the total oceanic salt content.) Because of the constancy of total salt mass,

(10.12), equivalent to the constancy of global mean salinity, we need only consider the

difference, S, between S2 and S1. The difference of the salt conservation equations (10.6) and

(10.7) gives an equation for S:

2 1 2 2SS S S H q S− = = −� � � , (10.13)

or, using the flow law (10.9),

2 2SS H k T S Sα β= − −� , (10.14)

which completes the formulation of the model – its behaviour is completely characterised by

(10.14) .

10.2 Equilibrium solutions

As the first step in our analysis of  (10.14), governing the evolution of the salinity

difference between the low and high latitude boxes, we look for steady-state or equilibrium

solutions, defined by a vanishing of the time derivative:

0SH k T S Sα β− − = , (10.15)

where the overbar marks a steady-state quantity. We must consider separately the cases where the

argument of the modulus is positive or negative.
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Case I: 

0,q T Sα β> > (10.16)

We can simply replace the modulus signs by brackets, giving

( ) 0SH k T S Sα β− − = , (10.17)

or

( ) ( )( )2
0SS S T H kβ β α β− + = , (10.18)

which has the roots

( ) ( )
( )

1 1
2 4 21/ 2

SH
S T

k T

ββ α
α

  = ± − 
  

. (10.19)

For a positive radicand, defined by

( )
1
42

SH

k T

β
α

< , (10.20)

the model has two equilibrium solutions for poleward near-surface flow. These solutions can also

be characterised as thermally dominated or, in the language of atmospheric science, “thermally

direct” (meaning that rising motion occurs at the location of heating, and subsidence at the

location of cooling). If the freshwater flux forcing exceeds the threshold defined by (10.20), no

thermally-driven equilibrium exists.

Case II: 

0,q T Sα β< < (10.21)

Now, we must insert a minus sign when replacing the modulus signs by brackets,

( ) 0SH k T S Sα β+ − = , (10.22)

which gives

( ) ( )( )2
0SS S T H kβ β α β− − = , (10.23)

and the single root

( ) ( )
( )

1 1
2 4 23

SH
S T

k T

ββ α
α

  = + + 
  

(10.24)
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Notice that we must discard the negative root; the radicand is greater than ¼, so that the negative

root would imply 0S < , in contradiction to the condition (10.21). The solution (10.24) has

equatorward near-surface flow and can be characterised as salinity dominated or “thermally

indirect”. It exists for all (positive) values of the freshwater flux forcing.

Figure 10.2 shows the equilibrium solutions as a function of the freshwater flux forcing.

In summary, we find the remarkable result that this simplest non-trivial model of the THC,

represented in steady state by the pair of quadratic equations, (10.15) and (10.22), has three

steady state solutions, provided that the freshwater flux forcing is not too strong [cf., (10.20)].

Two equilibria have 0q >  (poleward surface flow); they are characterised by either a small

salinity contrast and strong flow ( 1 1
2 2,S T q k Tβ α α< > ), or by a large salinity contrast and

weak flow ( 1 1
2 2,S T q k Tβ α α> < ). These steady states exist only if 

( )2
1

4
SH

k T

β

α
< . The model has

one steady-state solution with 0q <  (equatorward surface flow), characterised by a very large

salinity contrast ( , 0S T qβ α> < ). This solution always exists, and is the only one if 
( )2

1
4

SH

k T

β

α
> .

Figur

differenc

The curv
e 10.2 Solution portrait of the box model in phase space. Dimensionless salinity

e is denoted S Tδ β α≡ ; dimensionless surface salinity flux is ( )2

SE H k Tβ α≡ .

es mark the equilibrium solutions, ( )Eδ , while the arrows show the tendencies in

phase space. Notice the existence of three steady states for E < ¼.
 Jochem Marotzke Page 6 7 March, 2003



Lecture10; Jochem Marotzke Page 7 7 March, 2003

What is the physical reason behind the vanishing of the thermally direct solution if

( )2
1

4
SH

k T

β

α
> ?  Stronger surface salinity flux must by balanced by stronger salinity advection, qS.

This can be accomplished either by increasing the salinity difference, S, between low and high

latitudes, or by increasing the flow strength, q. But increasing S has the dynamical consequence

of weakening the flow – (10.9) expresses that q decreases linearly with S. Obviously, the product,

qS, is zero for either S = 0 or q = 0 (the latter implying  S Tβ α= ); qS is positive for

intermediate values and attains a maximum at 1
2S Tβ α=  (see phase space diagram, Fig. 10.2).

At this point, ( )2
1

4
kqS Tβ α= , which marks the critical freshwater flux forcing, that is, the

strongest forcing that can be balanced by salinity advection through thermally direct flow. For

even greater HS, balance is impossible.

An even deeper question than the one starting the preceding paragraph is, what makes the

multiple equilibria possible in the first place? Two crucial ingredients are required. First is the

advective nonlinearity: The flow advecting salinity is itself influenced by salinity gradients,

through density. Without this nonlinearity the model would have a unique solution (or none at

all). But there is a second requirement, that of different coupling of temperature and salinity to

the atmosphere. We assume that the atmosphere controls temperature but the salinity flux.

Imagine, instead, two extreme cases of equal coupling:

 i. Temperature and salinity prescribed:

Then, density is prescribed as well, meaning that the flow prescribed. Trivially, no multiple

equilibria are possible.

 ii. Heat and freshwater flux prescribed:

Then, the surface density (or buoyancy) flux is prescribed and, hence, the steady-state

horizontal density transport, k ρ ρ .  As k and ρ  are positive, the sign of ρ  is uniquely

determined by the sign of the surface buoyancy flux: If the low latitude box receives buoyancy

from the atmosphere, it is less dense than the high latitude box, and ρ  and q  are both positive

(thermally direct circulation). The converse is true for prescribed buoyancy loss at low latitudes.

Hence, the steady-state circulation is uniquely determined.
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Exercises:

1. Loss of multiple steady states: What steady-state solutions are possible in the 2-box model

if the flow field is given as an external parameter (that is, depends neither on temperature

nor on salinity)? Hint: Plot the salinity difference as a function of freshwater forcing, with

q given and constant.

2. Loss of multiple steady states: Prove the sequences i. and ii. outlined just above, by using

the appropriate modifications of the equations for the Stommel box model, (10.2) - (10.7).

3. Loss of multiple steady states: Suppose that the surface heat and salt fluxes are formulated

as restoring laws, as originally done by Stommel, i.e., the equations are

( ) ( )*
1 1 1 2 1TT T T q T Tλ= − + −� (10.25)

( ) ( )*
2 2 2 2 1TT T T q T Tλ= − − −� (10.26)

( ) ( )*
1 1 1 2 1SS S S q S Sλ= − + −� (10.27)

( ) ( )*
2 2 2 2 1SS S S q S Sλ= − − −� (10.28)

where the starred quantities are the target values. Assume that λ 
T 

= λ 
S 
 and construct a

single ordinary differential equation for q. What are the physically meaningful steady-

state solutions now? What would change if λ 
T 

≠ λ 
S 
? N.B.: Do not solve the entire

problem for  λ 
T 

≠ λ 
S 
.

9.3 Stability

We have identified three equilibria of the 2-box model of the THC in a certain parameter

range. Now, we concern ourselves with the stability of the equilibria – more precisely, with the

“linear” stability. This means that we want to understand what happens if the equilibrium is

perturbed by a tiny amount, either in the forcing, HS, or in the solution, S. We will use a variety

of techniques, each of which is important generally in the analysis of dynamical systems, and

each of which illuminates one or several characteristics.

We start by investigating in more detail the equilibrium curves in phase space, Fig. 10.2.

From the steady-state conditions, as expressed in eqs. (10.18) and (10.23), we obtain through a

slight modification,
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( )

2

20, 1: SHS S S
q

T T Tk T

ββ β β
α α αα

   
> < = − +   

   
, (10.29)

( )

2

20, 1: SHS S S
q

T T Tk T

ββ β β
α α αα

   
< > = + −   

   
, (10.30)

which expresses the dimensionless salinity gradient, S Tδ β α≡ , as a function of the

dimensionless surface salinity flux, ( )2

SE H k Tβ α≡ . Thus, we can write (10.29) and (10.30)in

dimensionless form as

( )21: 1Eδ δ δ δ δ≤ = − + = − (10.31)

( )21: 1Eδ δ δ δ δ≥ = − = − . (10.32)

This pair of equations represents two sideways parabolas, with opposite orientation, intersecting

at 0S Tδ β α≡ = (no salinity difference) and 1δ =  ( T Sα β= ; no flow). In either case, the

forcing must vanish ( ( )2
0SE H k Tβ α≡ = ). The curves depicted in Fig. 10.2 are the zeros of

the salinity conservation equation (10.14), rewritten in dimensionless form as

( )2

1
1

2
SHd S S S

k T dt T T Tk T

ββ β β
α α α αα

     = − −          
. (10.33)

Notice that (10.33) implies an advective timescale, suitable for nondimensionalisation, of

( ) 1
2k Tα −

, and a nondimensional overturning strength of 1q δ= −� . We can thus rewrite (10.33)

as

1Eδ δ δ= − −� (10.34)

Exercise:

4. Prove the statement in the sentence following  (10.33) Hint:. Write ˆ ˆ;t t t q q q= =� � etc.,

where the caret denotes the scale and the tilde the non-dimensional quantity.

5. Find the steady-state solutions of (10.34), that is, perform the procedure leading to (10.19)

and (10.24), but using non-dimensional quantities from the outset.

From either (10.33) or (10.34), we can read off the following. On the equilibrium curve,

the tendency (time rate of change) of the salinity difference between high and low latitudes

vanishes. But to the left of the curve, E or HS is smaller than required by the equilibrium
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condition. Hence, 0S <� , and S decreases, as indicated by the downward pointing arrows in Fig.

10.2. In fact, the arrows were calculated from the right-hand sides of (10.34). To the right of the

curve, E or HS is  greater than required for equilibrium, hence 0S >� , and S increases. Notice that

for every given δ  in Fig. 10.2, there belongs a unique E, so “left” and “right” of the equilibrium

curve are unambiguously defined.

By visual inspection of Fig. 10.2, we can now read off the stability properties of the

solutions. If, by any initial perturbation or change in forcing, we find ourselves to the left of the

equilibrium curve, the evolution depends critically on which solution branch we started from. On

the top ( )1δ >  and bottom ( )1 2δ <  branches in Fig. 10.2 (salinity dominated and thermally

dominated-strong flow, respectively), the systems moves downward, back towards the

equilibrium curve. But if one starts from the middle branch ( )1 2 1δ< < , which runs from top-

left to bottom-right in Fig. 10.2, the system does not return, but instead undergoes a transition

towards the lower, thermally dominated branch. If the initial perturbation or change in forcing

leaves the system to the right of the equilibrium curve, the system moves upward, again back

towards the equilibrium curve, if it started from the top or the bottom branch. But if it started

from the middle branch, it would make a transition toward the salinity-dominated equilibrium.

Hence we conclude that the salinity-dominated steady state is always stable, the strong-flow

thermally dominated steady state is stable (if it exists), while the weak-flow thermally dominated

steady state is unstable to infinitesimal perturbations. There exists a tell-tale sign allowing one to

infer this instability even without investigating the full time-dependent equation. As one follows

the unstable branch in Fig. 10.2 ( )1 2 1δ< < , from left to right, say, an increase in E implies a

decrease in δ. Thus, an increase in forcing leads to a decrease in the steady-state response, which

is, to my knowledge, an unfailing indication of instability.

Two points deserve special mention, since they are semistable, meaning that the system

approaches them if it is on one side in phase space, but moves away from them if it is on the

other side. These points are ( )0, 1E δ= = , where the two parabolas meet, and

( )1 4, 1 2E δ= = , the point beyond which no thermally direct steady state is possible. (In the

language of dynamical systems, this is called a saddle node bifurcation.) Both these points show
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interesting mathematical behaviour, but they are not of great physical interest because this

behaviour is not robust to small perturbations, such as a small amount of random noise.

Lyapunov potential

A powerful illustration of the stability properties discussed in the preceding paragraphs

comes from a mathematical construct called the “Lyapunov potential”. In loose analogy to, say,

the relationship between gravitational force and gravitational potential,  the time rate of change

of dimensionless salinity, δ� , (cf., (10.34)), is written as the negative gradient of the Lyapunov

potential, L, such that

1
L

Eδ δ δ
δ

∂− = = − −
∂

� . (10.35)

By construction, the steady states of the system coincide with the extrema (maximum or

minimum) of the Lyapunov potential. But we can say more: Plotting ( )L δ  immediately indicates

the stability properties of the equilibria; indeed one can interpret the stability as if a bead was

sliding on a wire under the influence of gravity: A minimum in L is a stable equilibrium, while a

maximum is an unstable equilibrium. We first illustrate this graphically, before showing it

mathematically.

It is readily shown that

3 21 1
3 2

3 21 1 1
3 2 3

; 1

; 1

L E

L E

δ δ δ δ
δ δ δ δ

= − − + ≤

= − + − + ≥
(10.36)

fulfils (10.35), including the (arbitrary) condition of (0) 0 L = and the (non-arbitrary) condition

of continuity at 1δ = . Figure 10.3 shows the Lyapunov potential, as a function of δ, for a variety

of choices for E. The case, 0E = , has one minimum at 0δ =  and a double extremum (level

turning point) at 1δ = . The former is stable, according to Fig. 10.2, while the latter is semistable

(approached from the right, moved away from on the left). Thus, we can visualise the evolution

of the system as the inertia-less sliding of a bead on the “wire” ( )L δ .  As E is nonzero but less

than ¼,  the minimum at the left moves from zero to higher values, while another minimum

appears for 1δ >  and growing. Since ( )L δ  is continuous, the two minima must be separated by

a maximum. In other words, two stable equilibria must have an unstable equilibrium between

them.



Lecture10; Jochem Marotzke Page 12 7 March, 2003

As E approaches ¼, the minimum at 1δ >  becomes deeper than the one at 1 2δ < , until,

at 1 4E = , the two equilibria with 1δ <  merge to form a level turning point. This is the second

semistable point discussed in Fig. 10.2. For even greater E, the thermally dominated ( 1δ < )

equilibrium vanishes altogether, although its vicinity can still be felt through the very small time

rates of change nearby.

After gaining an intuitive understanding of how to interpret L, we can now derive

mathematically how its shape  reflects stability properties. At any point, if L increases with δ, the

left-hand side of (10.35) is negative, 0δ <� , and δ decreases. In the ( )L δ  phase plot, Fig. 10.3,

one slides toward the left. The converse is true if L decreases with δ. In the vicinity of a

minimum, hence, any deviation to the right (L increasing with δ) is followed by motion to the

left, back toward the minimum. Likewise, any deviation to the left will be followed by motion

back to the minimum. Near a maximum, instead, a deviation to the right, say, means that L

decreases with δ, the left-hand side of (10.35) is positive, 0δ >� , and δ increases further, that is,

the system moves further to the right, away from the equilibrium. For deviations to the left of a

maximum, 0δ <� , and δ decreases further, again moving away from the equilibrium. Hence, if

we can construct a Lyapunov potential as in (10.36), we can immediately read off the plot the

stable and unstable steady states, in a completely intuitive manner.

Notice that in a case such as depicted in Fig. 10.3, sometimes the nomenclature is adopted

to call the stable equilibrium with the shallower potential well “metastable”, reserving the term

“stable” only for the steady state with the globally lowest potential. Here, we will largely only

concern ourselves with distinguishing between stability and instability to infinitesimal

perturbations.

Exercises

6. Prove that  (10.36) is the correct Lyapunov potential for the system described by (10.34).

7. At what value of δ are the two minima in Fig. 10.3 equally deep [ ( )L δ equal values]?



Lecture10; Jochem Marotzke Page 13 7 March, 2003

Figure 10.3: Lyapunov potential  as defined by (10.36), for a variety of choices for E.
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10.4 Feedbacks

We have found, from either the phase space plot, 10.2, or the Lyapunov potential, 10.3,

how to characterise the multiple equilibria of the 2-box model as either stable or unstable. But

what are the processes that lead to stability or instability? To this end, we now analyse the model

equations in the vicinity of the steady states, employing a powerful technique applicable near any

equilibrium state. The trick is to approximate the full, nonlinear equation through a linear one,

such that the approximation (“linearisation”) is good in the vicinity of the steady state (notice

that one must linearise separately about every distinct equilibrium.

For this exercise, we return to the original, dimensional equation for the salinity

difference between low and high latitudes, (10.13), and the flow law, (10.9). We write all

quantities as the sum of the steady-state value, marked again by an overbar, and a deviation

thereof, marked by a prime, such that

,S S S q q q′ ′= + = + (10.37)

This separation is interesting in our case (or complicated, depending on taste), owing to the

appearance of the modulus of q in the salinity advection. Care must be taken, and we again must

distinguish between positive and negative q:

( )
( )

( )
; 0

; 0

q q q k T k S S

k T k S S q k S q

k S S k T q k S q

α β

α β β

β α β

′ ′= + = − +

 ′ ′= − + = − > 
 ′ ′= + − = + < 

, (10.38)

where it has been used that

q k Sβ′ ′= − (10.39)

because T is an external parameter. The salinity conservation equations, (10.13), is now written,

using the expansion (10.37),

( ) ( )( )2 2 2 2 ; : 0; : 0S SS S S S H q S H q k S S S q qβ′ ′ ′ ′= + = = − = − + − > + <�� � � � , (10.40)
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where we have used that the steady-state value does not change with time. We can subtract from

(10.40) the steady-state condition, (10.15), leaving

( )2 ; : 0; : 0S q S k S S S q qβ′ ′ ′ ′= − ± + + > − <� , (10.41)

Notice that so far, we have not introduced any approximation yet, but merely rewritten the

original equation in an inflated form. Now, however, we introduce the assumption that

;S S q q′ ′� � , (10.42)

that is, the deviations from the equilibrium values are small compared to the equilibrium values

themselves. In other words, we remain close to the steady-state. In this case, we can neglect the

term containing the product of two perturbations quantities, leaving behind only terms that are

linear in primed quantities (hence the term linearisation),

2 2 ; : 0; : 0S q S k S S q qβ′ ′ ′≅ − ± + > − <� . (10.43)

On this approximated equation, or any other obtained through this approach, we can launch the

full power of systematic solutions of linear differential equations. We know that if the coefficient

multiplying S’ on the right-hand side is negative, the perturbation S’ is exponentially damped

toward zero – the system returns to the steady state, which hence is stable. In contrast, if the

coefficient multiplying S’ on the right-hand side is positive, the perturbation S’ grows

exponentially, the system does not return to its equilibrium, which hence is unstable. Notice that

S’ does not go to infinity – as it grows too large, the assumption, (10.42), behind the linearisation

breaks down, and one has to resort to the full nonlinear analysis.

Which processes determine whether the steady state is stable or unstable? We must

analyse (10.43) to determine the contributors to the coefficient of S’. Each of the terms represents

a feedback, meaning a contribution to a tendency in S’ that is caused by S’ itself. The first term

represents the advection of an anomaly in salinity difference by the time-mean flow, and can

hence be called the mean flow feedback: Assume that, from whatever cause, 0S ′ > . The first

term on the right-hand side of (10.43) contributes negatively, 0S ′ <� , so S’  is reduced by this

term. In other words, the mean flow feedback works against the original anomaly, hence

stabilises the equilibrium – which is the definition of a negative feedback.  It is readily shown

that negative anomalies (original 0S ′ < ) are damped as well. Notice that the mean flow feedback
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works identically in the thermally dominated and haline dominated equilibria, though with

different strengths.

The second term on the right-hand side of (10.43) represents the advection of mean

salinity gradient by the perturbation flow, and can hence be called the salinity transport feedback.

(Notice that advection of perturbation salinity gradient by perturbation flow is neglected in this

linear approximation). The sign of the salinity transport feedback depends on the steady-state

flow direction. If 0q > , and  0S ′ >  (say), then 0S ′ >� , and the initial perturbation is further

increased. Again, it is readily shown that this amplification is independent of the sign of the

initial anomaly. If 0q > , hence, the salinity transport feedback is a positive feedback,

destabilising the equilibrium.

The situation is different for the haline dominated equilibrium, 0q < . If 0S ′ > , then

0S ′ <� , from the contribution by the second term on the right-hand side of (10.43), and the initial

perturbation is reduced. The salinity transport feedback is a negative, stabilising feedback.

In summary, we identify two negative feedbacks for the thermally indirect or haline dominated

circulation, 0q < . As all feedbacks are negative, this equilibrium is always stable to

infinitesimal perturbations.

In contrast, the thermally direct circulation, 0q > , has one positive feedback and one

negative feedback. To determine the stability of the equilibrium, the relative strengths of the

competing feedbacks must be evaluated. Using the dynamic flow law, (10.9), for q  in the

salinity perturbation equation (10.41), gives

( )2 2 2 2S qS k S S k T S Sβ α β′ ′ ′ ′≅ − + = − −� . (10.44)

Hence, if 1 2S Tβ α< , the coefficient multiplying S ′ is negative, and the equilibrium is stable. In

contrast, if 1 2 T S Tα β α< < , the coefficient multiplying S ′ is positive, and the equilibrium is

unstable. In the former case, the stabilising mean flow feedback dominates, whereas in the latter,

the destabilising salinity transport feedback dominates.
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Exercise:

8. Complete the discussion of  feedback loops for all cases and show that the sign of the

feedback is independent of the sign of the initial anomaly.

10.5 Time-dependent solution

At the beginning of this lecture, I made a rather oblique remark concerning the exceptions

to the statement that we can completely calculate the solution to the simplified Stommel model .

Of course, one can always invent forcing histories, such as E(t) in the dimensionless salt

conservation equation (10.34), that an analytical solution can only be given symbolically. But

(10.34) permits the exact, and relatively simple, analytical solution of its full time-dependence.

As of writing these notes (January 2002), I am unaware of any published account of this solution.

And since the solution provides a perspective that cannot be obtained from the previous

approaches, it is given here.

With some help from Matlab’s ® Symbolic Math toolbox, one readily finds as the

solution to (10.34):

( ) ( )1
21 1 1

2 4 4 1
4

0
tanh atanh ; 1t E t E

E

δ
δ δ

 − = − − − + ≤ 
−  

, (10.45)

( ) ( )1
21 1 1

2 4 4 1
4

0
tanh atanh ; 1t E t E

E

δ
δ δ

 − + = + + + + ≥ 
+  

, (10.46)

where atanh is the inverse of the hyperbolic tangent, tanh, and ( )0δ  is the initial condition.

Using 2tanh 1 tanhd
dx x x= −  and noticing that the derivative of the argument of the tanh gives an

additional factor of 1
4 E+ , we obtain from (10.45) that

( ) ( ) { }( )21
4 1 tanh ; 1t Eδ δ= − − − ≤� � . (10.47)

The validity of (10.34) is then readily shown by substitution of ( )tδ  and ( )2 tδ . That . (10.45) is

valid for 0t =  is almost trivial.

Exercise

9. Prove that (10.45) and (10.46) are the correct solutions of  (10.34).
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In addition to showing mathematical validity, (10.45) and (10.46) offer other interesting aspects.

The long-term behaviour is very simple; for large t, the first term dominates the argument of the

tanh (the initial condition is forgotten), and since tanh approximates 1 for large argument, we

recover the two stable equilibria,

( ) 1 1 1
2 4 4: ;t t E Eδ→ ∞ → − − < , (10.48)

( ) 1 1 1
2 4 4: ;t t E Eδ→ ∞ → + + > . (10.49)

Notice that there is no trace of the unstable equilibrium left in the time-dependent

solution, reflecting the fact that time evolution is always away from the unstable steady state.

[Writing ( ) { }1 1
2 4 tanht Eδ = + − � etc. in (10.45) would not fulfil (10.34) – try it!].

Notice, further, that (10.45) is perfectly valid even for 1
4E > ; indeed, using that

tanh tanix i x= etc., indicates that if 1
4E > , ( )tδ  grows until it becomes greater than one, and

(10.46) must be used.

Figure 10.4 shows evaluations of the full time-dependent solutions to the 2-box model,

(10.45) and (10.46), as functions of initial conditions and time. Notice that, if the solutions

crosses the ( ) 1tδ =  threshold from below, at time ct , use of (10.45) must be discontinued and

(10.46) must be used instead, with initial condition ( ) 1ctδ = . The first row shows the solutions

for E = 0.2. Three types of behaviour are discernible in Fig. 10.4a. Low and high initial

conditions lead to rapid convergence to the stable thermally and haline dominated equilibria,

respectively. Intermediate-size initial conditions mean that the solutions hover near the unstable

equilibrium for a while, before departing from it and approaching one of the stable steady states.

Fig. 10.4b illustrates this behaviour in a contour plot. Moving horizontally to the right indicates

the solution changing in time as one crosses colour separations. For long times, the two stable

equilibria fill out the entire phase space, as witnessed by the ever expanding areas of orange and

blue. The transition between the two values becomes sharper as time progresses and indicates the

ever shrinking region in phase space from where the system has not yet exited to one of the stable

equilibria (“attractors”). The case, E = 0.24, close to the bifurcation point, shows this general

behaviour in more pronounced form. (It is readily shown that the equilibria are

0.4, 0.6, and 1.2δ = , which means that they fall on the boundaries between colours in the

intervals chosen). Finally, if E = 0.26, and there is no thermally dominated equilibrium any more,

some of the trajectories approach the (now unique) equilibrium quickly, while those starting from
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a small initial value hover near the (now vanished) steady state, its influence still there. But one

by one, the trajectories undergo a rapid transition (Fig. 10.4e). The transition region between red

and blue colours is not horizontal any more, as it was for E < 0.25, indicating that sooner or later,

all initial conditions lead to the haline dominated equilibrium (Fig. 10.4f).
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a b

c d

e f

Figure 10.4. Solutions of 2-box model, as a function of dimensionless time and initial conditions. Left

column: Time series of solutions. Right column: Contour plot of solutions.
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