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Quivers and Exchange Matrices with Principal Coefficients

Given a quiver Q (i.e. a directed graph) with n vertices, we build an
n-by-n skew-symmetric matrix Bq = [bj]{_; ;_; whose entries are

bjj = (#arrows from i to j) — (#arrows from j to /).

Note: More generally, we can let Bg be skew-symmetrizable, meaning
there exists a diagonal matrix D with positive integer entries such that
DBy is skew-symmetric, i.e. satisfies (DBg)" = —DBgq. However, for this
talk we will focus on the quiver, i.e. the skew-symmetric, case.

We build the corresponding 2n-by-n exchange matrix with principal

Bq

coefficients via BB = [ |
n

}, where [, denotes the n-by-n identity matrix.

Equivalently, é?; corresponds to the exchange matrix of the framed quiver
Q = QuU{l,2, ..., n"} with a single arrow from i/’ — i foreach 1 < < n.
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Quivers and Exchange Matrices with Principal Coefficients

IfQ:1—>2,thenBQ:[_01 (1)].621’ 2 and Bg
1-=2

0o 2] ~ ., . —

If Q=1= 2, then Bg = 5 O,Q: 1 2" and Bg
1=2

fQ=1>2<3<4,thenQ=1 2 3 470

R R
=2<-3<4
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Quiver Mutation

Given a quiver Q and its vertex j, we can define Q" = 1;Q, the
mutation of Q at j, by a 3 step process:

1) For any 2-path i — j — k, add a new arrow i j k.
N7
2) Reverse the direction of all arrows incident to j.

i
3) Delete any 2-cycle i j k created from the above two steps.
\//

Examples: If Q = 1=2<3<4, then

N7
w=1<2<3<4, w=1<2-=3 4
N7 ~_ “~
w3 = 1=2->=3->4, waQ = 1=2 34
~_ “~

Note: Mutation is an involution, meaning that ,uJ?Q = Q for any vertex j.
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Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices Bg.
We define [b;] = By = ukBq, the mutation of Bq = [b;] at k, by

, ) —bjifi=korj=k
! bij + [bik]+[bkj]+ - [_bik]+[_bkj]+ otherwise

using [a]+ = max(«, 0).

0 2 0 O©
Examples: If Q= 1>2<3<4,B=| > 0 ! then
ples: TN = TPl 1 0 -1

0 -1 1 0
0 -2 0 0
0 -1 1
me=te2z3=4 mbBe=1g 1 o
0 -1 1 0
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Exchange Matrix Mutation
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We define [b;] = By = ukBq, the mutation of Bq = [b;] at k, by

, ) —bjifi=korj=k
! bij + [bik]+[bkj]+ - [_bik]+[_bkj]+ otherwise

using [a]+ = max(«, 0).

0 2 0 ©
Examples: If Q= 1=2<3<4, Bp = —2 0 -1 then
ples: TN = TPl 1 0 -1

0 -1 1 0
0 -2 0 2
2 0 1 -1
ILL2Q— 1@2@4, IU2BQ— 0 10 ol
-2 1 0 0
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Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices Bg.
We define [b;] = By = ukBq, the mutation of Bq = [b;] at k, by

, ) —bjifi=korj=k
! bij + [bik]+[bkj]+ - [_bik]+[_bkj]+ otherwise

using [a]+ = max(«, 0).

0 2 0 O
-2 0 -1 1
Examples: If Q = 1#2«\3;4, Bg = 0o 1 0 -1 , then
0 -1 1 O
0 2 0 O
-2 0 1 0
ILL3Q—1$293%4, IU3BQ— 0 1 0 1l
0 0 -10
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Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices Bg.
We define [b;] = By = ukBq, the mutation of Bq = [b;] at k, by

, ) —bjifi=korj=k
! bij + [bik]+[bkj]+ - [_bik]+[_bkj]+ otherwise

using [a]+ = max(«, 0).

0 2 0
Examples: If Q= 1=2<3<4, Bp = —2 0 -1 then
ples: TN = TPl 1 0 -1
0 -1 1 0
0 2 0 0
-2 0 0 -1
maQ=1=2 3-4, mBe=1\49 o o 1
0 1 -1 0
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Examples of mutation with principal coefficients

As framed quivers (for the case of a type A quiver):
1 T M Y e L e L A M ot N K4

b PN X1 X X X

12 1<-2 12 1<-2 12 1<-2

As 2n-by-n exchange matrices:

0 1 0 -1 0 1 0 -1
10| |1 of |-t o] |1 o
1 0ol 7 =1 1] 7 o -1l |o -1
0 1 0 1 1 -1 1 0

0 1 0 -1

1 0 1 0

H2 H1
o 1] 7 o 1
1 0 1 0
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Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

1 o
1=2
As 2n-by-n exchange matrices:
0 2 0 -2 0 2 0 -2
20 2 0 2 0 2 0
H1 w2 u1
1 0| 7 |1 2|7 |3 2|7 |-3 a4
0 1 0 1 2 -1 2 3
0 2 0 -2 0 2 0 2
2 0 2 0 2 0 20
12 1 pi2 1
s a4l 7 |5 6| T |7 6| 7 |-7 8| -
4 -3 4 5 6 -5 6 7
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Cluster seeds and their mutation

A seed for a cluster algebra is defined as a choice of a quiver
(equivalently an exchange matrix) on N vertices and a choice of a cluster
{x1,x2,...,xn} where the x; are formal variables, called cluster variables.

We define cluster mutation alongside quiver mutation yielding (a priori)
rational functions in Q(x1, x2, ..., xy) defined by

{xt, - ooxnt =M {xa, o xn U {x )\ {xk} where

b,‘ _bi
X = I1is Xi[ Y4 ey Xi[ d X+ T Xi

Xk Xk
using the exchange matrix B, or equivalently the arrows in the quiver Q.
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A seed for a cluster algebra is defined as a choice of a quiver
(equivalently an exchange matrix) on N vertices and a choice of a cluster
{x1,x2,...,xn} where the x; are formal variables, called cluster variables.

We define cluster mutation alongside quiver mutation yielding (a priori)
rational functions in Q(x1, x2, ..., xy) defined by

{xt, - ooxnt =M {xa, o xn U {x )\ {xk} where

n [bix]+ n [—bi]+
;Lo X + [Tke1 X Tk xi + Tl xi
X = =
Xk Xk

using the exchange matrix B, or equivalently the arrows in the quiver Q.

Theorem (Fomin-Zelevinsky 2001) The Laurent Phenomenon holds for
all cluster variables, namely the rational functions resulting from iterating

cluster mutation are in fact Laurent polynomials, i.e. POasexn) \yhere P is

d-
Xll---x,',j"

a polynomial with integer coefficients and each d; is a nonnegative integer.
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F-polynomials

If we start with a framed quiver @ = Q U {1/,2',...,n'} and the intial

cluster {x1,...,xn} = {x1,...,Xn, Y1, --,¥n}, We iterate cluster mutation
with the extra restriction disallowing mutation at vertices /’.

Consequently, the binomial exchange relation for cluster mutation

b/ il
| J [ T+ Ty x ol [T xi + Tk x

/
X, = =
k Xk Xk

will involve y1,y2,...,y, in the numerator, but never in the denominator.

By letting x; = x, = --- = x, = 1, and iterating cluster mutation, we
replace cluster variables (which are Laurent polynomials in x;'s and y;'s)
with polynomials in y1, y», ..., yn, which are called F-polynomials.
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F-polynomials

bl i
[Ty x4 Ty _ lissexi Tl x

/
X, =
k Xk Xk
By letting x; = x, = --- = x, = 1, and iterating cluster mutation, we
replace cluster variables (which are Laurent polynomials in x;'s and y;'s)
with polynomials in y1, y», ..., yn, which are called F-polynomials.
Example:

1 L R T A o Ul B U (N T

b Y X1 X

1—=2 1<2 12 1<2 12 1<2
{F17F2} - {17 1} _>M1 {)/14‘17 1} _>M2 {Y1+17 y1}/2+y1 +1}

="y +1, yiya+yi+ 1} =22 {yp+1, 1} =M {1, 1}
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c-vectors

Given a framed quiver Q and its images under a sequence of mutations,
we define the c-vectors associated to the seed t by

CJ"t = [Clj, Czj, ey an]T

where ¢;j = #arrows from i’ — j. Equivalently, ¢; is the jth column of
the bottom half of the 2n-by-n exchange matrix associated to seed t.

In particular, the initial c-vectors, for seed ty, equal unit vectors

1 0 0

0 1 0
Clt = : 7c2,t0 = |- »Cntg = N

0 0 1

and then recursively c-vectors mutate alongside quivers and exchange

; ; i [~ / ' 1T H
matrices. Letting ¢j ¢t = [clj, Cojr -+ Cpj for each 1 < j < n, we have
r —C,'J':—C,'kifj:k
cij =

cj + [cikl+ [bujly — [—cik]+ [—big]+ otherwise
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c-vectors for 1 — 2

R (A R A A o Ul S U (VS U

b Y X1 X X X

12 1<2 12 1<2 1-=2 1<2

0 1 0 1

-1 0 0 -1 0
o=, o »"ta= 1| P R= g
0 1 1 1 -1

0o -1 0 1 0 -1

1 0 -1 0 1 0

p1 w2 oy By
— 3 0 —1 —" 1ty 0o 1 —" ty = 0 1
-1 0 -1 0 1 0

1 0 -1 1
cl,to = 0 ,C2,t0 = 1 7c1,t1 = 0 7c2,t1 = 1 7c1,t2 = , C2 ) —
|10 -1 |10 |1 _ |0 |1
Cli; — 1 yC2t3 = 0 yClty = 1 yC2ty = 0 yClts = 1 yC2ts = 0
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c-vectors for 1 = 2

0 2 0 -2 0 2
LY
0 1 0 1] 2 1]
0 2] [0 2] [0 —2]
Mty = _23 2 —H2 = _52 _04 - g = _25 g .
2 3 4 -3 4 5

1 2 -3 —4 -5
cl,tl - 0 7c2,t2 - 1 Cl,t3 - ) 7C2,t4 - -3 7C1,t5 - 4l
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c-vector Sign Coherence

For 1 — 2 and piipapapizpia,

-1 -1 0 1 0
cl,tl = 0 7c2,t2 = 1 cl,t3 = -1 7c2,t4 = 0 7c1,t5 = 1

For 1= 2 and pipopipops---,

~1 2 -3 —4 -5
cl,tl = 0 7c2,t2 = -1 cl,t3 = ) 7c2,t4 = -3 7c1,t5 = 4l

Theorem (Derksen-Weyman-Zelevinsky 2010) Each c-vector consists
exclusively of nonnegative entries or exclusively of nonpositive entries.

Sign Coherence implies we can assign a sign €, € {1} to each cjy,.

Note: Conjectured by Fomin-Zelevinsky in Cluster Algebras 1V, 2006, and
proven in the skew-symmetrizable case by Gross-Hacking-Keel-Kontsevich.
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Three definitions of g-vectors

I
by deg(x;) = e; and deg(y;) = —bj, where {x1,...,Xp,¥1,...,¥n} is the
initial cluster, e; is the ith unit vector and bj is the jth column of Bg.

1) For a framed quiver Q with exchange matrix {BQ], define a Z"-grading
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Three definitions of g-vectors

1) For a framed quiver Q with exchange matrix {BIQ] define a Z"-grading
n

by deg(x;) = e; and deg(y;) = —bj, where {x1,...,Xp,¥1,...,¥n} is the
initial cluster, e; is the ith unit vector and bj is the jth column of Bg.

Then for any cluster variable x’ written as a Laurent polynomial in
Q[xjEl il, oy XEL oy o, ya), the Z -grading of each such Laurent
monomial of x” coincide. This common multidegree is defined to be the
g-vector attached to x’. (See Section 6 of Cluster Algebras IV.)
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1) For a framed quiver Q with exchange matrix {BIQ] define a Z"-grading
n

by deg(x;) = e; and deg(y;) = —bj, where {x1,...,Xp,¥1,...,¥n} is the
initial cluster, e; is the ith unit vector and bj is the jth column of Bg.

Then for any cluster variable x’ written as a Laurent polynomial in

Qb X . xEY vi, v2, - - -, yal, the ZM-grading of each such Laurent
monomlal of x’ coincide. This common multidegree is defined to be the
g-vector attached to x’. (See Section 6 of Cluster Algebras IV.)

2) As a consequence of sign coherence, any F-polynomial has a constant
term of 1. Utilizing this, the g-vector of x” agrees with the exponent
vector, in x;'s, of the unique Laurent monomial of x” containing no y;'s
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Three definitions of g-vectors

1) For a framed quiver Q with exchange matrix {BIQ] define a Z"-grading
n

by deg(x;) = e; and deg(y;) = —bj, where {x1,...,Xp,¥1,...,¥n} is the
initial cluster, e; is the ith unit vector and bj is the jth column of Bg.

Then for any cluster variable x’ written as a Laurent polynomial in

Qb X . xEY vi, v2, - - -, yal, the ZM-grading of each such Laurent
monomlal of x’ coincide. This common multidegree is defined to be the
g-vector attached to x’. (See Section 6 of Cluster Algebras IV.)

2) As a consequence of sign coherence, any F-polynomial has a constant
term of 1. Utilizing this, the g-vector of x” agrees with the exponent
vector, in x;'s, of the unique Laurent monomial of x” containing no y;'s

3) Let C; (resp. Gt) denote the matrices whose columns are the c-vectors
(resp. g-vectors) associated to seed t. Theorem 4.1 of Nakanishi 2011:

As another consequence of sign coherence, G; = (C,)~!
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F-polynomials from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M "19+) :
Given a framed quiver Q and a mutation sequence [t = fuj, ftj, = - * [Li,

consider the sequence of cluster seeds tg —#1 t; —F2 ... t,_1 —Mie t,.
Then the F-polynomial resulting from the final mutation, i.e. Fj,.¢,, is
expressible as a product of recursively defined formulas, dependent only on
c-vectors and g-vectors, followed by a monomial specilization:
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F-polynomials from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M "19+) :
Given a framed quiver Q and a mutation sequence [t = fuj, ftj, = - * [Li,
consider the sequence of cluster seeds tg —#1 t; —F2 ... t,_1 —Mie t,.

Then the F-polynomial resulting from the final mutation, i.e. Fj,.¢,, is
expressible as a product of recursively defined formulas, dependent only on
c-vectors and g-vectors, followed by a monomial specilization:

Let Ly = 142z and Ly = 14z, L5750/l 2 Balad . oerBolad g, g > o

‘
Then Fj,.;, = H L;-:’“ge|zl:y|c1\7.__72£:y\cé|. Also see [Nagaol0] and [Keller12].
j=1
Note: Before the monomial specialization, the L;'s and Fj, ;,'s may be

rational functions in the z's

Here, cp (resp. |cp| or gp) denotes the pth c-vector (resp. the normalized
c-vector €,Cp or the g-vector) along the mutation sequence fi, Bg denotes
the exchange matrix associated to @ before any mutations a b denotes
ordinary dot product, and y(9:92:-d) is shorthand for y1 y2 2.y
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Type A, Quiver Example

Let Ll —_ 1+Zl and Lk — 1+ZkL§1~BQ|Ck|Lg2‘BQ‘Ck‘ L. L?(:;'BQ‘Ck‘ for k > 2.

0 1 _
Supoose Bg = [_1 O] and & = i1 o1 o1 -
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Type A, Quiver Example

Let Ll —_ 1+Zl and Lk — 1+ZkL§1~BQ|Ck|Lg2‘BQ‘Ck‘ L. L?(:;'BQ‘Ck‘ for k > 2.

0 1 _
Supoose Bg = [_1 O] and & = pypopipopt. Then

I = S A

1 1 0 1
Bolex) = | ] Bafeal = [ - Boleul = | %] Balesl =[5

1
Li=ltz, L=l+znll=ltznltz)t=z""2T2
]-+Z]_
-1y - 23 1+27 1+ zn+20+ 23
L3=1+zL71 =1+ _
’ T l+zl4+zn+2 l+2z1+ 2
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Type Ay Quiver Example (continued)

Let Ll —_ 1+Zl and Lk — 1+ZkL§1~BQ|Ck|Lg2‘BQ‘Ck‘ L. L(l:(k:;'BQ‘Ck‘ for k > 2.

0 1 _
Supoose Bg = [_1 O] and & = pypopipopy. Then

R NI |
Baleal = | | Boleal = [g]  Baleal = | | Balesl = [

l4+z+znl+znt+zn+z 1+z+z(l+z+ 2+ z3)
Ly=1 Lokl =1 _
c=ltahbh=lta— s e 1+z

1, 14z 14+z+z(l+zn+z+2z)
Ls =1+ zsL 'L %0 =14+ -2
e e I 1+ 2
A+ z2)A+za+zn)+z+zaz+zuzn(l+z+ 2+ 2)
(1+z+2)(1+2z)
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Type Ay Quiver Example (continued)

0 1 PR
_ g _ iR:-14
Bo = [ 1 ol = mpempapne Figey = Tlioa L7 o pel gyl
1 1 1 1
Liml4z, L=itatz ltatatzs  l+atzal+atztz)
1+2z l+z1+2 1+2z7

A+z2)1+zn+2)+z+2128+ z125(1+ 21 + 22 + 23)
1+zi+2)(1+2z1)

S M WYY
e[t [ (2 -

F1:L1:1+Z1, F2:L1L2:1+21+22,
l+z14+20+4+ 23
F3=Ll3 =
3 253 14+ 2
l1+z14+z2(l4+21+ 2+ z3)
1+zn+2)(1+=z)
Q+z2)1+zn1+2)+25+ 2125 + zaz5(1 + 21 + 22 + 23)

(1+2z21+2)(1+ 21 +2 + 2)
G. Musiker and M. Gupta (AMS 2019) F-polynomials and C-Vectors April 13, 2019

Ls =

Fo= L7, =

Fs =Ly 7 s =

22 /33



Type Ay Quiver Example (continued)

o 1] _ )
BQ:[—l O]'“:M1M2M1M2M1- Fit, = 1=y L®

ity _/:1 _] |21:y|c1‘7,,,7z£:y‘c£|

Fi=Li=1+2z, F=LL=1+2z+ 2,

l4+z1+2+ 23
F3=LI3= i—i—zl

Fo— L1150, — 1+ z14+z2(14+21+ 2+ z3)
1 I+za+2)(1+2z)

Fom L1l — Q+z2)1+zn1+2)+25+ 2125 + zaz5(1 + 21 + 22 + 23)
23 (I+z2+2)1+z+2+z)

o [ Yo [2) e[ o]

Based on €3 = —1, e4 = +1, 5 = 41, and Bg as above, we get

F3F1 = F2 + z3,

Fafy = z4F3+1, FsF3 = z5Fs + 1,
and these recurrences are valid for these expressions as rational functions.
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Type Ay Quiver Example (continued)

0o 1] _ . e
BQ N [_1 0:| R e Fi‘z;tz - Hj:l L;j gé|21:y|c1‘7..-,ze:}"°4|
Fi=Li=1+2z, F=LL=1+2z+ 2,
l4+z14+20+ 23
1+27

1+z14+z(1+ 21+ 20+ z3)
(14+z1+2)(1+21)

(1+z2)A+z1+2)+ 25+ 2125 + zaz5(1 + 21 + 20 + 23)
(14+z4+2)(1+21+ 2+ z3)

e R R S

Letting z1 = y1, 22 = Y1y, 23 = ¥2, Za = Y1, Z5 = Y2, We get polynomials

F3= L3 =

Fo= L7 =

Fs=L"13 s =

Fir=yn+1 FRh=yyw+wn+1l FB3=y+1 F,=1, F5=1.
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F-polynomials from C-Vectors and G-Vectors (2nd Version)

Theorem (Gupta '18) as will be re-expressed in (Gupta-M "19+) :
Given a framed quiver Q and a mutation sequence [t = i, ftj, = - - [4i,,
consider the sequence of cluster seeds tg —#1 t; —H2 ... ty_1 —Hie t,.

Let Ll =147 and Lk — 1+ZkL‘1:1'BQ‘Ck‘L;2'BQ|Ck‘ L Liltf.BQlck‘ for k > 2
l

. _ Cj-8¢
and Fiyp, = H L™ omytetl, gyl
Jj=1
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F-polynomials from C-Vectors and G-Vectors (2nd Version)

Theorem (Gupta '18) as will be re-expressed in (Gupta-M "19+) :
Given a framed quiver Q and a mutation sequence [t = i, ftj, = - - [4i,,
consider the sequence of cluster seeds tg —#1 t; —H2 ... ty_1 —Hie t,.

Let Ll =147 and Lk — 1+ZkL‘1:1'BQ‘Ck‘L;2~BQ|Ck‘ L L;::__;BQKk' for k > 2
l

Cj-8¢
and FIZ tp — H L_]J |21:y|c1‘7...7ZZ:_y‘cl‘ .
j=1
Then the F-polynomial resulting from the final mutation, i.e. Fj.,,
also be expressed as a sum of a product of binomial coefficients:

can

Balcx|) o
Fiz;tg = Z H <C" (gé * Zk—ﬁ‘l My Q|ck’ >yzf—1 mj‘cj|.

(m1,...;mp)€Z>0 j=1

Note: This expression as a power series leaves the polynomiality (finiteness
of the sum) and positivity of the coefficients as surprising consequences.
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Kronecker Quiver Example

¢ ( ¢
Ci- |8+ _ mgB Ck) ¢ e
Fiy.t, = } : H J an;.-&-l alexl yzjzlmj|c,|'

(mlv'“vm[.)EZZO.jzl J

0 2 _
Suppose Bg = [_2 O} and [t = paflopti i - - - i, -
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Kronecker Quiver Example

C; (gg + _ myBolck )
Fue, — 3 H < y an;+1 qQlex] L milgl
(m1,...,mg)€Z>0 j=1 J

Suppose Bg = } and & = pypopape2 - - - i, Then

oy Mzi [ Lz

-3 —q

and g1 = 2 . 3 , B3 = 4 N - g+1|
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Kronecker Quiver Example

¢ ( ¢
Ci- |8+ _ mgB Ck) ¢ e
Fiy.t, = } : H J an;.-&-l alexl yzjzlmj|c,|'
(mlv'“vm[.)EZZO.jzl J

0 2 _
Suppose Bg = [_2 O} and & = pypopape2 - - - i, Then

R O R P A PR K

-1 -2 -3 —
andg1=[2]@2:[3]%3:[4],..-,&4:[ +q1]. Hence

Ci -8 = [—111] : [erll} :E_j"‘ 1, G- BQ|ck| = [—jﬁl} : [72}212] = 2(j_ k)‘
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Kronecker Quiver Example

ol (ge + > i1 mkBolck )
Fr= 3 H < j an;-&-l alexl L milel
(m1,...,mg)€Z>0 j=1 J

Suppose Bg = } and & = pypopape2 - - - i, Then

TP O N R
P T T . B

Ci -8 = [7111] : [£+ } ={—j+1, G- Bolek| = [ it 1} : [727k212] =2(j — k).
Consequently, we simplify the formula in the Kronecker case to

—i+1-2 iym S imy YL (i—1)m;
/z ty — Z H< ZJ ’+1(J ) J) >ie1 }/22:’_1( 1) )

(my,...,me)€Z>q i=1
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Kronecker Quiver Example (continued)

C—i+1=2% m Cim S (—L)m;
Ig t[ — Z H Z-I +1( ) j) _y]_z:171 y222171( )

(m1,...,mg)E€L >0 i=1

oo
1

m1=0

oo
2—2m 1
D IB D e [ e o

m1=0 my=0

3—2mp —4m3\ (2 —2m3 1 m1+2ma+3mz  my+2m
Fi. — E 1 2 3,,M2 3 _
1;t3 ( 1 > < ) 5 .yl -y2

m1,my,m3E€L>p

1+ 3y1 + 3y + y7 +2v2ys + 242y + yiva.
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Kronecker Quiver Example (continued)

—i+1-2 im ¢ im S (i—1)m;
Ig fg — Z H< ZJ I+1( ) J) )/12:':1 yzzjlfl( 1)

(m1,...,mg) €L i=1

0
1
F]_;f1 = Z <m1>y1m1 :l'i_ﬂ

m;=0
These two terms correspond to m; = 0 and m; = 1, respectively. There
are no contributions for m; > 2.
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Kronecker Quiver Example (continued)

(—i+1-2 ; i)m ¢ imy S (i—1)my
Ig tg — Z H < ZJ +1( ) J) )/12'71 yzzjlfl( )

(m1,...,mg) €L i=1

o
1
Fo= 3 (o )" =142

m;=0
These two terms correspond to m; = 0 and m; = 1, respectively. There
are no contributions for m; > 2.

o
2—2m 1
Fro= 3 3 (02 (LA =1 2n 2 e

m
m1=0 my=0 2

The two underlined contributions correspond to my =0 and my =1,
respectively. Analogously, there are no contributions for my > 2.
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Kronecker Quiver Example (continued)

(—i+1-2 ; i)m ¢ imy S (i—1)my
Ig tg — Z H < ZJ +1( ) J) )/12'71 yzzjlfl( )

(m1,...,mg) €L i=1

o
1
Fo= 3 (o )" =142

m;=0
These two terms correspond to m; = 0 and m; = 1, respectively. There
are no contributions for m; > 2.

o
2—2m 1
Fro= 3 3 (02 (LA =1 2n 2 e

m
m1=0 my=0 2

The two underlined contributions correspond to my =0 and my =1,
respectively. Analogously, there are no contributions for my > 2.

The first three terms correspond to my = 0, m; = 1, my = 2, respectively,

and there are no contributions for my > 2.
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Kronecker Quiver Example (continued)

3—2mp —4m3\ (2 —2m3 1 My42ma+3ms . myt2m
Fr. = E 1 2 3,,Mm2 3 _
Lits ( m > < mo m3 ‘¢! %

my,mp,m3€Z>p

1+ 3y1 +3y2 + )3 + 2y + 2¥3y0 + yviva.

The two underlined contributions correspond to m3 =0 and m3 =1,
respectively. Again, there are no contributions for ms > 2.
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G. Musiker and M. Gupta (AMS 2019)

Kronecker Quiver Example (continued)

Fre, :Z (3 —2my — 4m3> <2 — 2m3> < 1 >y1m1+2m2+3m3y2mz+2m3 _

m ma m3
my,mz,m3€Z>g

143y +3yf + 7 + 28y + 200y + ¥ivi-
The two underlined contributions correspond to m3 =0 and m3 =1,
respectively. Again, there are no contributions for ms > 2.
Further refinement of this sum by tracking my =0 and mp =1,
respectively, under the assumption m3 = 0 yields

1+ 3y + 3y + )3 + 2y + 205y + yviva.-
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Kronecker Quiver Example (continued)

Fre, :Z (3 —2my — 4m3> <2 — 2m3> < 1 >y1m1+2m2+3m3y2mz+2m3 _

m ma m3
my,mz,m3€Z>g

143y +3yf + 7 + 28y + 200y + ¥ivi-
The two underlined contributions correspond to m3 =0 and m3 =1,
respectively. Again, there are no contributions for ms > 2.
Further refinement of this sum by tracking my =0 and mp =1,
respectively, under the assumption m3 = 0 yields

1+ 3y + 3y + )3 + 2y + 205y + yviva.-

However, in addition we get an infinite number of contributions
[e.e]

Z < 1> mitd 2 Z ( ) 32 ecall (—1) _(ym

m
m1=0 1

arising when mp =2, ms3 = 0 ormy=0,m3=1.
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Kronecker Quiver Example (continued)

Fre, :Z (3 —2my — 4m3> <2 — 2m3> < 1 >y1m1+2m2+3m3y2mz+2m3 _

m ma m3
my,mz,m3€Z>g

143y +3yf + 7 + 28y + 200y + ¥ivi-
The two underlined contributions correspond to m3 =0 and m3 =1,
respectively. Again, there are no contributions for ms > 2.
Further refinement of this sum by tracking my =0 and mp =1,
respectively, under the assumption m3 = 0 yields

1+ 3y + 3y + )3 + 2y + 205y + yviva.-

However, in addition we get an infinite number of contributions
[e.e]

Z < 1> e Z ( ) M 3y2 recall (_1> — (—1)m

m
m1=0 1

arising when mp =2, ms3 = 0 or my =0, m3 = 1. This telescoping infinite
sum vanishes except for the term of yf’y22 form =0,m,=0,m3 =1
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Kronecker Quiver Example (continued)

The formulae continue as

4—2m2—4m3—6m4 3—2m3—4m4
IS —
S N (R G

m1,mz,m3,ma€Z>p

2—2my 1 my+2my+3mz+4my  mo+2m3+3my
X Y1 Yo
ms3 mgy

5—2my —4mz — 6my — 8 4—2m3—4my —6
Fl;tE _ Z < mo ms3 mg m5> ( ms3 mg m5> %

m my
my,m2,m3,ma,ms€Z>4

3- 2m4 - 4m5 2 — 2m5 1 yml+2m2+3m3+4m4+5m5ym2+2m3+3m4+4m5
ms3 ma ms 1 2

F1.t; includes terms such as 6y?ys — 2y?ys = 4y?y5 in its expansion,
corresponding to (my, ma, m3, mg, ms) = (0,1,1,0,0) and (1,0,0,1,0),
respectively. In particular, the contributions from negative binomial
coefficients yield a positive term, yet arises from a_non-trivial difference.
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Formula for general Rank Two, i.e. r-Kronecker Case

For the case of Bg = [_Or 6} and [0 = paplopap - iy,

l
. S¢—i — r J i+1Sj—i—1Mm;j Siysicami Siysiam
'e,f/ - n Y2

(m1ye.,mp)€Z>q i=1

where s_1 = 0,59 = 1, sg+1 = rsx — sk—1 for k > 0.
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Cluster Monomials (F-polys) from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M "19+) :
Given a framed quiver Q and a mutation sequence [t = fuj, ftj, = - * [Li,
consider the sequence of cluster seeds tg —#1 t; —F2 ... t,_1 —Mie t,.

Let {F1.t,, F2.ts5- ., Fnit,} be the F-polynomials associated to the cluster

seed after the final mutation. Let Fi %) = F F2 ... Fh and

g(d1d2..dn) he the associated d-weighted linear combination of g-vectors.
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Cluster Monomials (F-polys) from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M "19+) :
Given a framed quiver Q and a mutation sequence [t = fuj, ftj, = - * [Li,
consider the sequence of cluster seeds tg —#1 t; —F2 ... t,_1 —Mie t,.

Let {F1.t,, F2.ts5- ., Fnit,} be the F-polynomials associated to the cluster
seed after the final mutation. Let Fi %) = F F2 ... Fh and

g(d1.d2,.dn) he the associated d-weighted linear combination of g-vectors.
Then this F-polynomial analogue of a cluster monomial can be expressed
as a sum of products of binomial coefficients:

(d1,d2,...,dn)
oy (oSt

mj
(my,....,mp)EZL>0j=1

Here, cp (resp. |cp|) denotes the pth c-vector (resp. the normalized
c-vector €,Cp) along the mutation sequence [z, By denotes the exchange
matrix associated to @ before any mutations a b denotes ordinary dot
product, and y(9:%:-dn) js shorthand for y1 y2 <o ydn,
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Thanks for Coming (http://math.umn.edu/~musiker/Fpoly19.pdf)

e Meghal Gupta, A formula for F-polynomials in terms of C-Vectors and
Stabilization of F-polynomials, REU 2018, arXiv:1812.01910

e Meghal Gupta and Gregg Musiker, Applications of F-polynomials in
terms of C-Vectors, (in preparation).

e H. Derksen, J. Weyman and A. Zelevinsky. Quivers with potentials and
their representations Il: applications to cluster algebras, JAMS. 2010.

e S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients,
Compositio Mathematica. 2007.

e B. Keller. Cluster algebras and derived categories, arXiv:1202.4161.

e K. Nagao. Donaldson-Thomas theory and cluster algebras, Duke
Mathematical Journal. 2013.

e T. Nakanishi. Periodicities in cluster algebras and dilogarithm identities,
Representations of algebras and related topics. 2011.

e T. Tran. F-polynomials in quantum cluster algebras, Algebras and
representation theory. 2011.
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