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Cluster Expansions

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A is a certain subalgebra of k(x1, . . . , xm), the field of rational functions
over {x1, . . . , xm}. Generators constructed by a series of exchange
relations, which in turn induce all relations satisfied by the generators.

Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 19, 2008 3 / 39



Cluster Expansions

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A is a certain subalgebra of k(x1, . . . , xm), the field of rational functions
over {x1, . . . , xm}. Generators constructed by a series of exchange
relations, which in turn induce all relations satisfied by the generators.

Theorem. (The Laurent Phenomenon FZ 2001) For any cluster algebra
defined by initial seed ({x1, x2, . . . , xm},B), all cluster variables of A(B)
are Laurent polynomials in {x1, x2, . . . , xm}

(with no coefficient xn+1, . . . , xm in the denominator).

Thus, any cluster variable xα = Pα(x1,...,xm)

x
α1
1 ···x

αn
n

where Pα ∈ Z[x1, . . . , xn].

(We use the notation xα since we only consider cases in this talk where
denominator defines cluster variable.)
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Cluster Expansions

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A is a certain subalgebra of k(x1, . . . , xm), the field of rational functions
over {x1, . . . , xm}. Generators constructed by a series of exchange
relations, which in turn induce all relations satisfied by the generators.

Theorem. (The Laurent Phenomenon FZ 2001) For any cluster algebra
defined by initial seed ({x1, x2, . . . , xm},B), all cluster variables of A(B)
are Laurent polynomials in {x1, x2, . . . , xm}

(with no coefficient xn+1, . . . , xm in the denominator).

Thus, any cluster variable xα = Pα(x1,...,xm)

x
α1
1 ···x

αn
n

where Pα ∈ Z[x1, . . . , xn].

(We use the notation xα since we only consider cases in this talk where
denominator defines cluster variable.)

Conjecture. (Positivity Conjecture FZ 2001) For any cluster variable xα

the polynomial Pα(x1, . . . , xn) has nonnegative integer coefficients.
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Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy
algeras, cluster algebras of type An with boundary coefficients.

Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 19, 2008 4 / 39



Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy
algeras, cluster algebras of type An with boundary coefficients.

[FZ 2002] proved positivity for finite type with bipartite seed.
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Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy
algeras, cluster algebras of type An with boundary coefficients.

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank two
affine cluster algebras.
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Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy
algeras, cluster algebras of type An with boundary coefficients.

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank two
affine cluster algebras.

[Caldero-Zelevinsky 2006] combinatorial formulas for Euler characteristic
of Quiver Grassmannian of Kronecker Quiver.

Positivity also proven for those cluster variables for an acyclic seed
[Caldero-Reineke 2006],

as well as for Cluster algebras arising from unpunctured surfaces
[Schiffler-Thomas 2007, Schiffler 2008], generalizing Trails model of
Carroll-Price.
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Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S ,M).
We assume marked points M ⊂ ∂S (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)
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Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S ,M).
We assume marked points M ⊂ ∂S (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)

1 The endpoints of γ are in M.

2 γ does not cross itself.

3 relative interior of γ is disjoint from M and the boundary of S .

4 γ does not cut out a monogon or digon.

Seed ↔ Triangulation T = {τ1, τ2, . . . , τn}

Cluster Variable ↔ Arc γ

xi ↔ τi ∈ T .

For γ 6∈ T let ei (T : γ) be the minimal intersection number of τi and γ.
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A Graph Theoretic Approach

Recall from Ralf Schiffler’s Talk:

Theorem. (M-Schiffler 2008) For every triangulation T (in a surface
without punctures) and arc γ, we construct a snake graph Gγ,T such that

xγ =

∑
perfect matching M of Gγ,T

x(M)y(M)

x
e1(T ,γ)
1 x

e2(T ,γ)
2 · · · x

en(T ,γ)
n

where ei (T , γ) is the crossing number of τi and γ, and x(M), y(M) are
each monomials. (xγ is cluster variable with principal coefficients.)
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Theorem. (M-Schiffler 2008) For every triangulation T (in a surface
without punctures) and arc γ, we construct a snake graph Gγ,T such that

xγ =

∑
perfect matching M of Gγ,T

x(M)y(M)

x
e1(T ,γ)
1 x

e2(T ,γ)
2 · · · x

en(T ,γ)
n

where ei (T , γ) is the crossing number of τi and γ, and x(M), y(M) are
each monomials. (xγ is cluster variable with principal coefficients.)

Definition. Given a simple undirected graph G = (V ,E ), a perfect
matching M ⊆ E is a set of distinguished edges so that every vertex of V

is covered exactly once. (Each edge has weight x(e) where x(e) is allowed
to be 1 (unweighted) or some variable xi .)

Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 19, 2008 6 / 39
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Recall from Ralf Schiffler’s Talk:

Theorem. (M-Schiffler 2008) For every triangulation T (in a surface
without punctures) and arc γ, we construct a snake graph Gγ,T such that

xγ =

∑
perfect matching M of Gγ,T

x(M)y(M)

x
e1(T ,γ)
1 x

e2(T ,γ)
2 · · · x

en(T ,γ)
n

where ei (T , γ) is the crossing number of τi and γ, and x(M), y(M) are
each monomials. (xγ is cluster variable with principal coefficients.)

Definition. Given a simple undirected graph G = (V ,E ), a perfect
matching M ⊆ E is a set of distinguished edges so that every vertex of V

is covered exactly once. (Each edge has weight x(e) where x(e) is allowed
to be 1 (unweighted) or some variable xi .)

The weight of a matching M is the product of the weights of the
constituent edges, i.e. x(M) =

∏
e∈M x(e).
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Recall that are 5 completed (T , γ)-paths of this octagon, with weights

x2
3 + x3x4 + x2x3 + x2x4 + x1x5

x1x3x5
.
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Example of Octagon (continued)

Consider the graph GTO ,γ =

125

31

7 2 4 111 3 5

3

8

GTO ,γ has five perfect matchings (x7, x8, . . . , x13 = 1):

x3(x8)x3(x13), x2(x7)x3(x13),

x3(x8)x4(x11), (x7)x2x4(x11),

(x7)x1x5(x11).
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Example of Octagon (continued)

Consider the graph GTO ,γ =

125

31

7 2 4 111 3 5

3

8

GTO ,γ has five perfect matchings (x7, x8, . . . , x13 = 1):

x3(x8)x3(x13), x2(x7)x3(x13),

x3(x8)x4(x11), (x7)x2x4(x11),

(x7)x1x5(x11).

Dividing each monomial by x1x3x5, we obtain weights of (T , γ)-paths.
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How to construct GT ,γ’s (unpunctured surfaces)

Definition. For 1 ≤ i ≤ n (i.e. all τi ∈ T ), define Tile Si to be (weighted)
triangulated quadrilateral homeomorphic to the quadrilateral bounding arc
τi in surface S . (Diagonal NW − SE and opposite sides still opposite)
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triangulated quadrilateral homeomorphic to the quadrilateral bounding arc
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1 Now given arc γ: Pick orientation of γ : s → t.

2 Label p0 = s, p1, . . . , pd , pd+1 = t, the intersection points of γ with
T (pj ∈ τij ).
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How to construct GT ,γ’s (unpunctured surfaces)

Definition. For 1 ≤ i ≤ n (i.e. all τi ∈ T ), define Tile Si to be (weighted)
triangulated quadrilateral homeomorphic to the quadrilateral bounding arc
τi in surface S . (Diagonal NW − SE and opposite sides still opposite)

1 Now given arc γ: Pick orientation of γ : s → t.

2 Label p0 = s, p1, . . . , pd , pd+1 = t, the intersection points of γ with
T (pj ∈ τij ).

3 Let ∆i (for 1 ≤ j ≤ d − 1) denote the triangles bounded by arcs τij

and τij+1
. (∆0 and ∆d denote the first and last triangles that γ

traverses.)

4 Let [γj ] denote the third side of ∆j for 1 ≤ j ≤ d − 1.

5 By convention Let Gγ,1 := Si1.

6 Inductively attach tile Sij+1
to graph Gγ,j to obtain Gγ,j+1.

(N or E edge of Gγ,j agrees with tile Sij+1
: N ↔ E and S ↔ W )

7 We define GT ,γ to be Gγ,d . (Erase diagonals to obtain GT ,γ .)
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Examples of GT ,γ

Example 1. Use above construction for
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:

27 1
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8 , 8

5

1

7 2 41 3

3

,

125

31

7 2 4 111 3 5

3

8 . Thus

GTO ,γ =

125

31

7 2 4 111 3 5

3

8 .
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Examples of GT ,γ (continued)

Example 2. We now construct graph GTA,γ .

1
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ττ τ
8 5 7τ6

γ

τ2
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Examples of GT ,γ (continued)

Example 2. We now construct graph GTA,γ .

1
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Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for y(M)’s, i.e. the terms in the
F -polynomials.
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Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for y(M)’s, i.e. the terms in the
F -polynomials.

Definiton. [W. Thurston-Conway] (Following description of
[Elkies-Larsen-Kuperberg-Propp])

Given a snake graph G , up to orientation, there is a choice of minimal
matching (M−) which consists of every-other edge on the boundary.
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We now wish to give formula for y(M)’s, i.e. the terms in the
F -polynomials.

Definiton. [W. Thurston-Conway] (Following description of
[Elkies-Larsen-Kuperberg-Propp])

Given a snake graph G , up to orientation, there is a choice of minimal
matching (M−) which consists of every-other edge on the boundary.

Given any other matching M, let M⊖M− denote the symmetric difference.

The height hM : Faces(G )→ Z≥0 of matching M is a function recording
which faces are enclosed by M ⊖M−.
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Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for y(M)’s, i.e. the terms in the
F -polynomials.

Definiton. [W. Thurston-Conway] (Following description of
[Elkies-Larsen-Kuperberg-Propp])

Given a snake graph G , up to orientation, there is a choice of minimal
matching (M−) which consists of every-other edge on the boundary.

Given any other matching M, let M⊖M− denote the symmetric difference.

The height hM : Faces(G )→ Z≥0 of matching M is a function recording
which faces are enclosed by M ⊖M−.

For snake graphs, hM(F ) ∈ {0, 1} and we obtain the formula

y(M) :=
∏

i

y
P

Faces Labeled i hM(F )
i .
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Height Function Examples

Recall that GTO ,γ has three faces, labeled 1, 3 and 5.
GTO ,γ has five perfect matchings (x7, x8, . . . , x13 = 1):

x2
3 y1y3y5, x2x3 y3y5,

x3x4 y1y3, x2x4 y3,

x1x5 (1). (←− This matching is M−.)
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Height Function Examples

Recall that GTO ,γ has three faces, labeled 1, 3 and 5.
GTO ,γ has five perfect matchings (x7, x8, . . . , x13 = 1):

x2
3 y1y3y5, x2x3 y3y5,

x3x4 y1y3, x2x4 y3,

x1x5 (1). (←− This matching is M−.)

For example, we get heights y1y3, y3, and y3y5 because of superpositions:

31
,

3
, and

53
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Height Function Examples (continued)

For GTA,γ = 1
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Height Function Examples (continued)

For GTA,γ = 1

1 2 3

4

1 2

4 6

2

4

7
13

5

4 6

2 3

1

8

8

2

5

3

, M− is

2

1 2 3

4

1

. One of the

17 matchings, M, is

2

1 2 3

4

1

, so M ⊖M− =

2

1 2 3

4

1

,

which has height y1y
2
2 . So one of the 17 terms in the cluster expansion of

xγ is
x2
4x2

x2
1x2

2x3x4
(y1y

2
2 ).
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Summary

Theorem. (M-Schiffler 2008) For every triangulation T of unpunctured
surface and arc γ, we construct a snake graph Gγ,T such that

xγ =

∑
perfect matching M of Gγ,T

x(M)y(M)

x
e1(T ,γ)
1 x

e2(T ,γ)
2 · · · x

en(T ,γ)
n

where ei(T , γ) is the crossing number of τi and γ, x(M) is the edge-weight
of perfect matching M, and y(M) is the height of perfect matching M.
(xγ is cluster variable with principal coefficients.)
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Summary

Theorem. (M-Schiffler 2008) For every triangulation T of unpunctured
surface and arc γ, we construct a snake graph Gγ,T such that

xγ =

∑
perfect matching M of Gγ,T

x(M)y(M)

x
e1(T ,γ)
1 x

e2(T ,γ)
2 · · · x

en(T ,γ)
n

where ei(T , γ) is the crossing number of τi and γ, x(M) is the edge-weight
of perfect matching M, and y(M) is the height of perfect matching M.
(xγ is cluster variable with principal coefficients.)

Corollary. The F -polynomial equals
∑

M y(M), is positive, and has
constant term 1.

The g -vector satisfies xg = x(M−).

Corollary. The Laurent expansion of cluster variable xγ is positive for any
cluster algebra (of geometric type) arising from a triangulated surface
without punctures.
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Partially Generalizes Earlier Work on Classical Types

Theorem. (M 2007) For every classical root system, let BΦ denote the
corresponding bipartite seed (without coefficients). Then there exists a
family of graphs GΦ = {Gα}α∈Φ+ such that xα, the cluster variable of
A(BΦ) corresponding to α ∈ Φ+, can be expressed as

xα =
PGα

(x1, . . . , xn)

xα1
1 · · · x

αn
n

.

Further, we will construct the graphs in a very simple manner using the
tiles Tk .
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Tiles for the four classical types

A5

54321

5

432

4

xx

x

x

x

1

3

x

xx2

C5

54321

5

432

4

xx

x

x

2x

2x

x

x

3

1

x
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Graphs for An and Cn

A5

4

4321543

3

24

432 215

2

4321

32

1 5

3

3 454321

5
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Graphs for An and Cn (cont.)

C3 folds onto A5 (Take right-half including middle)

1

3213 1

313

2

22

2 2

22 1

3

3

3

3

3

32

2 2

22

2

2

1

11

1

2
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Tiles for the four classical types (cont.)

B5

x3 x1

x1

2
x2

1
x2x4 3 4 xx5 3 5 x4

D5

x2

1

x2

1
1x

x234x 4 x32
x3 x1
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The Bn and Dn cases

B4 After mutating with respect to x1 and x3 (x2 and x4), we obtain

1 3

1
2

3

1

4

3

2

3

1

4

1
2

1

3

1

3

1

3

2 2

4

2
1 1
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The Bn and Dn cases (cont.)

1

3

1

3

2 2

4

2
1 1

2
1

3

4

1

3

1
2 2

1

3

1
2 2

4

2

3

Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 19, 2008 22 / 39



The Bn and Dn cases (cont.)

1

3

1
2 2

4

2

3

2
1 2

3

4

2
4
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The Bn and Dn cases (cont.)

D5

1 1

3

2

3

11

4

3
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The Bn and Dn cases (cont.)

D5 (cont.)

2

3

1
2

3

1

1
2

1

3

4

1

3

1

3

2 2

4

2
1 1
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The Bn and Dn cases (cont.)

D5 (cont.)

2
1

3

4

2
1

3

4

1

3

1
2 2

1

3

1
2 2

4

2

3
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The Bn and Dn cases (cont.)

D5 (cont.)

2
1

2
1

2

3

4

2
4
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G2

Seed matrix is B =

[
0 1
−3 0

]
Hexagon has x1 on NW, NE, and S sides,

Trapezoid has x2 on N side.

1

2
1 1

2 11
2

1

2
1 11

2 2

1
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Affine Rank 2

Joint work with Jim Propp.

Let B =

[
0 −2
2 0

]
or

[
0 −4
1 0

]
.

Here we also exploit invariance of matrices B under mutation.

So we are considering (b, c)-sequence

xnxn−2 =

{
xb
n−1 + 1 if n odd

xc
n−1 + 1 if n even

for (b, c) = (2, 2) or (1, 4).
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Affine Rank 2 (cont.)

Since cluster algebra structure, (b, c) sequence consists of Laurent
polynomials.

Work of Sherman and Zelevinsky verifies positive coefficients for (1, 4) and
(2, 2) using Newton polytope, and Caldero-Zelevinsky give another proof
of positivity for (2, 2) case via Quiver Grassmannians.

This cluster algebra also comes from an annulus with one marked point on
each boundary (no punctures).

Equivalently, this is a cluster algebra of affine type Ã1,1.

We give proof of positivity via graph theoretical interpretation similar to
above.
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Affine Rank 2 (cont.)

(2, 2): all cluster variables have denominators xd
1 xd+1

2 (resp. xd+1
1 xd

2 )
We string together corresponding number of sqares

1

x

x2

2 x

x1

1

2

in an intertwining fashion.
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Affine Rank 2 (cont.)

(2, 2): all cluster variables have denominators xd
1 xd+1

2 (resp. xd+1
1 xd

2 )
We string together corresponding number of sqares

1

x

x2

2 x

x1

1

2

in an intertwining fashion.

Examples:

x2
4+2 x2

2+1+x1
2

x1
2x2

↔
1 2 1

x1
6+3 x1

4+3 x1
2+2 x2

2x1
2+x2

4+1+2 x2
2

x2
3x1

2 ↔
2 1 2 1 2
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Affine Rank 2 (cont.)

(1, 4): Tiles are a square and an octagon:

x0

x3
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Sequnce Continues

x4 17 terms

x5 9 terms

x6 386 terms

x7 43 terms
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Sequnce Continues (cont.)

x8 8857 terms

x9 206 terms

x10 203321 terms

x11 987 terms
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Running the (1, 4) sequence backwards

x−1 3 terms

x−2 41 terms

x−3 14 terms

x−4 937 terms
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Running the (1, 4) sequence backwards (cont.)

x−5 67 terms

x−6 21506 terms

x−7 321 terms

x−8 493697 terms
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Markoff polynomials

Joint work by Carroll, Itsara, Le, M, Price, Thurston, and Viana under
Propp in REACH program.

B =




0 2 −2
−2 0 2
2 −2 0


, Exchange graph is free ternary tree.

B invariant under mutation. All exchanges have form (x , y , z) 7→ (x ′, y , z)
where xx ′ = y2 + z2.

(Cluster algebra corresponds to once punctured torus.)
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Joint work by Carroll, Itsara, Le, M, Price, Thurston, and Viana under
Propp in REACH program.

B =




0 2 −2
−2 0 2
2 −2 0


, Exchange graph is free ternary tree.

B invariant under mutation. All exchanges have form (x , y , z) 7→ (x ′, y , z)
where xx ′ = y2 + z2.

(Cluster algebra corresponds to once punctured torus.)

These also have graph theoretic interpretation: Snake Graphs, .e.g

Polynomial(x ,y ,z)
x4y2z1 ←→ xy

xy

z

x

x

with tiles

x x

y

y

z z z

x

z

x

y

y

x y z
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Work in Progress with Ralf Schiffler and Lauren Williams

Theorem. Formulas for F -polynomials and g -vectors for types A, B ,
C , D with respect to any seed (not nec. acyclic).

In Progress. Snake Graph Interpretations for Triangulated Surfaces
(even in prescence of punctures).
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Thank You For Listening

Cluster Expansion Formulas and Perfect Matchings (with Ralf Schiffler),
arXiv:math.CO/0810.3638

A Graph Theoretic Expansion Formula for Cluster Algebras of Classical

Type, http://www-math.mit.edu/∼ musiker/Finite.pdf,
(To appear in the Annals of Combinatorics)

Combinatorial Interpretations for Rank-Two Cluster Algebras of Affine

Type (with Jim Propp), Electronic Journal of Combinatorics. Vol. 14
(R15), 2007.

The Combinatorics of Frieze Patterns and Markoff Numbers

(by Jim Propp), arXiv:math.CO/0511633

Slides Available at http//math.mit.edu/∼ musiker/GraphTalk.pdf
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